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Abstract. In this paper three methods are derived for approximating f, given its 
Laplace transform g on (0, oo), i.e., fo f(t) exp(-st) dt = g(s). Assuming that g E 

L (0, oo), the first method is based on a Sinc-like rational approximation of 9, the second 
on a Sinc solution of the integral equation fo0" f (t) exp(-st) dt = g(s) via standard regu- 

larization, and the third method is based on first converting fo0" f(t) exp(-st) dt = g(s) 
to a convolution integral over R, and then finding a Sinc approximation to f via the 
application of a special regularization procedure to solve the Fourier transform problem. 
We also obtain bounds on the error of approximation, which depend on both the method 
of approximation and the regularization parameter. 

1. Introduction and Summary. 
1.1. In the present paper we develop three new methods for carrying out the 

numerical inversion of the Laplace transform. That is, if R+ denotes the interval 
(0, oo), we obtain accurate approximations to f defined on R+ by 

(1.1) Yf =g9 

where g is given on R+. In (1.1), 5f is defined by 

(1.2) (5f)(s) = f e-tf(t) dt. 

The Laplace transform occurs frequently in the applications of mathematics [2], 
[3], [35], especially those involving the solution of partial differential equations. Here 
it is used far less frequently as a tool of approximation than the Fourier transform, 
in part, because there are no universal methods of inverting the Laplace transform, 
but mainly, because in methods such as separation of variables, g is known only on 
R+, and the use of the Bromwich inversion formula [43, p. 67] 

(1.3) f(t) = 2 f e9tg(s)ds 

is therefore not feasible. The fact that the methods of this paper require only a 
knowledge of g on R+ thus circumvents this difficulty. The lack of universal methods 
for inverting the Laplace transform stems from the fact that the space of functions 
f for which Yf exists is simply too big. We immediately restrict this space by 
assuming that f e L2(R+), which implies [14] that g E L2(R+). In applications it 
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is generally possible to achieve this criterion via elementary manipulations, which 
we shall discuss below. An excellent summary of other methods for inverting the 
Laplace transform is contained in [10]. Furthermore, the methods summarized in 
[10] are tested on several functions. While the tests in [10] are interesting, the 
criteria of testing do not restrict the space of functions, and it is thus possible to 
write down test functions for which any one of the methods does extremely well, 
while all of the others fail miserably. A variety of other methods are discussed in 
[4], [16], [17], [22], [23], [30], [44], [45], [46]. 

The main feature of the three methods of this paper are the following: 
(a) The methods require that we be able to evaluate g on R+ . 
(b) Two of the three methods allow for the presence of noisy data. 
(c) If for some positive number a the function f satisfies 

(1.4) f (t) 
0 

a(t ) as t O, 

and if f is analytic on (0, oo), then all of the methods work well. In particular, 
it is not necessary to know the explicit nature of the singularity of f (t) at t = 0 
or at t = oo. Indeed, the second and third methods do not work if f (t) does not 
approach zero at t = 0 and at t = oo. In Subsection 1.3 below we discuss simple 
procedures for altering g so that f satisfies (1.4). 

(d) The computer algorithms for achieving inversion are both very simple, and 
very short. 

(e) Of the three methods, the first applies to the largest class of functions, and 
hence it is the slowest; the second, which is the only one requiring the solution of 
a linear system of equations, applies to a larger class of functions than the third, 
while the third applies to the smallest class of functions (see (c) above) and is the 
fastest of the three. 

(f) All three of the methods involve regularization. This regularization is implicit 
in the first method, while in the second and third methods a regularization parame- 
ter must be selected. Indeed, the second and third methods fail if the regularization 
parameter is taken to be zero. 

1.2. In this subsection we shall summarize the results of this paper. The proofs 
are deferred to later sections. 

Let us define the usual p-norm for integrable functions on an interval (a, b) by 

/b 
1 /p 

(1.5) 11g91P = l |g(x)PdX 1d,x < p < cc. 

In most cases we shall use the p = 2 norm, and on such occasions we shall at times 
omit the subscript p, i.e., 11 =11 112. 

Let C denote the complex numbers, and let us define regions Q+, Dd, Sd and 
Bd, where d > 0, by 

Q+ = {z E C: Rez > 0}; 

(1.6) Dd = {z E C: |Im z| < d}; 

(1.6)Sd={zeC: Iargzl<d; 
Bd = {z E C: I argsinhzl < d}. 
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Here, Q+ denotes the right half plane, and illustrations of the regions Dd, Sd and 
Bd can be found in [39, pp. 177 and 186]. 

Method I. In this method we assume the absence of noise in the data g. This 
method was discovered first, and its does not use a regularization parameter. When 
g is replaced by an accurate rational function approximation derived in [40], it is 
possible to use the calculus of residues to evaluate explicitly the Bromwich integral 
(1.3). Although Method I is convergent, it does not converge as rapidly as Methods 
II and III in the case when Methods II and III also work. However, its explicit 
nature offers the possibility of further developmental work, and it may therefore be 
possible to develop a very efficient method from it. The method is summarized in 
the following theorem. 

THEOREM 1. 1. Let g defined as in Eq. (1.1) be analytic on Q+, and let g satisfy 
the relation* 

(1.7) |IgI9 = lim ( |g(E + iu) 12 du) < o. 

If 6(g, h, t) is defined for positive h and t by 

(1.8) 6(g, h, t) = f (t) - 2 /r expeetemh)fAenh) 
m,n=-oo 

then for every c > 0, 

(1.9) |e- 2ct 
1(g, hi t) 12 dt --*0 

as h -* 0. 

Method II. The direct numerical solution of the first-kind integral equation 
5f = g is not possible [41], no matter how accurately we interpolate g. How- 
ever, standard integral equation regularization greatly enhances the solution of this 
equation. Instead of Yf = g, we solve 

(1.10) /f3 + Y*5f3= Y= g 

where ,3 is a positive number, and where Y* = 5, since 2 is selfadjoint [14]. 
Written in full, (1.10) takes the form 

(1.11) /3ffl(t) + f u) du = f et g(s) ds. 

The role of the regularization parameter ,3, whose selection is discussed below, 
is especially important if the "data" g is contaminated with noise, in which case 
Yf = g may not have a solution, whereas a solution of (1.11) still exists. The 
following result recommends a choice of ,3 in the presence of noise. 

THEOREM 2. 1. Let 5f = go, where go E L2(R+), and let f = 5u for some 
u E L2(R+), where Ilull = (fR+ lu(t)l2 dt)1/ < E. If llg - goll < E, then for ,3 = E, 
the solution fa of (1.10) satisfies the inequality 

(1.12) llfa - fIt < (1 + E)E1/2/2. 

*This assumption is in fact a consequence of f E L2(R+). 
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We next describe numerical procedures for solving (1.11). To this end, we make 
the following assumptions. 

Assumption 2.2. Let 5ff = g, and let f be analytic and bounded in D, where D 
denotes one of the regions Sd or Bd defined in (1.6). If f is analytic and bounded 
in Sd, we define 4, Zk, and Wk by 

(1.13) 4)(t)=logt, Zk=e, k ekh. 

In this case, we assume furthermore that for t E R+ and for some positive number 
a, 

(1.14) f(t) ={ Ot-) t-> o? 
0 t t-oo. 

If f is analytic and bounded in Bd we define 0, Zn and Wk by 

(1.15) q+(t) = log sinh(t), 
Zk = log[ekh + (1 + e2kh)1/2], Wk = (1 + e-2kh)-1/2 

and we assume that for some a! > 0 and t on R+, f satisfies the relations 

O(tC,), t-O, 
(1.16) f ( O(e-t) t = o. 

In Eqs. (1.13) and (1.15), let h be selected by the formula 

(1.17) h = (d 
aN) 

THEOREM 2.3. Let Assumption 2.2 be satisfied, and let the sequence of numbers 

{fm}fN be determined by the solution of the linear system of equations 
-N~~~~~~~ N aN 

(1.18) k3f m + hf EWkk h1 Wkg(Zk)e-' mk. 

(1.18) /3fm+h 
k=-N Zm +Zk k-'N 

Let ff,N be defined on R+ by 

N 

(1.19) ff,N(t) = E fmS(m, h) o 0(t), 
m=-N 

where S(m, h)(u) = (_l)m (h/ir)(u - mh)-1 sin[(ir/h)u]. Then there exists a con- 
stant C which is independent of N, such that 

(1.20) sup Iff(t)- ffl, N(t)I < CN1/2e-(-dctN)l1/2 
tER+ 

We remark that in the statement of Theorem 2.3 we have neglected the role of 
the condition number of the matrix in the linear system (1.18). The role of this 
condition number is further discussed in Subsection 1.4. 

Method III. In this method we first convert Eqs. (1.1)-(1.2) into a convolution 
over R, thus enabling the application of accurate Sinc quadrature [39] to get an 
accurate Fourier transform. A special type of regularization is thus employed to 
get a Sinc approximation of f. Eqs. (1.1)-(1.2) take the form 

(1.21) f e- f(t) dt g(s), 0 < s < oo, 
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where the "equality" '' may or may not be an identity, depending on the absence 
or presence of noise. By making the substitutions 

t=eu, s=e-v 

(1.22) G(u) = e-ug(e-u), F(u) = f(eu), 

H(u) = exp[-e-u]e-u, 

we are able to reduce (1.21) to the convolution integral equation 

(1.23) G(v) f H(v - u)F(u) du. 

Assuming the Fourier transform G, H and F of G, H, and F to exist, where for 
example 

(1.24) G(x) = f eixuG(u) du, 

one has the approximation 

(1.25) F-G/H. 

Assumption 3.1. Assume that for some G and Go in L2(R), we have F in L2(R), 
such that 

(1.26) FP = Go/Ht 

and 

(1.27) IG - Goll < E, JIFIi < Eo. 

For given constant ,B > 0, let Ff be defined on R by 

H(x)G(x) (1.28) F (x)= 
,3+ fH(x)12 

THEOREM 3.2. If Assumption 3.1 is satisfied, then the choice ,B = E/Eo yields 

(1.29) JP3- F!J < 2Eo. 

THEOREM 3.3. Let the conditions of Theorem 3.2 be satisfied. In addition, 
assume that for some s > 0, 

(1.30) f x2slF(X)12 dx < Es < o. 

Furthermore, let ca and x, > 0 be defined by 

(1.31) a, sup IxH2 = ( E 4E 2s 
XER S9tx 

t('s a o+E 
Then 

( )-Fll < 21/2 [asEo+ E+ ] 1/2 

(1.32) JIiF Fll ? 2. 

where 

(1.33) xs = -log () [1 + o(1)], e 0. 
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THEOREM 3.4. Let Assumption 3.1 hold, and in addition, let us assume that 
for some d > 0, 

(1.34) JrIxle2dIxI IF(X) -F(X)j2dx < Ed < oo. 

Then, with / = e/Eo, 

`< 2Edj(ir + 2d) 1/2 (2Eoe )d/(7r+2d) 
(1.35) -F 

< 
-l-1og[Ed/2Eoe] ( Ed 

Next, let us discuss the numerical approximations of F3 and fg3. 
Assumption 3.5. Let N denote a positive integer, let h > 0, / > 0, and let Hh, 

Gh and F,3,h be defined by 

N 

Hh(X) = h E emh exp(-emh)eimhx 

(1.36) m=-N 
N 

Gh(X) = h e-mhg(e-mh)eimhx 
m=-N 

and 

Hh (X)Gh (X) 
(1.37) F/, h (X) = 3 + 7rx/ sinh(,rx) 

Set xj =7rj/(Nh), j =-N.... N, Fj = F,3,h(xj), and define ck (k -N,..., N) 
and f N) by 

____ ~~i)k N -1 

Ck(2Nh 
k 

2 [F-N + FN] + Fjeikjl/N 

(1.38) } 

4l3,h (t) >j ckS(k, h) o logt. 
k=-N 

THEOREM 3.6. Let 5f = g, and let f satisfy Assumption 2.2 corresponding 
to the region Sd. Let f,6 be defined on R+ by 

(1.39) f,(t) = - f exp{-ix log t}F,(x)dx, 

where F, is defined by (1.28). If Assumption 3.5 holds, then there exists a constant 
C, which is independent of N and ?, such that 

(1.40) sup f, (t) f(,h) (t) I < CN1/2e-( deN)l/2 
0<t<0o 

COROLLARY 3.7. Let a be a positive constant, and let F defined by F = G/H 
be analytic and bounded in S, where Sc, is defined as Sd was by Eq. (1.6). Let F, 
be defined by (1.28), let IFII < E, and let (1.34) be satisfied. Then there exists a 
constant C, which is independent of N and ?, such that (1.40) holds. 

1.3. There is no simple numerical method which accurately inverts every Laplace 
transform. Indeed, this conclusion was arrived at experimentally in [10], where 
several methods of inversion were tested on a variety of Laplace transforms. 
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While the methods of the present paper also cannot be used to invert every 
Laplace transform, we shall nevertheless describe here a simple procedure for alter- 
ing the original given g to a new function 9, where 9 is such that we can guarantee 
its accurate inversion. 

Best results obtain for all three methods if the desired function f approaches 
zero as rapidly as possible, as t -O 0 and as t -- oo. On the other hand, all methods 
work poorly or not at all, if f(t) does not approach zero at least at an algebraic 
rate as t -+ oo. 

Towards the estimation of the asymptotic behavior of f (t) as t -> 0, let us choose 
two positive variables, a and r, such that 

(1.41) orr = 1. 

Let L be any function with the property that for every fixed A > 0, 

(1.42) (( ) 1, z ?oL(x) 

For example, L(x) = log x, or L(x) = log[a2 + (x2 +b2)a], a > 0, are such functions. 

THEOREM 1.3.1 [13, p. 44]. Let L be defined as above and g = 5f. Then 
each of the relations 

(1.43) g(u) -L (-) XP a O(resp. a oo) 

and 

(1.44) | f(u) du - + TrPL(r), r -T cc (resp. r -+ 0) 
F(pj+ 1) 

implies the other. 

Theorem 1.3.1 may be readily applied in practice to achieve the asymptotic rates 

(1.4) (O(ta) and O(t-a), resp. as t O0, cc) which we need in order for each of the 
methods of this paper to work effectively. To this end, the following functions and 
their corresponding transforms are basic: 

TABLE 1.3. 1 
Basic Transforms 

f(t) g(s) 

it?x0le-t ir(a+3) (a > 0) 

ta-1 logt r(a)sa[I(a) - logs] 

._____ _ (+(a) = F'(a)/r(a)) 
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For example, given the transform of f(t) = Yo(t), 

(1.45) g(s) =--r (s + 1)-1/2 log[s + (s2 + 1)1/2], 

which satisfies 

(1.46) g(s)=-- lo +l +o(l g )], so , 

we have, by Theorem 1.3.1, 

(1.47) f(t) 2-[logt + const], t - 0. 
7'. 

Hence, in view of Theorem 1.3.1 and Table 1.3.1, it follows that g, defined by 

(1.48) g1(s) = g(s) + 
2 

[ I + + s+1l 
Ir L 8+1 j6+ 

is the transform of fi(t), which has the satisfactory behavior 

(1.49) f1(t) = O(tlogt), t -+ 0. 

On the other hand, Theorem 1.3.1 tells us nothing about the behavior of fi (t) as 
t -- oo. Suitable asymptotic behavior as t -+ oo may be achieved by inverting 
91 (s + a), a > 0, rather than gi (s). This would then enable us to accurately recover 
e-atfi (t), rather than fi (t) (compare [27]). 

1.4. In the presence of noise, the choice of the regularization parameter f, which 
was used in Methods II and III, was probably an optimal one. However, we cannot 
take ,3 to be zero when carrying out the numerical computation of f in Methods II 
and III, even in the absence of noise. 

A generalization of the regularization procedure of Method III, which would 
be applicable to arbitrary convolution integral equations of the first kind, would 

be to replace (1.28) by F1(x) = ft(x)G(x)/[13W(x) + IH(x)l2], where W(x) is 
some arbitrary positive and nondecreasing function of jxl. This generalization has 
advantages over the one recommended in [9], even for W (x) = .2P The procedure 
[9] recommends replacing our (1.28) by 

Ffl(x) = {G(x)/H(x)}{jH(x)I2/[flIxI2 + IHGr)12]}; 

however, this replacement does not guard against the denominator function H(x) 
becoming arbitrarily small or possibly (in a different problem) vanishing for 
finite x. 

An acceptable value of : to be used in the numerical evaluation of f may be 
determined in the case when we know an accurate bound on the error of best Sinc 
approximation of f on R+. Such an error may be considered to result from solving 
exactly a Laplace transform inversion problem (1.1) with a different g. Hence, by 
Theorems 2.1 and (e.g.) 3.4, it follows that our choice of /B is of the order of the 
error of the best Sinc approximation of f on R+. The final error in the computed 
f will thus be of the order of p1/2. 

On the other hand, if an accurate bound on the error of best Sinc approximation 
of f on R+ is not known, we are not unduly handicapped, since the error in the final 
approximation of f obtained by either Methods II or III is a very slowly varying 
function of d for d larger than the best value, say fb. The computed results become 
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error xlo2 

6 Y , Method mI 
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FIGURE 1.4.1. LOO error versus 1//i 
Exact f(t) = t3/2e-t ln t, N = 11 

L! error xlo3 

20 (Bound on Sinc error)"12 Method 111 

to / 
I 0~~~~~~~ 

Method 1 
5 

10 102 103 105 106 to? 

FIGURE 1.4.2. LO? error versus 1/il 
Exact f(t) = t3/2e-tlnt,N = 21 

quite erratic in the region 0 < ,B < ,Bb. Two typical graphs illustrating the relation 
of the LO? (R+) error in the computed f as a function of 1/f are illustrated in Figure 
1.4.1 (for the case of N = 11) and 1.4.2 (for the case of N = 21). 

We remark also that the computations were done in IEEE double-precision 
floating-point format, on an HP 9000 (Model 320). For small N (e.g., N = 5) 
the computed solution remained bounded, even at ,B = 0. As N was increased, 
however, the errors in the , = 0 solutions became increasingly large. 

Let us recall that the implementation of Method II requires the numerical solu- 
tion of a system of linear algebraic equations (see Eqs. (1.18)), whereas Method III 
does not. The condition number of the linear system (1.18) did not appear to affect 
the results of our computations in the ranges of N and ,B in Figures 1.4.1 and 1.4.2, 
possibly since the computations were carried out in double precision. Preliminary 
tests indicate, however, that in single precision, the results of Method II are not 
reliable for a small (of the order of 10-6 or smaller). 
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1.5. Given g = Yf, where f E L2(R+), the inversion formula (1.3) (the 
Bromwich integral) is valid for every positive number c. Every method of approxi- 
mating Fourier transforms applies also to the evaluation of the Bromwich formula 
(1.3). The most direct procedures involve the application of the trapezoidal rule 
to approximate the integral in (1.3), and many papers have been written on this 
method [6], [7], [8], [10], [18], [21], [38]. While this procedure is straightforward, 
complex values of g are required, and many evaluation points are required, since the 
integrand usually approaches zero very slowly as s -+ c?ioo along the line Re s = c. 
Other ingenious methods that are useful for approximating Fourier transforms, such 
as via Mobius inversion [15], or by using splines [24], may at times produce a rapidly 
convergent integral. 

Another approach is to assume a certain type of (Galerkin) approximation for 
f, with unknown coefficients, to take the Laplace transform, and to minimize in 
some way, the difference between g(s) and the approximate transform [1], [5], [11], 
[12], [27], [29], [30], [34], [36]. These approximation schemes are sometimes also 
combined with the Post inversion formula [31], 

(1.50) f(t) = lim (1)n (n)n+1 g(n) (n) 

(see [33], [37], [40]). 
Error bounds for approximate inversion of Laplace transforms have been previ- 

ously obtained in [27], where f was itself assumed to be a Laplace transform, and 
where f was approximated by decreasing exponentials, and in [26] for more general 
methods also, of inversion of Laplace transforms. The bounds in [26] apply also to 
our methods, although our conditions of applicability are more easily checked. Our 
error analyses, as well as the numerical stability of our methods, are closely tied to 
the selection of the best Tikhonov parameter 3. This parameter 3 allows for the 
presence of noise in g, and moreover, Methods II and III of our paper would not 
work at all if , were taken to be zero, even in the absence of noise in g. 

Various numerical algorithms based on Tikhonov regularization [40] have been 
devised for solving the matrix systems that arise in the approximate solution of 
Fredholm integral equations of the first kind [20], [42], and which have been applied 
to obtain approximate inversion of Laplace transforms [20], [25]. While it is possible 
to achieve good numerical results in this way, the methods of the present paper are 
designed specifically for inversion of Laplace transforms, and they are therefore 
more efficient. 

2. Proof of Theorem 1.1. In this section we carry out a detailed proof of 
Theorem 1.1. 

We achieve the interpolation of g on R+ by means of the function 

(2.1) q(z, h) =z-1 (z-eih)(Z-eh) 

where h > 0 and z is an arbitrary complex number. The function k(z, h) has zeros 
at the same points (e?ih) as the function sin[(7r/h) log z] which was used in [39] to 
achieve Sinc interpolation on R+; indeed, as was shown in [40], the interpolation 
properties on R+ of the interpolant which we shall derive via (2.1) are similar to 
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those of the Sinc interpolation formulas obtainable via sin[(7r/h) log z]. The function 
q(z, h) has a unique advantage over sin[(7r/h) log z] in that it also has poles on the 
negative real line, and it is this property which makes it possible to get an explicit 
approximation for f (t) via the Bromwich integral (1.3). 

The function 0 is in fact an elliptic function. In order to see this, we introduce 
here the following standard notation for elliptic functions: 

k E (0,1), 
u 

w = W(u; k) = j[(1 - t2)(1 - k2t2)]-1/2 dt 

X u = sn(w; k), 

(2.2) K = K(k) = w(1; k), 
k' = (1 - k2)1/2, 

K' = K(k') 

q = exp(-7rK'/K), 

q' =exp(-7rK/K'). 

Setting 

(2.3) e2iv = t q = e-h/2 

in [28, Eqs. 16.37.1, 16.37.2] and using [28, Eq. 16.36.3], we conclude that 

(2.4) k(z, h) = (k')1/2 sn [-log z; k'] 

Properties of 0 and some estimates on the parameters K, k' as functions of h are 
recorded in the following two lemmas. 

LEMMA 2. 1. Let X be defined by (2.1), where z E C and h > 0. Then 
(a) For all t E R, 

(2.5) k0(it, h) I = 1. 

(b) For all z E C, 

(2.6) q'4-z,h) = 

(c) For all x E R+, 

(2.7) l(,h)l < (k') 1/2 

(d) For j=0,?1,?2,..., 

(2.8) t/ (ejh,h) = (k') K/K(l)je-jh 
7r 

(e) If O E R and j = 0, ?1, ?2,..., then 

(2.9) (k')1/2 < I0(e(j+u/2)hei9 h)I < (k')-1/2. 

Proof. (a) The relation (2.5) follows at once from (2.1), since each of the factors 
(it - eih)/(it + eih) has modulus 1 for all t E R. 

(b) The relation (2.6) follows from (2.1). 
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(c) The relation (2.7) is a consequence of the identity (2.4) and the fact that 
sn(u, k') maps R onto [-1,1]. 

(d) Differentiating the right-hand side of (2.4) and using the formula [28, Section 
16.16.1] 

(2.10) sn(u; k') = cn(u; k') dn(u; k'), 
du 

we get (2.8). 
(e) Using [28, Eq. 16.21.2], we have 

(2.11) 1(e(i+l/2)heio h) - (-i) (k') 1/2/ dn (i; k) 

But for u E R, k' < dn(u; k) < 1. Hence (2.9) follows. 0 

LEMMA 2.2. If h = 2log(1/q), then: 

(a) The bound 

(2.12) k' < 4e-1r 2/h 

is valid for all h > 0. 
(b) As h - 0, 

(2.13) k' = e r /h[4 + O(e-272/h)]. 

(c) As h,-+ 0, 

(2.14) K(ke) = (z) 7re2/(2h) [1 +O(e-27r2/h)]. 

Proof. The inequality (2.12) was verified in [40]. The relation (2.13) results upon 
taking the ratio of the two equations [28, 16.38.5] and [28, 16.38.7], which yield the 
upper and lower estimates 

(2.15) ~~2e-7r2/(2h) 2e _,r2/(2h) (1 + e-47r2/h) (2.15) 1 + 2e-27r2/h ? (k)1/ 1 + e27r2/h 

Finally, writing K = {K/(irK')}irK', and using [28, Eq. 16.38.6} as well as (2.13) 
and the identity q' = e-22 /h, we get (2.14). 0 

Proof of Theorem 1.1. Let Q+ denote the right half plane, i.e., 

(2.16) Q+= {z E C: Rez > 0}, 

and for h > 0 and N a positive integer, let AN denote the region 

(2.17) AN = {z E C: Rez > 0, e-(N+1/2)h < lzl < e(N+1/2)h}. 

Let s E AN, and set 

(2.18) eN(g, h, )= 2 LaAN g(z) d 
27ir AN (z - s)o(z, h)' 

Using Lemma 2.1(d), we can evaluate the contour integral in (2.18) by summing 
the residues to get 

(2.19) )N(g, h, s = g(s) - 
(k)1/2 K s 

( 
-1enh 

n=-N 
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Now given G defined on Q+ such that 

/1' ~~~~~1/2 
(2.20) IGI = ( IG(iy + 0+)12 dy) < oo, 

the function G+ defined for s E Q+ by 

(2.21) G+(s) = 1f G(iu+O+)du 

satisfies the relation 

(2.22) IG+ (c + iu) 12 du < JIGh12 

for every c > 0. Consequently, since I 0(iu, h)I = 1 for u E R, the function w defined 
for s E Q+ by 

(2.23) w s() = lim g(z, dz 

satisfies the relation 

(2.24) f Iw(c + iU)12 du < uIghI2 

for every c > 0. 
It is then easily shown, using the results of Lemmas 2.1 and 2.2, that for s E Q+, 

the limits 

(2.25) e(g, h, s) = lim eN(g, his) = lim 1 f 0 
q(s, h) g(z +q7)dz 

N-.oo N( ' 
-q)o+ 2ri I 0(z, h)(z - s) 

exist; indeed, upon applying Schwarz's inequality to the integral on the right-hand 
side of (2.25), we find that 

(2.26) le(g, h, s) I < 1(, h) h)Illgll 
2 2Re s 

In particular, if s E R+, then by Lemma 2.1(c) we have 10(s, h)I < (k')1!2, which 
shows by (2.12) that e(g, h, s) -> 0 as h -> 0 for all s E R+. 

The error e(g, h, s) is also given by 

(2.27) E(g, h, s) = g(s)- -(k/2K 
(1)e 

g(enh)(s,h) 
n=-oo 

We shall now show that for every c > 0, 

(2.28) le(g, h, c+ iu)12 du -, 0 

as h -- 0. 
We observe that log 0(s, h)I is harmonic in the region 0 < 0 < ir/2, where 

o = arg s. Moreover, by Lemma 2. 1, 

lim log q5(IsIeio, h) < 2 log k', 

(2.29) lim log O(IsIei , h) 0. 
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Consequently, for 6 in the range 0 < 6 < Ir/2, we have 

(2.30) log 1q(jslei, Ih)I < 2 (1--) log k'. 

That is, 

(2.31) io(tsle2O,h)l < (kI)1/2(12e/) 

Hence, if s = c + iu, where c > 0 and u E R, then 

(2.32) 1t(c + iui, h) I < (k') (1/7r) I tan- 1 (c/u) j 

In view of (2.18), (2.23), (2.24) and the fact that IO(s, h)I < 1 if s E Q+ it follows 

that, given any 7 > 0, c > 0, there exists a T > 0, such that 

(2.33) I 16(g, h, c + iu)2I du < Y2jjgjj2. 
27JIuI>T 2ir 

Also, by (2.18), (2.23), (2.24), (2.25), and (2.32), 

1 1Uf e(g,h,c+iu)I2du 
2gr -T 

(2.34) <max k(c + iu, h) 12 Iw(c + iU)12 du 
juj?T JirT 

<(k ) (2/X7) tan -' (c/T) 
II2. 

2i 'g1. 

Hence, by combining (2.33), (2.34) and (2.12), we see that if (k/)(2/r3)tan'(c/T) < 

27/2, then 

(2.35) 1e( h, C +iU)2 du <71111 
2ir15'2ir 

From the identity 

6(g, h,t) i f este(g, h, s) ds 
c-io0 

(2.36) 2 00 (_eh)m+n exp(emh)g(enh) 

=A k f - E emh + enh 
m,n=-oo 

it now follows from (2.35) and Parseval's theorem that 

00o 2t t12 1 1' ghj2 
(2.37) e-2 6(g, h, t)i dt = 2 | je(g, h, c + iu) 12 du < 2ir 

This completes the proof of Theorem 1.1. 0 

3. Proofs of Theorems for Method II. Let us note that the operator Y 

defined by (1.1) is selfadjoint, so that Y = 2*. It was known that 0 is in the 

spectrum of Y as an operator on L2(R+) to L2(R+) (see, e.g., [14]). Hence, Y 
is not continuously invertible, i.e., finding the inverse of a Laplace transform is an 

ill-posed problem. It is clear, however, that for each ,B > 0, the operator /B+Y*Y 
is continuously invertible on L 2(R+). 
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Proof of Theorem 2.1. Let us form a spectral decomposition of Y in the form 
[32, pp. 277-280] 

(3.1) 

and let us set 

(3.2) =y+ + 2 

Now, from (1.10), one gets 

(3.3) :(b - f) + Y*Y(f, - f) =Y* -Y*f -3f 

and hence 

(3.4) fa - f = (/ + Y*Y)- l*{g - Yf) - ('3 + Y*Y)- l3f. 

We note that ,B + Y*Y commutes with both Y and IYI, and hence so does 
(,B + Y*Y)- 1. Also, (,B + Y*Y)-1 is a positive and symmetric operator. More- 
over, YjI > +Y, and hence (,B + Y*Y) IYI > ?(, + +Y*Y)-'Y. Thus, for 
any x EL2(+), 

(3.5) (( + Y*Y)-lIYIx, x) > j((,3 + Y*Y)-1Yx, x)j. 

Recalling that for a symmetric operator A, we have IjAjj = sup,,:;,=, I(Ax,x)j, it 
thus follows that 

(3.6) jj(3 +y*y)-_lIYIII > jj(/ +Y*y)-lY 

Now, we have Y*Y = Y2 = IY712, and so for any x E L2(0R+), 

(3.7) 0 < (( - Y)2x, x) = (( + Y*Y - 2V'i1YI)x, x). 

That is, 

(3.8) / + 2*2 - 2v'iIY I > 0. 

Hence, 

(3.9) (3 + Y*Y)-1 (3 + Y* - 22VhiI I) > 0 

which implies that 

(3.10) 1( *)-l l < 1/2\/-3. 

Thus, if 3 = E, then, since jig-Yf 1f < e, 

(3.11) 11( + )1Y* (9- Yf)| < E 

Also, since by assumption f = Yu, u E L2(0R+), we have 

E E (3.12) II(/3+ Y*Y)-lfII = 1(/3+ Y*Y)12uII 2 <E E 

so that 

(3.13) II(/3+ Y*2Y)ldfII < E2 

Combining (3.12) and (3.13) with (3.4) we get (1.12). 0 

Proof of Theorem 2.3. This is a direct consequence of Theorems 2.1 and 2.4 of 
Ikebe [19]. o 
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4. Proofs of Theorems for Method III. In this section we shall prove 
Theorems 3.2, 3.3, 3.4, 3.6 and Corollary 3.7, which were stated in the introductory 
section. 

Proof of Theorem 3.2. Using Eqs. (1.26) and (1.28), we get 

(4.1) ,3(F F) + f 12(F -F) = H(G-Go)-1F, 

This is, upon multiplying both sides of this equation by (F -F) and integrating 
over R, 

(4.2) jj(,B + fj2) 'lF- j2j1 < jt(a - Go)(Ff-F)IIi + 3IIF(Ffl-F)IIi. 

But 

(4.3) H(x) = j ezu exp[-e-U]e6u du = 1(1 - ix), 

where r(.) denotes the usual Gamma function, and therefore [28, Eq. 6.1.31] 

(4.4) IH(x)2 =H(x)H(x)= sinh(rxxr 

Hence, supXER IH(x)j = 1, and so (4.2) yields 

(4.5) jjF)l-F < 2 G -1G0112 IF- F112 + IFI1211Ff -F112. 

Using (1.27) in (4.5), we get (1.29). 0 
Proof of Theorem 3.3. Let us multiply Eq. (4.1) by x2 (F -F) and then inte- 

grate over R, to get 

13j x 2SFx -F(x)12 dx + j iH(x)i2x2SjFf (X) - F(x)12 dx 

(4.6) = j H(x)x8 [G(x) - Go(x)]x8[F,(x) -F(x)] dx 

- 13 x8F(x)x8[Ffl(x) - F(x)] dx. 

Now using (1.27), (1.30), (1.31) and (4.6), we get 

jV3 + IH(x)i2Ix ~Ff()-r()2x (4.7)?[~ ~ + )13E) x8 (x) ( ) -F r(dx 
(4.7) ' /2 

< (sE d )(| 2s F3 (X) _ (X) 12dz 

Hence, (4.7) yields 
1/2 a,e ,E 

(4.8) (I x2S F F(x)-F(x)12 dx < =s cr1i + E,. 

Next, from (4.2) and the definition of ,B in Theorem 3.2, we have 

IH(x) I2 F(x) - F(x) 2 dx 

(4.9) < j IH(x) I G(x) -Go (x) I IF (x) -F(x) I dx 

+ ,B I aF(x) jFfl(x)-F(x) |dx < 4Eoe 
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Let x, > 0 be determined by (1.31). Then, since jH(x)j2 is decreasing and x2 is 
increasing as [xl increases, we have 

| ^ ^()12d <| |H(x) 2 

xl<x., 
a(x) F(x XI<Xs H 

Ffl(x) -F(x)2d 

(4.10) jFfl(x -()jx? H(X8) 
1 ar8Eo = E+ 

< . 4E0e= 2 
I IH(x,) 12 X 

Similarly, we have 

IF |F()FZ|dx< 2Sl Z2dxFd(x)-F(x)I2dx 
(4.11) xzl>x. zs cxl>x+E 

<a,Eo + E3 
< 

x28 

By adding (4.10) and (4.11), we get (1.32). 
We remark that an estimate of a, defined in (1.31) is 

(4.12) a (2r) e ) 

This estimate is obtained upon replacing 1/ sinh(irx) by 2/elxI over R. 
The estimate (1.33) is obtained similarly, by first replacing sinh irx by 2el 
Proof of Theorem 3.4. Let > 0 be defined by the equation 

(4.13) 7rcee2fd - 
1 Ed 

sinh 7r~ 4E0e' 

Then, 

7(r*e2d / IFf (x) - F(x) dx 
(4.14) 1z1>( 

< | rlxle2dlxIIfrf(x) -F(x) 2 dx < Ed. 

Similarly, by (4.13) and (4.9), 

4E0Eo e2Cd I F: (X)-F(x) 12dx 
Ed 

a 
F' 

(4.15) s / IF,(x) - F(x)12 dx 
sinh 7rf xl<C' 

< f H(x) 2IF: -F(x)12 dx < 4Eoe. 

By combining (4.14) and (4.15), we get 

(4.16) IF13 - Frj12 < 2Ed 

Starting with (4.13), let us estimate ( by 40, where 

(4.17) e(2d+7r)Co = Ed 
2E0ei 

That is, by comparing the right-hand sides of (4.13) and (4.17), we have 

(4.18) lr,eo < ?rt => e2dod < e2Cd, 
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so that 

2Ed 2Ed 
(4.19) I2d < e2d 

Upon solving (4.17) for (o and then substituting into (4.16), we get (1.35). O 
Proof of Theorem 3.6. The identity 

(420 ^ ^ HG - HhGh H(G -Gh) +( -Hh)Gh 
(4.20) F13- F13,h = 

3 +I 
i? 

12 ~+ I 

shows that the error in F,3 is a sum of errors in G and H. If Assumptions 2.2 and 

3.5 are satisfied, then by [39], [40] both of these errors are O(N1/2e(daN) /2 ), and 
hence so is the error in Ff-F,h, as well as F13 - F,6,h, whose Fourier transform 
over R is F,- F,h. The inequality (1.40) thus follows. 5 

Proof of Corollary 3.7. The proof of Corollary 3.7 is the same as the proof of 
Theorem 3.6, upon noting that analyticity and boundedness of F in S, implies that 
the inequalities (1.14) are satisfied. O 

5. Examples. Each of the functions g which are given (along with their inverse 
Laplace transforms f) in Table 5.1 were tested, yielding results of acctiracy similar 
to that indicated in Figures 1.4.1 and 1.4.2, with all inversion methods of this 
paper. 

TABLE 5. 1 
Test functions 

g(s) f (t) 

(S + 1)-2 te-t 

(82 + 2s + +2)-' e-t sin(t) 

F(4/3)(s + 4/3)-7/3 t4/3e-4t/3 

F(5/2)(s + 1)-5!2 [?b(5/2) - log(s + 1)] t3/2e-t log(t) 

The function f(t) = sn(t; k)e-t is analytic and bounded in Bd (0 < d < ir), but 
not in Sd for any d > 0, and for this reason Method II corresponding to Bd was 
much more accurate than Method II corresponding to Sd, when each was applied 
to the inversion of the Laplace transform of f, which we were able to express in 
this case only as an infinite series. 

Finally, we also attempted to invert the Laplace transform g(s) = (S2 + 1)- of 
f(t) = sin t. In this case, f does not belong to L2 (R+), and Sinc interpolation of 
f on R+ does not work, since for accurate Sinc interpolation on R+ we must have 
f(t) approach zero both as t -O 0 and also as t -- oo. Hence, although Method I 
worked for g(s) = (S2 + 1) 1,it converged very slowly. Methods II and III gave 
accurate results only near t = 0. 

Copies of FORTRAN programs for Methods I, II, and III may be obtained from 
the third author. 
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