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Abstract. Kronrod's procedure is a method for estimating the error in Gaussian quad- 
rature methods. Pad6 approximants are formal Gaussian quadrature formulas. In a 
previous paper, Kronrod's method was used to obtain estimates of the error in Pad6 
approximation. Using a new interpretation of this procedure and three different expres- 
sions of the error of Pad6 approximants, extensions of the method are obtained. They 
provide new error estimates for Pad6 approximants. These estimates are compared. 

1. Introduction. Kronrod's procedure [7] is a numerical method for estimating 
the error in Gaussian quadrature methods. On the other hand, Pade approximants 
can be viewed as formal Gaussian quadrature methods [2]. In [3], Kronrod's proce- 
dure was extended to Pade approximation to obtain estimates of the error. In this 
paper we shall give a new interpretation of this extension of Kronrod's method. 
This interpretation will lead to new procedures for estimating the error in Pade 
approximation. 

Let us first recall some results on Pade approximants. Let f be a formal power 
series 

00 

f (t) =>jcitt 
i=O 

and let c be the linear functional on the space of -complex polynomials defined by 

c(x1) = Ci, i > 0. 

The functional c can be extended to the space of formal power series, thus leading 
to formal identities. 

Let {Pk} be the family of formal orthogonal polynomials with respect to c, that 
is, defined by 

C(XiPk(X)) = O, i = O,..., k-1. 

In the sequel it will always be assumed that the Hankel determinants Hk(co) are 
different from zero. In that case, Pk exists and has the exact degree k; the Pade 
approximant [k - 1/k]f also exists and the Pade table is normal. For nonnormality 
of the Pade table, see [5, Chapter 1]. Let {Qk} be the family of "associated" 
polynomials defined by 

(1.1) Qk(t) = C (Pk(X) -Pk(t) ) 
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where c acts on x and t is a parameter. Qk has the exact degree k - 1. We set 

Pk (t) = tk Pk(t1) and Qk (t) = tk- lQk(t-l). 

The rational function Qk (t)/Pk (t), denoted by [k - l/k]f (t) , is a Pade approximant 
of f. It satisfies the characteristic property 

f(t) - [k - l/k]f(t) = O(t2k) as t -+ O. 

More precisely, the error can be expressed in three different forms [2, Theorems 1.4 
and 1.17]: k 

El: ff(t) - [k - l/k]f(t) = i c (Pk(X))X 

Pk(t) ( -t x 

E : ff(t)-[k-l/k]f(t) = t c ( xt 

Let us also recall why Pade approximants can be viewed as "formal" Gaussian 
quadrature methods. We formally have 

f (t) = c(1t 

For obtaining an approximate value of f (t), one can replace (1 - xt)1 by an in- 
terpolation polynomial P(x) and then compute c(P(x)). When c is the integration 
functional, this is exactly the method followed in interpolatory quadrature formu- 
las. Let Vn be an arbitrary polynomial of degree n. The Hermite interpolation 
polynomial of (1 - xt)-1 at the zeros of Vn (not necessarily all distinct) is given by 

(1.2) P(x) = (1 - Vn(X)/Vn(t 1))/(l - xt), 

since this is clearly a polynomial of degree at most n and satisfies the interpola- 
tion conditions. It can be shown [2, Theorem 1.1] that c(P(x)) is the ratio of a 
polynomial of degree n - 1 by a polynomial of degree n and that 

f (t) -c(P(x)) = O(tn). 

Such a rational function is called a Pade type approximant of f and is denoted by 
(n - 1/l)f (t). Vn is called the generating polynomial of (n - 1/n)f. Furthermore 
[2, Theorem 1.4], 

(1.3) (n - 1/n)fl(t) = Un(t)/Vn(t) = f(t) - Vtc 

with 

Un(t) = c (vn()) X Vn(t) = tOV (t-1) and Un(t) = t 

If Vk is identical with Pk, that is, if the interpolation points are the zeros of the 
orthogonal polynomial Pk, then (k - 1/k)f is identical with [k - 1/k]f. This is 
exactly the method used to construct Gaussian quadrature methods and shows the 
connection with Pade approximation. 

Kronrod's method [7] for estimating the error of a Gaussian quadrature formula 
consists in constructing a better quadrature formula by adding new nodes to the 
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k previous ones (the zeros of Pk) in an optimal way. Then the difference between 
both quadrature formulas provides an estimate of the error of the Gaussian one (see 
[6] for a review). This was exactly the method followed in [3] to extend Kronrod's 
procedure to Pade approximants. We shall now give a new interpretation of this 
procedure. 

2. Three Extensions. 
2.1. Extension Based on E1. Replace (1-xt)1 in E1 by its Hermite interpolation 

polynomial P at the zeros of an arbitrary polynomial Vn. We set 

(n) tk 
ek - = ()C(Pk(X)P(X))- ek=Pk (t) 

It is easy to see, using (1.2), that 

(2. 1) ek tkVWn(t)/[Pk(t)Vn(t)] 

with 

Wn (t) = c Pk(X)(x t) and Wn(t) = tn n( 

(Vn(x) - Vn(t))/(x - t) is a polynomial of degree n - 1 in x. Thus, by the 
orthogonality properties of Pk, Wn is identically zero if n < k and the procedure 
has no interest. 

Using E1 and (2.1), we have 

ek ) /(f(t)-[k - /k]f (t)) = c(Pk(x)/(l - xt))fWVn(t)/Vn(t). 

But 

WVn(t) = tn-1c (Pk(X) Vn ()V (t 

= Vn (t)C ( 
X 
( ) tn (Pk(X)Vn(x)) 

and, by an old trick used by Stieltjes in his last letter to Hermite [1, Vol. 2, p. 439]: 

C(Pk(X)/(1 - Xt)) = C (1-tkk+ tkk p(X tkc(kP()/(1 _ Xt)). 

We have shown 

THEOREM 1. There holds 

e(n) / (f (t) tn-k c (Pk(X)Vt(x)/(l - xt)) 

We remark that the computation of e n) makes use of c0,o.. , Cn+k 1. As pointed 

out in [3], e(n) = (n + k - 1/n + k)f(t) - [k - 1/k]f(t), where the Pade type 
approximant (n + k - 1/n + k) is constructed from the generating polynomial 
v(x) = Pk(x)Vn(x). We have thus obtained an extension of Kronrod's procedure. 

One can now try to choose Vn in an optimal way, that is, achieving the best 
possible order of approximation. We have 
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Thus we have 

THEOREM 2. If Vn is chosen such that 

C(XtPk(X)Vn(X)) = 0, i = O,... ,n-1, 

then 

e(n) / (f (t) - [k - 1/k]f (t)) = 1 - t-k c(X Pk(x)Vn(X)/(l - Xt)) 

The computation of e7n) via Theorem 2 uses co, ... , C2n+k-1. 

Since we shall take n > k, the smallest possible value is n = k + 1 and then 
the method exactly reduces to Kronrod's procedure [3]. Of course, such a Vn is 
assumed to exist, see [8]. 

In many practical applications, the coefficients ci of the series f are difficult to 
compute. Thus, in this respect, Kronrod's method is expensive since the compu- 
tation of ekk+1) needs the knowledge of CO ... , C3k+l while that of [k - 1/k]f only 
requires cO ... , c2k_1. But, on the other hand, we obtain a rather good approxi- 
mation of the error since 

e(k+ l)/(f (t) -[k - 1/k]f (t)) = 1 + O(tk+2), t -+ 0. 

In order to reduce the cost of the method, it is possible to drop the condition on 

Vn and to return to the nonoptimal procedure described by Theorem 1, which only 
needs cO, ... ., cn+k-1. Thus, one can make a compromise between the accuracy of 

e(n) and the number of coefficients needed. ek 
We shall now study two other variants of the procedure used in Section 2.1. 

2.2. Extension Based on E2. We now replace (1 - xt)-1 in E2 by its Hermite 
interpolation polynomial P at the zeros of an arbitrary polynomial Vn. 

We set 

ek - C(Z k (X) p(X)). 
Pk (t) 

It is easily seen from (1.2) that 

(2.2) ek t2kWn(t)/[Pk(t)Vn(t)] 

with 

Wn(t) = c xPx( 
)Vn(Z) t ) and W (t) n (t-=1) 

THEOREM 3. There holds 

- tn C(Xkpk(X)V, (X)/(l - Xt)) 
ekn)/(f (t) - [k - 1/k]f (t)) = - - 

n 

Proof. Using E2 and (2.2), we have 

ek ) - [k - 1/k]f (t)) - c(xkP (x)/(1-xt))Wn(t)/Vn(t). 
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But, by definition, 

Wn (t) = t n( n1C(kp(X) Vn (X-V (t1)) 

= Vn(t)C ( /Jk() ) - tnc (X kk(X)Vn(x)) 

and the result follows. 0 

The computation of e 7n) uses co,... , C2k+n_1. Let us try to choose Vn in an 
optimal way. We have 

XkPk()Vn(v) kp ()vn() (n + xt + + xn-tn' + c 
1 -xt J 

C 
cx kXn X) 1V 

t..X-t- 
* 1 -xtJ 

and thus we immediately have the 

THEOREM 4. If Vn is chosen such that 

C(Xikpk(x)Vn(X)) = O i = O.. ., n-1, 

then 

(n) / f()t2 c(xn Pk (X)Vn (X) / ( -xt)) 
ek /(f(t) -[k - 1/k]f(t)) = 1 _ 

C(X kPk((X)/(l - xt)) 

In this case the computation of Vn needs cO, ...,C2k+2n_1; Vn is assumed to 
exist. 

In the introduction of this paper we gave an interpretation of Kronrod's proce- 
dure which showed that it consisted in replacing (1 - xt)-1 by the interpolation 
polynomial P in E1. We now give the reciprocal interpretation of this first exten- 
sion. 

Consider the Pade-type approximant (2k + n - 1/2k + n)f with the generating 
polynomial v(x) = xkPk (x)Vn(x). Let w be its associated polynomial 

(t) (vx)- v(t)) 

We have 

w(t) = Wn (t) + Vn (t)c Pk (X) t + Vn(t)tkQk (t), 

where Wn is defined immediately after (2.1) and Qk is defined in (1.1). Because of 
the orthogonality property of Pk, the second term on the right vanishes and we get 

wV(t) = t2k+n-lw(t-1) = t2kWV(t) + Vn(t)Qk(t). 

Since v(t) = t2k+nv(t-1) = Pk(t)fVn(t), we obtain 

Wv(t) t2Wn (t) Qk (t) 
-b() =_ - - + I 
V(t) - Pk(t)Vn(t) Pk(t) 

and therefore, using (2.2), 

e-n) = (2k + n - 1/2k + n)f (t) - [k - 1/k]f (t). 

Moreover, we have (cf. (1.3)) 
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If Vn is chosen as in Theorem 4, we have 

f(t)-(2k + n-1/2k + n)f(t) = - - c (x Pk(X)V (X)) 

2.3. Extension Based on E3. We now start from E3 and replace (1 - xt)' by 
the Hermite interpolation polynomial P. We set 

(n) t2k 2 Xp X. 
ek -= C(Pk 

Then, by (1.2), 

- ~~ek =t t2WOM)Pk2(t)V~n(t)], 

where now 

W~(t) = c (PX(x)Vn(X) Vn (t) and Wn(t) = 

Similarly as above, we can prove 

THEOREM 5. There holds 

ejn)/(f(t) - [k - 1/k]f(t)) = 1- ( c(Pk (X)Vn(X)/(1 - Xt)) 

If Vn satisfies c(x'Pk2(x)Vn(x)) = 0 for i = 0, ... , n - 1, then 

e (n)(f (t)[k -11k]f = 1_ t c(z P(k)V n(X)/(1 Xt)) 

In the first case, the computation of ekn) uses cO ... , C2k+n1, in the second case 

co.. ,C2k+2n_1. If we construct the Pade-type approximant (2k + n - 1/2k + n)f 

with the generating polynomial v(x) = Pk2 (x)Vn (x), then 

e (2k + n - 1/2k + n)f (t) - [k - 1/k]f (t). 

The optimal Vn is assumed to exist. 

3. Comparisons. Of course, the three different approaches studied above are 
not independent. If the generating polynomials of the Pade-type approximants 
related to them are the same, then they provide the same estimate of the error. 

In the first extension of the method, if we replace n by n + k and take Vn+?k (X) = 

XkVn(X), where Vn is the polynomial corresponding to the second extension, then 
both extensions are the same. 

In the first extension, if Vn+k (X) = Pk (X)Vn (x), where Vn is the polynomial used 
in the third extension, then both extensions are the same. 

In the preceding sections we gave three different methods for estimating the error 
in Pade approximation, each method having two possible versions: a general one 
where the polynomial Vn was arbitrarily chosen, and an optimal one where Vn was 
chosen such that ekn) was the best possible estimation of the error f (t) - [k- 1/k] f (t). 
For these six procedures we compare below the achieved order of approximation and 



ESTIMATING THE ERROR IN PADt APPROXIMATION 645 

the number of coefficients used in the computation of e'). For the first extension 
we write n' instead of n. 

order of approximation index of the last 
coefficient used 

general n' -k > 1 n + k-1 > 2k 
First ext. 

optimal 2n'-k > k+2 2n' +k-1 > 3k+ 1 

general n > 1 2k+n-1 > 2k 
Second ext. 

optimal 2n>2 2k+2n-1>2k+1 

general n > 1 2k+n-1 > 2k 
Third ext. 

optimal 2n > 2 2k+ 2n-1 > 2k+ 1 

Thus, in the general (nonoptimal) cases, the three procedures achieve the same 
order of approximation and use the same number of coefficients if n' = n + k. In 
the optimal cases this will be true for n' = n + k/2. Since n' > k + 1 this can only 
happen when n > k/2 + 1 > 2. If n' = 2n + k, then the nonoptimal first extension 
and the optimal second and third extensions use the same coefficients and achieve 
the same order of approximation. If 2n' = k + n, the optimal first extension and 
the nonoptimal second and third ones use the same coefficients and give the same 
order of approximation. 

Let e( and e (n) be two estimates of the error of [k - 1/k]f. We define 
* ~~~~~(n) f t 

r(t) = ek /(f(t) -[k - 1/k]f(t)) - 1 
n) /( f (t)_-[k - 1/k]f (t)) - 1 

As stated in [3], if Ir(t) < 1, then e7n) is a better estimate of the error than e(n) 
Of course, if the order of e(n) is greater than the order of e(n) then limt,0 r(t) = 0 

and ekn) will be a better estimate than ekn) in a neighborhood of the origin. But 
when both estimates have the same order, this condition will be difficult to check. 
However, knowledge of r(0) (whose computation uses some more coefficients of f) 
will provide some indication on this question. Using the preceding theorems, r(0) 
is easy to compute. 

We now show how to construct these estimates. We set 

Vn(x) = ao + ax + * + anxn, 

Pk(x)=bo+blx+.**+bkx 

ei = c(xtPk(x)) = boci + + bkCi+k, i = 0,1. 

Of course, ei = 0 for i < k. 
(a) First Extension. We have 

n-1 n 

Wn(t) = E ajej-i-ltn-i-l nI > + 1. 
i=O j=k+i+l 
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If Vn is chosen in the optimal way, the ai's must satisfy the system 
n 

ajei+j =O, i=O,...,n-1, 
j=k-i 

with an = 1. 

This system is triangular if and only if n = k + 1, and in that case the procedure 
reduces to Kronrod's. 

(b) Second Extension. We have 
n-I n 

Wn(t) = E ajek+j-i-1t 
i=O j=i+l 

The optimal choice of Vn leads to the system 
n 

E ajei+k+j = O i =O1... ,n -l 
j=O 

with an = 1. 

In general, this system is not triangular. It is easy to solve if n = 1, in which 
case 

Vi(x) = x - ek+1/ek. 

(c) Third Extension. Let di = c(xiPk2(x)). Then 
k 

di = bjei+j, i=O,1,. 
j=O 

and 
n-I n 

Wn (t) =ajdj-iltn-i-I 
i=O j=i+l 

The optimal choice of Vn leads to the system 
n 

Eajdi+j =O, i =O,...,n- 1, 

3=0 

with an = 1. 

In general, this system is not triangular. For n = 1 it gives 

V1(x) = x - ek+1/ek - bk-/bk. 

We conclude with a numnerical example. Consider the series 

f(t) = t-1 ln(1 + t) = 1 - t/2 + t2/3 - t3/4 + * I . 

For k = 2 we have [1/2]f = (6+ 3t)/(6 + 6t +t2) and thus P2(x) = 6x2 + 6x + 1. 
For each of the three extensions, we shall compare three different choices of Vn: 
Cl: V,?,(X) = Xn2 which is an easy one and corresponds to the replacement 

of (1 - xt)-1 by P(x) = 1 + xt + ... + xn-1tn-1. We shall 

take n' = n + k in the first extension and n in the two 
others. 

C2: Vk(x) = Pk (x) which is also an easy choice but works only for the 
second and third extension. 

C3: Optimal choice with n = k/2 + 1 in the second and third extension and 
k + 1 in the first (Kronrod's procedure). 
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For the first extension with the first choice of Vn we obtain 

t exact error n' = 3 n' = 5 n' = 7 
- 0.9 0.218002 0.155107 10-' 0.579877 10-' 0.963516 10' 
- 0.5 0.167898 10-2 0.641027 10-3 0.139652 10-2 0.161115 10-2 

- 0.1 0.720349 10-6 0.616145 10-6 0.719128 10-6 0.720339 10-6 
0.5 0.119405 10-3 0.225226 10-3 0.152832 10-3 0.127696 10-3 

0.9 0.640272 10-3 0.179116 10-2 0.186025 10-2 0.162708 10-2 
2.0 0.385160 10-2 0.242425 10-' 0.117749 0.464070 
5.0 0.140986 10-1 0.341531 0.124171 102 0.317355 103 

7.0 0.187126 10-' 0.825088 0.614690 102 0.309366 104 

For this choice, Vn+k(x) = xkVn(x) and the second extension will give the same 
results. 

For the third extension and the first choice we have 

t n=1 n=3 n=5 
- 0.9 0.660029 10-' 0.116071 0.143909 
- 0.5 0.118344 10-2 0.159200 10-2 0.166068 10-2 
- 0.1 0.683340 10-6 0.720110 10-6 0.720349 10-6 

0.5 0.146092 10-3 0.123483 10-3 0.120222 10-3 

0.9 0.880177 10-3 0.755701 10-3 0.714456 10-3 

2.0 0.661159 10-2 0.100749 10-1 0.232985 10-' 
5.0 0.335932 10-' 0.269549 0.491860 10' 
7.0 0.510364 10-' 0.825097 0.302096 102 

For the second choice, we get 

t second extension third extension 
- 0.9 0.957040 10-' 0.154474 
- 0.5 0.147929 10-2 0.163860 10-2 
- 0.1 0.717507 10-6 0.719970 10-6 

0.5 0.109570 10-3 0.118454 10-3 

0.9 0.484102 10-3 0.627155 10-3 

2.0 0.709345 10-7 0.360634 10-2 
5.0 -0.503889 10-' 0.115650 10- 
7.0 -0.127589 0.142061 10-' 

The optimal choices give 

t first extension second extension third extension 
- 0.9 0.218735 0.215560 0.184798 
- 0.5 0.167941 10-2 0.167925 10-2 0.167542 10-2 
- 0.1 0.720349 10-6 0.720351 10-6 0.720350 10-6 

0.5 0.119409 10-3 0.119408 10-4 0.119376 10-3 

0.9 0.640397 10-3 0.640312 10-3 0.639276 10-3 

2.0 0.385675 10-2 0.385063 10-2 0.380403 10-2 
5.0 0.141567 10-' 0.139013 10-' 0.130997 10-' 
7.0 0.188054 10-1 0.180427 10-' 0.166039 10-' 

4. Conclusions. As it can be seen from the preceding numerical examples, 
Kronrod's procedure provides the best possible choice of Vn as stated by the theory. 
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However, since such a choice needs the knowledge of many coefficients of the series, 
one may prefer a less efficient method using fewer coefficients. 

Many open questions remain to be studied, for example the comparison 
between all the preceding possibilities and the convergence of the ratio 
e(n)/(f(t) - [k - 1/k]f(t)) to one when k and/or n tend to infinity. In particu- 

lar, if this is true for k going to infinity, the sequence ([k - 1/k]f(t) + e(n)) will 
converge faster than ([k - l/k]f (t)) for the value of t under consideration [4]. 
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