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Numerical Approximation of Minimum Norm Solutions 
of Kf -g for Special K 

By Glenn R. Luecke 

Abstract. Let K: L2(Y, Is) -- L2 (X, v) be continuous and linear and assume (Kf )() = 

fy k(x, y)f(y) dy(y). Define kx by kx(y) = k(x, y). Assume K has the property that 

(a) kx E L2(Y,qU) for all x E X and (b) if Kf = 0 v-a.e., then (Kf)(x) = 0 for all 
x E X. For example, if X = Y = [0,1], ,u = v is Lebesgue measure and if k(x, y) 
satisfies a Lipschitz condition in x, then K has the above property. Assume K satisfies 
this property and fo is a minimum L2 norm solution of the first-kind integral equation 
(Kf)(x) = g(x) for all x E X. It is shown that fo is the L2-norm limit of linear com- 
binations of the kx 's. It is then shown how to choose constants cl, .. ., cn to minimize 

llfo - Ej1 cjkxjj || without knowing what fo is. This paper also contains results on how 
to choose the kx, 's as well as numerical examples illustrating the theory. 

Introduction. Let K be a continuous linear transformation mapping L2(Y, ,u) 
into L2 (X, v) defined by (Kf )(x) = fy k(x, y) f (y) dyu(y); k(x, y) is called the kernel 
of the integral operator K and is always assumed to be in L2 (X x Y, V x ,ts). Define 

kx to be kx(y) = k(x,y). This paper considers the numerical approximation of 
the minimum norm solution of the first-kind integral equation (Kf)(x) = g(x) for 
all x E X for a special class of integral operators K. For background information 
concerning first-kind equations, see [1]. 

1. Theoretical Results. The following property of the integral operator K is 
a key to the development of the theory. 

Definition 1.1. The integral operator K with kernel function k(x, y) is said to 
satisfy property (C) if 

(a) kx E L2(Y,,u) for all x E X, and 
(b) if (Kf) (x) =0 v-a.e. for some f E L2 (Y, A), then (Kf) (x) = 0 for all x E X. 
Example 1.2. Let X be an open connected set in Euclidean n-space and let v 

be Lebesgue measure on X. Assume ,u(Y) < oo. Assume kx E L2(Y, ,u) for all 
x and assume k(x, y) is continuous in x E X uniformly in y E Y, i.e., for each 
xo E X and E > 0 there exists 6 > 0 such that if x E X such that Ix - xoI < 6 then 

Ik(x,y) - k(xo,y)l < E for all y E Y. Using the Schwarz inequality and routine 
real analysis, it follows that K satisfies property (C). An example of such a K is 
(Kf)(x) = f' k(x, y)f(y) dy, O < x < 1, where the partial derivative of k(x, y) with 
respect to x is a continuous function of x and y, or if k(x, y) is a continuous function 
of x and y satisfying the Lipschitz condition, Ik(xi,y) - k(x2,y)j < MjX1 - x21a 
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for all xI, x2, and y, where M and a are positive constants (independent of xi, X2, 

X, y and Y). 
Let N(K) denote the null space of K and let Ml denote the orthogonal com- 

plement of any set M, i.e., Ml = {f: (f,g) = 0 for all g E M}. Here (f,g) 
denotes the inner product of f and g. The goal is to find minimal hypotheses on 
the operator K so that N(K)' is equal to the L2-closed span of the k's, x E X. 
For simplicity of exposition, it is assumed that all functions are real-valued. 

THEOREM 1.3. If kx E L2(Y,1I) for all x E X, then 

N(K)' c closed span{kx: x E X}. 

Proof. LetM= {kx: x E X} and let fo E M'l. Then for all x E X, (fo, kx) = 0. 
Thus, for x E X, 

(Kfo)(x) = k(x, y)fo(y) dlu(y) = f kx(y) fo(y) p(y) = (kx, fo) = O. 

The second to last equality above is valid because it is assumed that all functions 
are real-valued. It follows that fo E N(K). Therefore, M' c N(K). Then it 
follows that N(K)' C M-L. But M"l is the closed span of M and the proofis 
complete. 0 

THEOREM 1.4. If operator K satisfies property (C), then 

N(K)l = closed span{kx: x E X}. 

Proof. Let M = closed span{kx: x E X} and let fo E N(K). Then (Kfo)(x) = 0 
v-a.e. Since K satisfies property (C), (Kfo)(x) = 0 for all x E X. Then for x E X, 

(fo, kx) = f k (y) fo (y) dy (y) = J k(x, y) fo (y) dys(y) = (K fo) (x) = 0. 

It follows that k, E N(K)' for all x E X. Thus, M C N(K)'. By Theorem 1.3, 
N(K)' C M and hence M = N(K)' and the theorem is proved. 0 

Recall fo is a minimum norm solution of (Kf ) (x) = f (x) if and only if (Kfo)(z) = 

g(x) and fo E N(K)'. Theorem 1.4 implies fo can be approximated as closely as 
desired by (finite) linear combinations of the kx's. 

Example 1.5. To illustrate Theorem 1.4 consider the rank-2 integral operator 
(Kf)(x) = f (x-y)f(y) dy mapping L2(0, 1) into L2(0, 1), Lebesgue measure. 
It is easy to verify that K satisfies property (C), so the hypotheses of Theo- 
rem 1.4 are satisfied. Here, kx(y) = x - y, and it is easily shown that 

closed span{kx: 0 < x < 1} = span{1, y} = N(K)'. 

LEMMA 1.6. Let g, h1, h2, ... , hn be elements in a Hilbert space H with the 
inner product of u,v E H denoted by (u,v). Then the orthogonal projection of 
g onto span{hl,... , hn } is given by En= ajhj, where vector (al,...,an)T is a 
solution of the linear system Ax = b with ai3 = (hj, hi) and bi = (g, hi) 

Proof. Let Pg = E =la,hj be the orthogonal projection of g onto 

span{hl, ... , hn}. Then for each i, g - Pg is perpendicular to hi, that is, 
n 

0 = (g - Pg, hi) = (g, hi) - (Pg, hi) = (g, hi) - Z(hj, hi)aj. 
j=l 

From this the lemma follows. 0 
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Observe that the n x n matrix A in Lemma 1.6 is a Grammian matrix and hence 
is always nonnegative semidefinite and is positive definite if and only if {hl,.. ., hn} 
is a linearly independent set. 

The next theorem shows how to choose constants cl,... , cn so that j=L c1k i 
will best approximate the minimum norm solution fo of Kf = g in the L2-norm 
without knowing fo, that is, only g(x) and the kernel k(x, y) need to be known 
to determine the cj's. Most expansion methods for solving first-kind integral 
equations pick the constants cl, ... , cn to minimiize the norm of the residual in- 
stead of the norm difference from the desired solution. Let -c = (Cl, C2 ,Cn) 

b = (g(xl), g(X2), .. ., g(xn)) , and let A be the n x n matrix whose (i, j)th compo- 
nent is given by (kr,, kx,). With this notation the following theorem can be easily 
stated. 

THEOREM 1.7. If fo is the minimum norm solution of (Kf)(x) = g(x), then 
the minimum over all constants cl,... , cn of Ilfo - n cjkx, 11 occurs when c is 
a solution of Ax = b. Moreover, the value of fn = L1 cjkxj is independent of 
which solution c of Ax = b one takes. 

Proof. By elementary properties of Hilbert spaces, ljfo -_ c3jks jj i min- 
imized when the cj's are chosen so that n=L cjkx, is the orthogonal projection 
of fo onto span{kx.,.. .kxn}. By Lemma 1.6, c = (cl, ...,cn)T is a solution of 
Ax = b, where bi = (fo, kx,). But 

(fo,kxi) = J fo(y)kxi(y)dy(y) = 1 k(xi,y)fo(y)d u(y) = g(x), 

and the proof of the first sentence in Theorem 1.7 is complete. 
Let fn~ = :,n= cjkx and fn = j=1 dj kxjI where c and d are solutions of 

Ax= b. Then for each i= 1,2,...,n 

n n 

(fn, - fnX k ) = E cj (kx;, kx, -E dj (kxj, kx) 
j=1 j=1 

= g(xi)- g(xi) = 0. 

Since fn and fn2 are in the span of kx1,... kx it follows that fn, = fn2 and the 
proof of Theorem 1.7 is complete. O 

The above argument does not obviously generalize to finding the least squares 
solution of minimum norm (see [4]) of Kf = g. The reason for this is that if fo is 
the least squares solution of minimum norm of Kf = g, then (Kfo)(x) = (Pg)(x) 
where Pg is the orthogonal projection of g onto the closure of the range of the 
operator K. Applying the same argument as in the proof of Theorem 1.7 yields 
that the cj's are a solution of Ax = b where A is as defined immediately preceding 
Theorem 1.7, but bi now is (Pg)(xe), which is unknown. 

Notice that in Theorem 1.7, the vector formed from the cj's can be any solution of 
Ax = b. If the kxj's are linearly dependent, then A will be a singular matrix. From 
an application point of view, it is desirable for the kx, 's to be linearly independent 
so that A will be positive definite and Ax = b can be solved numerically using the 
Cholesky decomposition. 
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Example 1.8. If x1,... ,xn are distinct numbers in the interval [a, b], then 
{exlY,.. .,exnY}, {Cos(X1Y),...,COS(XnY)}, and {sin(xiy),...,sin(xny)}, Xj 0 0, 
are linearly independent sets in L2 (a, b), Lebesgue measure. 

Suppose clexlY + - - - + cnexny = 0 for all y E [a, b]. Differentiate this equation i 
times with respect to y, i = 1, 2, ... , n - 1, to obtain a system of n linear equations 

which can be written in the form Ax = 0, where A is a Vandermonde matrix and 
the ith component of x is ciexiy. It follows that each ci = 0. The remaining two 
sets of functions are shown to be linearly independent in a similar fashion except 
the original equation should be differentiated 4, 8, 12,.. ., 4(n - 1) times instead of 
1, 2,3,..., (n - 1) times with respect to y. 

A question of practical importance is: For a given value of n, how should 
x1, ... , xn be chosen so that n=L1 cjkxj can best approximate the minimum norm 
solution, fo, of the integral equation Kf = g? Consider the case n = 1. Applying 
Theorem 1.7 to the case n = 1, one obtains that 

fi(Y)= kg(x) k 1(y) 
(kX1 Xk1) 

is the best Ll-norm approximation to fo(y) for a given value xl, assuming kxl 0 O, 
hence (kx,, kx1) = IIkx111j2 > 0. Therefore, we want to determine the value of xi 
which will minimize 

fo- (kg(xIk) kxl 

Using the fact that (fo, kxl) = g(xi), one obtains 

g(xl) 2 2g(xi )2 g(Xi)2 = Ilf 2 _g(X)2 

k xl kl IIkxl1 j2 Ik1j Il fol - Ilk~1 
Notice that Ilfo jj2 being unknown does not hamper solving this minimization prob- 
lem; find the value of xl that maximizes g(xp)2/IIkx,112. Example 1.5 is simple 
enough that one can calculate this value of xl exactly. For example, the minimum 
norm solution of 

f(x-Y)f(y)dy = 5x-3, 0 < x < 1, 
0 

if fo(y) = 2 + 6y. Using differential calculus, one can show that the maximum of 
g(x)2/jjkxjj2, 0 < x < 1, occurs when x = 0. Thus, the best approximation of 
fo(y) by functions of the form (g(x)/llkxII2)kx(y) is (g(O)/jjko1j2)ko(y) = 9y. Then 

Ilol= Vr-8 and Ilfo - fill = 1. 

Consider fn = En cj kx for n > 0, c a solution of Ax = b and fo the 
minimum norm solution of Kf = g. Since fn is the orthogonal projection of fo 
onto Mn span{kxl . I kxn} (fo -fn fn) = 0 and (fn fo) = jjfnjj2. Then, 

Ilfo fn 112 = (fo - fn fo) -(fo -fn, fn) 
= (fo -ffno) = f lfo2 - (fn fo) 

n n 

= Ifoll2 -E cj(kxj, fo) = IlfoI12 - Cjg(Xj). 
j=1 j=1 
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This proves the following: 

THEtOREM 1.9. To minimize llfo-ZL=1 c k,I || over all cl Cn..*c and xl,..., 
xn, one need only solve: maximize ^L=1 cg(x3) subject to AC = b over all 
X1, ... * Xn 

2. Numerical Results. All computer runs were done in double precision 
on a National Advanced Systems AS/9160 using the VS-FORTRAN version 1.41 
compiler (with optimization level = 0) and using the MVS/XA operating system. 
Double-precision arithmetic on this machine means about 15 decimal digits of accu- 
racy. The parameter N is the number of basis functions, k., 's, that were used. The 
N x N linear system Ax = b, see Theorem 1.7 for notation, can be singular. By 
Theorem 1.7, it does not matter which solution of Ax = b is used. Since A can be 
singular, Ax = b was numerically solved by computing the singular value decompo- 
sition of A (with the LINPACK routine DSVDC) and then computing the minimun 
norm solution. Owing to the finite precision of the computer's arithmetic, some 
computed singular values may be small instead of zero. Computed singular values 
that gave the smallest residual, jlb - Axll, were used. E04JAF from the Numerical 
Algorithms Group (NAG) Library was used to maximize n=, cjg(xj) subject to 

Ac = b. All integral equations tested were of the form fo' k(x, y)f(y)dy =g(x), 
0 < x < 1. Therefore, 

aij = (kxj = 101 k(xj, y)k(xi, y) dy. 

For all numerical examples tested, this integral was evaluated exactly and no 
quadrature method was needed. For the purpose of evaluating the algorithm, 
the minimum norm solution, fo(y), was entered into the program as a function 
statement and bi = g(xi) was calculated by evaluating 

g(xi)= 1 k(xi, y)f(y) dy 

exactly, where f(y) is some given function used to determiie g(x) and may be 
different from fo(y). 

Once the cl,... , cn had been calculated by solving Ax = b, the error between 
the minimum norm solution fo(y) and the approximate solution, 

n 

fn (y) = E cj kxj (y), 
j=1 

was approximated by calculating fo (y)-fn (y) for y E S where S = {0.00, 0.05, 0.10, 
0.15, 0.20, ..., 1.00}. (Using an increment of .01 instead of .05 had little effect on 
the results.) 

The following table lists all of the integral equations tested, along with 
how well the method worked. EX denotes the example number. fo denotes 
the minimum norm solution; k(x, y) denotes the kernel function. AE = 
max{lfo(y) - fn(y)j: y E S}, an approximation to the maximum absolute error. 
RE = max{jfo(y) - fn(y)I/Ifo(y)I: y E S, fo(y) 5$ 0}, an approximation to the 
relative error. Both AE and RE are rounded to one decimal place. RES denotes the 
approximation to the residual given by max{I(Kfn)(x) - g(x)j: x E S}. N is the 
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number of basis functions that yielded the best number for both AE and RE (there 
was no ambiguity for these test problems). A listing of the FORTRAN source code 
is available upon request. 

EX (y) fo(y) k(x, y) AE RE RES N 
1 2 + 6y f(y) x-y 3 x 10-15 1 x lo-15 1 x 10-15 2 
2 ey (18-6e)y x-y 2 x 10-15 1 x 10-15 3 x 10-16 2 

+ (4e + 10) 
3 2+3y f(y) (X-y)3 3 x 10-13 1 x lO-13 2 x 10-14 5 
4 1 f(y) cos(xy) 3 x10-12 3x10-12 1x1015 3 
5 y f(y) sin(xy) 8 x 10-9 1 x 10-8 4 x 10-15 8 
6 (cosy)/3 f(y) cos(xy) 1 x 10-10 7 x 10-10 3 x 10-16 4 
7 cosy - .5cos (t) f(y) cos(xy) 3 x 10-10 3 x 10-9 8 x 10-16 4 

8 ey f(y) exv 1 x 10-9 5 x 10-10 9 x 10-16 5 
9 y2 +2y-1 f(y) (X -y)2 4 x 10-15 6 x 10-14 2 x 101-6 4 

10 siny f(y) ex' 2 x 10-6 4 x 10-5 8 x 10-13 9 

11 cosy f(y) ex' 7 x 10-6 7 x 10-6 1 x 10-13 15 
12 y2 + 1 f(y) cos(xy) 2 x 10-8 1 x 10-7 6 x 10-13 5 
13 cos(2y) f(y) cos(xy) 6 x 10-5 4 x 10-4 2 x 10-13 6 
14 1- 2y f(y) e ' 5 x 10-6 3 x 10-5 2 x 10-12 10 
15 e2y f(y) exv 4 x 10-5 3 x 10-5 2 x 10-12 10 
16 sin(2y) f(y) sin(xy) 7 x 10-6 1 x 10-5 2 x 10-13 8 

To give an illustration of some of the details involved, consider Example 4. (All 
numbers have been rounded.) For N = 1, the best xo was 0.0068. For N = 

2, the best (xo0 x1) was (0, 0000, 0.9392). For N = 3, the best (x0, x1, x2) was 
(0.0000, 0.6530, 0.5127). The various errors and residuals were 

N= 1 N=2 - N=3 

AE 1.5 x 10-5 4.4 x 10-12 2.7 x 10-12 

RE 1.5 x 10-5 4.4 x 10-12 2.7 x 10-12 

RES 9.6 x 10-7 1.2 x 10-15 1.0 x 10- 15 

3. Conclusions. An advantage of the above method is that it automatically 
provides a set of basis functions that span the orthogonal complement of the null 
space of the integral operator K. The test examples listed above confirm that this 
method will work well if the minimum norm solution can be well approximated by 
a few of the basis functions, kx, x E X; otherwise, solutions with high precision 
cannot be found with this method. Since the N x N matrix A used to numeri- 
cally calculate the cj's is a Grammian matrix (with respect to a finite-dimensional 
weighted inner product space), A becomes numerically ill-conditioned when N is 
very large. Experiments with some test problems indicate that N > 25 is normally 
too large. A second advantage of this method is that the coefficients of the kx, 's 
were calculated to minimize the norm difference of the approximate solution to the 
minimum norm solution, instead of choosing them to minimize the residual. The 
third advantage of this method is that it provides a way of picking "optimal" basis 
functions for a fixed value of N. 
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When performing these tests, the minimum norm solution, fo, was used to de- 
termine the value of N which yielded the best approximation, fl, to fo. This was 
done to obtain an accurate evaluation of the method. In applications, fo will be 
unknown, but a value of N can be determined by choosing it to minimize the resid- 
ual IlKf1 -9g, or at least an approximation to it. This was done (as described in 
Section 2) for all examples tested. 
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