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Stability and Convergence of Spectral Methods for 
Hyperbolic Initial-Boundary Value Problems 

By P. Dutt 

Abstract. In this paper we present a modified version of the pseudospectral method for 
solving initial-boundary value systems of hyperbolic partial differential equations. We 
are able to avoid problems of instability by regularizing the boundary conditions. We 
prove the stability and convergence of our proposed scheme and obtain error estimates. 

1. Introduction. In this paper we study the stability and convergence of spec- 
tral methods for the approximation of initial-boundary value hyperbolic systems 
with constant coefficients. 

This problem has been studied by Gottlieb, Lustman and Tadmor [1], [2] under 
the assumption that the boundary conditions are dissipative. We prove that a mod- 
ified version of the numerical scheme they have proposed is stable and converges to 
the true solution of the hyperbolic initial-boundary value problem (IBVP), without 
any assumption of dissipativity on the boundary conditions. Our treatment closely 
follows their approach. 

Definitions. Consider the first-order hyperbolic system of partial differential 
equations 

au Ou 
(1.la) , = A -1 < x < 1, t > O. 

Here, u = u(x, t) = (u1,... , un) T is the vector of unknowns, and A is a fixed n x n 
coefficient matrix. 

Since by hyperbolicity, A is similar to a real diagonal matrix, we may assume 
without loss of generality that it is diagonal: 

(1. lb) [ 0 X A = [A. ] < 0, A,,= [ 1> 0. 

The solution of this system is uniquely determined if we prescribe initial conditions 

(l.lc) u(x, 0) = f(x), -1< x <1 

and boundary conditions 

(l.l1 d) u"(1, t) = Ru'(1, t) + g"(t), t > 0. 
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In these formulas, 

g = g(t) = (gI(t) gII(t))T 

is a given n-vector, and 

(1.le) uI = (u1... ul)T uII = (ul+l. IUn)T 

is a partition of u into its inflow and outflow components corresponding to the 
partition of A in (1.lb) while L and R are constant reflection matrices of order 
I x (n - 1) and (n - 1) x 1, respectively. 

The system (l.la)-(l.le) is a well-posed problem in the sense described by Kreiss 
in [4]. 

We study the pseudospectral discretization of (1.1). In any such approximation, 
one seeks a vector of Nth degree polynomials 

Z ZN(x, t) = (zN(x, t), *.. , zn (X, t))T 

such that 

(1.2a) -9t = A<) + Q(x) , 

where y = (-y , 91)T is an n-vector. 
In the pseudospectral Chebyshev method, we collocate at the interior extrema 

of TN+1(x), yielding 
Q(x) = TN+1(X) 'I, 

where I is the n x n identity matrix and Tk (x) is the Chebyshev polynomial of degree 
k. In [1], Gottlieb, Lustman and Tadmor proved that the spectral approximation 
(1.2a) with zero initial conditions and subject to the boundary conditions 

(1.2b) zIl(l1,t)= zI(-l, t) + gl(t), t >O, z"I(1, t) = Rz'(l, t) + g"I(t), 

is stable provided that the boundary operators satisfy the dissipativity condition 

(1.2c) IRI LI < 1. 

They further showed that if we prescribe initial data 

(1.2d) z(x, O) = Eu(x, O) = Ef (x), 

where E is a projection operator, then ZN(X, t) converges to the solution u(x, t) of 
(1.1) as N - 0oo. 

Here and throughout the paper we denote by lvl the Euclidean norm of a vector 
v; similarly, JAl = sup lAvl/lvl. 

If condition (1.2c) is violated, however, the pseudospectral approximation (1.2) 
may be unstable. 

In the method presented in this paper we collocate at the same points; however, 
we are able to avoid problems of instability by working with a regularized version 
of the boundary conditions. Let v and r be n-vectors, 

V = (v, V II)T, r = (rI, II)T, 

as in the previous discussion. 
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We first collocate the partial differential equation at the N points 

xi = COS (i7r/(N + 1)), i =41, ... ., N, 

to obtain the spectral approximation 

( 1 .3a) a v ~N -A,Ia N + rI()T 2 (1.3a) at- 

Nv - A,, ON + T"I(t) TNr+1(X). 

Further, we prescribe initial conditions as before: 

(1.3b) v(x, 0) = Eu(x, 0), 

where E is the same projection operator. 
Next, we regularize the boundary conditions. Let F,(t) denote the approximate 

identity defined by 
{ 0 for t < 0, 

Fe(t) e= te for t > 0. 

Then our regularized boundary conditions are 

(1.3c) vI'(1, t) = L((v"(-1) * Fe)(t)) + gI(t), t > 0. 

Here * denotes the convolution operator 
tOO 

(a * b)(t) = J a(t - y)b(y) dy. 

Note that with our modified boundary conditions, causality still holds-i.e., the 
present depends on the past but not on the future. In general, we could have 
chosen F,(t) as any of a host of approximate identities, which in many respects 
have more desirable properties. However, we choose F,(t) in the form above for 
simplicity of exposition. 

In order to prove the stability and convergence of the modified spectral approxi- 
mation (1.3) to the solution u(x, t) of the IBVP (1.1), we define an auxiliary initial- 
boundary value problem for the hyperbolic system of partial differential equations 
(1.la). 

Let w(x, t, e) denote the solution to the hyperbolic system of partial differential 
equations 

(1.4a) Ow = A' OW OW = A" Ow 
at o.x at a9x 

where w = (wi, wII)T. We prescribe initial conditions 

(1.4b) w(x, 0) = f(x) 

and boundary conditions 

(1.4c) wI(- 1, t) = L((wII(-1) * FF)(t)) + g'(t), t > 0. 
( . C) ~WI, (1 It) = R((w, (1) * Fe) (t)) + gII (t), 

We then prove stability and the convergence of the modified spectral approximation 
(1.3) to the solution u(x, t) of (1.1) in three steps: 

(i) In Section 2 we prove that the modified spectral approximation (1.3) with 
zero initial conditions is stable. 
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(ii) In Section 3 we show that the solution w(x, t, e) of the auxiliary IBVP 

(1.4) converges to u(x, t) as E -+ 0, and we estimate the rate of convergence. 
(iii) In Section 4 we prove that the solution VN(X, t, E) of the modified spectral 

approximation (1.3) converges to the solution u(x, t) of (1.1) if we first let E -+ 0, 
and then let N -+ oo. Our proof relies on the stability of the modified spectral 
approximation (1.3) which we establish in Section 2. 

In another paper we shall present the results obtained from implementing the 
numerical scheme we propose in this paper, and also examine the optimal choice of 
the approximate identity employed in the method. 

2. Stability of the Modified Spectral Method. In discussing the stability 
of the numerical scheme, a closely related question concerns the conditions under 
which the hyperbolic IBVP itself is stable. 

To establish the well-posedness of (1.1), we must establish the following inequal- 
ity with some ?l0 > 0: 

(2.1) / e-f 2 IIu(x t)II2dt < const ef 277t g(t)12 dt 

for all ?i > ?0. Here, 

IIU(x, t)112 = IU(X, t)I2 dx 

is the spatial norm of the vector-valued function u(x, t). 
The parameter o measures the exponential time growth of the solution. 
It can be shown that for the problem under consideration, the value of qo is 

given by 

Nlo > max{O, (log(ILI IRI) * IAI)/4}. 
We now return to the stability of the modified spectral approximation (1.3). 
Definition. The approximation (1.3a)-(1.3c) is stable if there exists a weighting 

pair w(x) = (w'(x), wII(x)) and constants a and qo, and an integer No, such that 
for all q > no and N > No we have 

(2.2a) e f e IIvN(x, t) 112 dt < const N2,f e-27tlg(t)12 dt, 

where 

IIVN(X, t)II -IVN(X t)112 = IVI(X, t)I2wI(x) dx 
(2.2b) 

+ | Iv(x, t)2wN (x) dx. 

For spectral methods using Chebyshev polynomials, we choose 

wI(x) = (1 -x)/( -x2)1/2 and WII(x) = (1?x)/(1- x2)1/2 

We now state the main theorem of this section. 

THEOREM 1. The modified pseudospectral approximation (1.3) is stable. 

To prove this, we first look at the solution of the scalar problem 

(2.3) PN= a 9PN + a(t)TN+l (X) at x 
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and zero initial data. We need to introduce some notation. Let s = n + i(. Let 
h(s) denote the Laplace transform of h(t), 

(2.4) h(s) = f e-8th(t) dt. 

We have assumed in this definition that 

h(t) = O for t < 0. 

Taking the Laplace transform of (2.3), we get 

d 
spN(X, s) = a TPN(X, S) + &(s)TN+1 (x). 

This leads us to Theorem 5.2 of [1]: 

THEOREM 5.2. Let 'I (X, s) be a polynomial in x of degree N which satisfies 
the scalar inflow problem 

(2.5a) SP (x, 8) = a+4r(x, s) + TN+1(Z)' a < 0. 

If 'IN(-1, sO) = 0, then Re so < 0. In fact, 'IN(X, s) satisfies 

(2.5b) IPIN (1,I 8)I < |PIN(1 S)I 

for s such that Res = 0 >0. 
Similarly, in the outflow scalar case: 

(2.6a) ^I( s) = a+ I ( ) + T' (x) a > 0, 

if -I,(1, so) = O, then Re so < 0, and we have 

(2.6b) IPINI (1 I ) I > IP'INI-1 s)I 

for s such that Res = > 0. 

Now we take the Laplace transform of (1.3) with respect to t to obtain 

d xV svN = A d (8)TN+1(X), 

(2.7) VN(1 8) =(I ) VN(- s) + 'g (s), 

R I 
VII (1 8) = 

)+ ) N + 

since the Laplace transform F, (s) of F, (t) is 

Fe(s) = 1/(1 + Es). 

Let Pk(X,s) = pN(X,S,A') and PN(X,S) = pI(X,S,AII) denote the diagonal ma- 
trices 

N 

(2.8a) PI(x,s) = j k N (Tk+1(x))(k)(AI)k, 
k=O 
N 

(2.8b) PI(x,s) = >j k (TN+1(x))(k) (AII)k. 
k=O 
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Then the solution of (2.7) is given by 

(2.9) VI (xV s) -) = Pk(X, ), VN(xs) PNIP(X, S) 

where 'i and FII satisfy the linear system 

(2.10) P ) + = I ] 

L(1 + ES) N ,S 

Let 6 be a positive constant less than one. Choose 

7lo > max{0, (log(jLj. jRj/(1 - 6)) jAj/4)}. 

LEMMA 1. There exists an integer No(E) such that for all s with Re s = n > 70 
and all N > No(E) there holds 

det DN(S) # O, 

where 

[ PK(-1,s) -LPA(i, s) 1 

(2.11) DN( [)= -RPN(-1,) P(1,+ ) 

RP-N(1+Ies) - 

Here, 

(2.12) 

-RPK (1, ) -LPII(-1 

DN(S) = | ~~(1 + 68)PNII(1, S) 2PNI(-1, S) O 

L(1+es)PN(-1,s) 
= EN(S) . PN(S). 

To prove the lemma, we examine the behavior of the family of functions 

ON ( ) 
=PINI(' 

1, ) 

as N -+ oo. (Here and below, the ratio of two diagonal matrices is meant to be the 
product of the numerator matrix and the inverse of the denominator matrix.) 

This leads us to 

LEMMA 2. The family of diagonal matrices kN(S) converge uniformly on every 
compact subset of Re s > 0 to 

4(S) = e-2(All)-ls 

Proof. By Theorem 5.2 of [1] we have that kN(S) is analytic and JkN(S)I < 1 

for Res > 0, for all N. Hence {ON(s)}?N-_1 is a normal family of functions, i.e., for 
any sequence of kN(S) there is a subsequence that converges. Now 

,N ()-k-i T(k+ 1) (All )k 

N() T(+ 
Ek=0 N+1 1) 
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Alternatively, 

{: E (TN++1 k) (_ )1 )/TN++1) (-_j) ).k (A,,) )-k }(A,, ) N 

g7N(S) N ks(s) = E~ k (TN++11 k) (-N)/TN+jlj1) (1))sk(AII)-k } (AII)N 

We know that (see [3, p. 159, formula (A.6)] 

k-1 

TN+ 1(1) = J7J((N + 1)2 _ 12 )/(21 + 1). 
1=0 

Hence, 
T(N+1-k)(1 -1 

T lN+)(1) rj ((N + 1)2 _ 12))/(21 + 1) 
-N+1 LI=N-k+l 

Fixing k and letting N ) oo, we obtain 

i TN+ (I) +I=1) + ) =) 

Similarly, 

p(TN+l k)(_,) (-l)k 
N-To T4p(N 1)(_ J 

We now restrict ourselves to s = , where 7j is real and 0 < i < 1/(2 1A1I). Then 
it is easy to see that 

N{ 0 (TN+1 k)(_1)/T1(N1)(_j ))>k (AII)-k } 

N--+oo~ ~ N= (TN+ 
i- 

1) (1 lp) /N++ 
1 

l) k IIll)-k} 

-{k= (_)k(AII)-k/k! + O(7m+1)} 

{k=o11 (,q)k (AII)-k1k! + 0(77m+j 

where m is arbitrary. Letting m -+ oo we obtain 

lim ON(?j)= = e2(A") n for 0< <7 < 21A-11 
N--+oo e(Al)17=2A1I 

Now by Vitali's Theorem, if a normal family of functions {qN(S)}Ji1 which are 
analytic in a domain Ql converges on a set of points in ?l which has a limit point 
in ?2 to a function 0(s), then qN(S) converges uniformly to 0(s) on every compact 
set of ?2. Hence, Lemma 2 follows. O 

Next, let 

ON(S) = PjN(1, s) ZN(S)k1T(k+I (1)(A )k 

PN(-,) ()k 1 T(k+l) ( 1);(AI )k 

We can prove, as we did in Lemma 2, that ON (S) converges uniformly on every 
compact subset of Re s > 0 to 

>(s) = e2(A,)-ls 
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Now by (2.12), 

DN(S) = EN(S) PN(S). 

By Theorem 5.2 of [1] we know that PN (s) is invertible; so to prove that det DN (s) 

$ 0 we need to show that EN(s) is invertible. We may write EN(s) as 

EN(S)=[4N I] 

where 

NZ ( L) = LON (8) and RON(S) 

Choose d so large that for all s with IsI > d we have 

ILI IRI/Il1 + e512 < 1-6. 

Let K be the compact set 

K = {s: Res =q >?r1o and Isl < d}. 

Then by Lemma 2, ON (S) -N (S) converges uniformly on K to 

,I(s) = e- e 

Hence, we can find an integer NO such that for all N > NO 

lON(S)l ION(S)l < for all s E K. IN)l ILIIRI 

Now 

I(I- NY 'I- 1- I7NI | I 

< (8)1)/Il E8121 
(1 - |RI |ILl IN(S) *ON(S)I)/I + e512 

< for all S E K and for all N > No. 

Similarly, 1(I - NN)-' < 1/6 for all S E K and for all N > NO. Next, consider 
the set C = {s: ISI > d and Res > qo Then, because of our choice of d, 

I(I -,XNYN) I<1-|N || 

(1 - |RI ILl IN(S) * ON(S)I)/11 + E5I2 

< for all s E C. 

Similarly, I(I - YN N)I < 1/6 for all s E C. Combining these two results, we 
conclude that for all N > NO and for all s with Re s = q > qo, 

(I- vFN) (1-9fNYN) I| < 1/6. 

Hence, EN(S) can be inverted: 
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and the c-independent estimate 

IE1(s) I < (2 + JRI2 + IL + 21 + I2 

follows, for any e > 0 and all N > NO (?). This completes the proof of Lemma 
1. 0 

We can now prove Theorem 1. 
System (1.3) consists of 1 inflow equations 

sf3 = ai v3d + _3TN_,(X) 1<j<1, 

and (n - 1) outflow equations 

dx svi =aj - `N + t3 TN11) + 1< j < n., 

By Theorem (5.1) of [1] there exists a weighting pair w(x) = (wI(x),wII(x)) and 

constants a and rio > 0 such that for all s with Re s = r1 > 270 we have for arbitrary 

vectors r 

rB|VN (X )|G, < const N2 |vN (- ) I2 1 < j <I 

7IVN(X )|^I < const N aVjN( s)I2 + 1 < j < n. 

Using the spatial norm 

jjVN (X, S)1IIW = ||VNI (XI S)I 2| I, + ||_VI (X, S) |II2X 

these inequalities can be added together and rewritten in concise form as 

(2.13) ||^IN(x, s)I < const N2[[Nv (V1,N) + IVN(1, )12] 

for Re s = 71 > rp0. We now have to estimate the boundary terms on the right. We 

have 
VI (X, S) = PIN(X, S)T', INI (X, S) = PNI(X, S)II 

Inserting these relations into the boundary conditions, we get 

[II) = N (S-[II()- 

Furthermore, 

^IIN(1 S)0_SN-,S 
IS 

VlN = [P s( J L PINI(1,) [) 'IIT (S)] 

So we conclude 

N[ 5) J EN(S) [gI(s)J 

Since by Lemma 2, EN (s) has a uniformly bounded inverse for Re s = 2 > 27o and 

N > NO, we get 
I-I (-1 S)12 + II(1, s8)12 < Klg(s) 2. 

Combining this with (2.13), we conclude 

(2.14) c p h pro N(So X) 112 < const 0 2, g(s) 12. 

This completes the proof of Theorem 1. 01 
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3. Convergence of the Modified IBVP. We prove that w(x, t, E), the so- 
lution of the modified IBVP (1.4), converges to u(x, t), the solution of the original 
IBVP (1.1) as E -O 0, and we estimate the rate of convergence. 

In [6], Rauch has proved that the solution u(x, t) of (1.1) satisfies an estimate of 
the form 

00 1 

E~~~~~1( I | l@lt2 U(X, t) 12e- 2,7 dx dt 
jal<m? -1 

(3.1) + j {jaIu(1, t) 12 + jaU(_-1, t) 12}e-2,t dt 

< Cm ( X | Iaf(x)I2 dx+/ l @g(t)l2-N t 
for all integers m > 0 and all nj > 0j, with Cm independent of f and g. 

In particular, estimate (3.1) yields the weaker inequality 

Ei j {Iatu(1, t)12 + Iatu(-1, t)I2}e-2nt dt 

c<m 

(3.2) < 1 (c [J1 aff(X)12 dx+ itg(t)i2e-2nt dt]) 

Now consider the modified IBVP (1.4). It is easy to show that if we prescribe 
zero initial data for the problem, i.e., if we solve o 

8?1 _ 81 
et = x, 

(3.3) l(x,O)=0, 

then the solution l(x, t) satisfies the estimate 

( j, e2tII1(x t)d112 dt? const j e 2ft g(t) dt 

o o 

for all on > s ed. We sketch the proof. 
Taking the Laplace transform of (3.3), we obtain 

dl 
sl=A- 

dx' 

1I(- 1 s ) = L(II- ) | (-1, s)) + g, (t), 

II'(1 IS)-= R ((V (1) ,6 St) + gI I (t). 

The solution of (3.5) is 

(3.6) f"(x, S) = (3 ) we+obtin 

(35 8) +^ I___(I)ls IIt 
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where A,(s)- (AI(s), AII(s))T satisfies the linear system 

X(s)A(s) = g(s). 
Here, 2Les2(A) )-1 

X(s)= F (1+ ) ] 

L(1 + es)I 

It is easy to show, as in Section 2, that for Res = q > no the inverse X-l(s) exists 
and satisfies the inequality 

IX-1(s)I <K 

with K a uniform constant. Thus we obtain 

JA(s)j ' Klg(s)l. 

Let a = 1/ Al. Then from (3.6) and the above inequality we conclude that 

(3 7) jiI (x, s)j| < KlIg(s) le- I(+z 

jiII(Xx,S)j| < Klg(s)[e-a71s 

By the Plancherel Theorem we have the identity 

j ll1(x, t) ll,,e 2t dt = J (1( _ 2)/2 dx li'(, + ) 

+ | (1( ) 
00 

d j'Il (XI 7 + i() 12 ( + (1 -)/ dxf I "x<1kl2~ 

and substituting the inequality (3.7) in the right-hand side, we obtain the estimate 

(3.4). 
Now consider the modified IBVP (1.4), which is meant to approximate the orig- 

inal IBVP (1.1). Define 

(3.8) e(x, t, E) = w(x, t, e) - u(x, t). 

Then e(x, t, E) satisfies the modified IBVP with homogeneous initial conditions 

de d9e 
at = 9X' 

(3.9) e(x, 0) = 0, 
e'(-1, t) = L((eII(-1) * Fe)(t)) + h'(t)I 

eII(1I t) = R((e'(1) * Fe)(t)) + h (t), 

where 

h' (t) = L ((uII (-1) * FE) (t) -UII (-1 t)) 
and 

h (t) = R((u' (1) * Fe)(t) - u (1, t)). 

Hence, by (3.4), we may conclude that the inequality 

(3.10) fre-27llte(x>t)o2dt < const. e-2i7tlh(t) 2dt 

holds for all q > No. 
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Next, we estimate the right-hand side of (3.10). We have 

?Ih (t) 12 e-2f(t dt 

IL 12| ' UI-,t (t)-_UII(-j1 t)12 e-2,7t dt 

IL12 j Ies/(l + es)I2liII(_1 j + it)12 d< 

? IL12 2 j ISI2Ii(-1 _j + i()12 d. 

Hence we conclude that 

I gh'I(t) 12e-2nt dt < const62 I |@t u i(_l,It)|1 e -2 tdt. 

Similarly, we can show that 

I Ih' I(t)12e- 2,7t dt < colist E2 J latui(il t) 2e-2nt dt. 

Combining these results, we obtain 

j (t) 2 e- 2i7t dt 
(3.11) 00 

< const e2 (j {ytU(1, t)12 + ltu(-1, t)12}e-2ntdt 

for all j > q7. 
Putting together the relations (3.2), (3.10) and (3.11), we obtain the main esti- 

mate of this section: 

ni j IIu(x, t) - w(x, t, E) 112 e-2nt dt 

(3.12) < const E2 (i [f 19 f (X) 12 dx + f lac g(t) 1 2e-2,lt dt]) 

for all j > q7. 
In particular, we have that 

(3.13) 7j IIu(x, t) w(x, t, E)112 e-2nt dt = o(E2) 

for r1 > r> 

4. Convergence of the Modified Spectral Approximation. In the pre- 
ceding section we proved that w(x, t, E), the solution of the modified IBVP (1.4), 
converges to u(x, t) linearly in E as E -- 0. 

Hence, to prove that VN (x, t, E), the solution of the modified spectral approxi- 
mation (1.3), converges to u(x, t) as E -- 0 and N -- oo, it is enough to show that 

for fixed E, VN(X, t, E) -- w(x, t,E) as N -- oo. 

The proof of this relies on the stability result we have established in Section 2, 
and is essentially the same as the proof of convergence in [2]. However, for the sake 
of completeness we shall provide a sketch of the proof. 
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Let r be the solution of 

ar ar 
a9t Ax', 

(4.1) r(x, 0) = f(x) = w(x, 0, e), 

r,(-l, t) = wI (-11 t, 6)7 
rII (1 t) = WI, (1 It- E). 

Then r(x, t)- w(x, t, e). 
Let s be the pseudospectral approximation, 

a9s a9s +,()0 
at ax +77k+1(x)*.(t), 

(4.2) s(x, 0) = Ef (x) = Ew(x, ,e), 
8I(-11 t) = wI (-1, t, 5), 

SI"(1 t) = WI,(1 t E) 

Here, we define the projection operator E = (E, EII) by requiring that for any 
function F, EIF and EIIF are polynomials of degree N at most, satisfying 

EIF(xj) = F(xj), j = 1, ... ., N + 1, 
EIIF(x' )=F(xj), j=0,...,N, 

where the points xj are defined by 

X3j= cos(wxj/(N + 1)), j =, ...,N+1. 

Then we define 

Ef = (EIfI EIIfII)T. 

Let 6 = s - Er and a = Er - r. Then it is shown in [2] that for 7j > 0 the following 
estimate holds: 

~ f ee- 2,tf6(X, t)jj1 dt + 2N J-2ftt6I(Il, t)j2 dt 

N Joo 

(4 3) + 2 N e-2,t 16II (1 t) 12 dt 

< const e- 21t IIIQ(x, t)1II2dt, 

where Q = (QI QII)T is defined by 

aw a9 IItT w EI 
Q= A, (El ax - E EwI QWJ = A", EIj ax9W Eax wl 

and 

N 

IIIQ(x,t)III2 = 17 (1 - xj)2(1 + xj)IQ,(xj,t)j2 
j1=l 

N 

+ N E(1 + Xj)2(1 - Xj)IQII(x3- t)12. 
j=1 



560 P. DUTT 

Next, we compare the modified spectral solution s with v, as defined by (1.3). Then 
v - s satisfies 

j-(V-8) = a (v-8) +TN+1(x) (T-O ), at T 
(4.4) (v-s)(X, 0) = 0, 

(v' - s') (-1, t) = L(((v" - s") (-1) * Fe) (t)) + b'(t), 

(vII - s_i)(1, t) = R(((vi - s')(1) * Fe)(t)) + b"(t) 

where 
b' (t) = L(((6"I + u"ii)(-1) * (t))I 

b"(t) = R(((6 I + o')(1) *F,)(t)) 

By Theorem 1 of Section 2 we then have 

(4.5) 171 e-2n7tjS- V112 dt < const N2, e- 2nt lb(t)12 dt. 

Clearly, 

J e-2't lb(t) 12 dt 

(4.6) 00 
< constj e-2,7t{16(l,t)12 + j6(-1,t)12 + Ia(l,t)12 + Io(-1,t)l2}dt. 

Combining (4.3), (4.4) and (4.6), we obtain 

17 / e 2,7 11 (S -V) (X, t) 112 dt 

(4.7) 00 
< const Ne2{+1 |Ie-I2I7tjQ(X, t)jjj2 + j(_-1, t)12 + If(l, t)1 2} dt. 

For smooth w(x, t, e), the right-hand side tends to zero spectrally in N, i.e., it tends 
to zero faster than any power of 1/N. 

Now 
w-v = (r-Er) + (Er-s) + (s-v). 

Each of the three terms on the right tends to zero spectrally in N. This completes 
the proof of convergence. 
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