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Abstract. Consider a procedure which (1) chooses a random odd number n < x, (2) 
chooses a random number b, 1 < b < n - 1, and (3) accepts n if bn = 1 (mod n). 
Let P(x) denote the probability that this procedure accepts a composite number. It 
is known from work of Erd6s and the second author that P(x) -+ 0 as x -+ oo. In 
this paper, explicit inequalities are established for P(x): For example, it is shown that 
P(10100) < 2.77 x 10-8 and that P(x) < (logx)-197 for x > 10,05. 

Introduction. Suppose one wants to produce a random prime p < x, drawn 
with the uniform distribution. One possible solution is to choose a random number 
n, 1 < n < x, and apply a test to n that can tell if it is prime or composite. This 
procedure is repeated independently until a prime is found. By the prime number 
theorem, the expected number of trials until a prime is drawn is about log x. If one 
wishes to choose an odd prime, the trials n may be restricted to odd numbers. The 
expected number of trials is then about 2 log x. 

There are many algorithms which can be used to decide if n is prime or com- 
posite. However, using the Fermat congruence is a very cheap test that is usually 
recommended as a preliminary procedure before a more time-consuming test is at- 
tempted. Namely, one chooses a random number b, 1 < b < n - 1, and checks if 
bn-1 = 1 (mod n). If n is prime, then this congruence will hold. If this congruence 
holds, then n is called a probable prime to the base b. This procedure can prove an 
input n is composite, but cannot establish primality. 

How good is this test at producing random primes? Specifically, let P(x) denote 
the probability that n is composite given that 

(i) n is chosen at random with 1 < n < x, n odd, 
(ii) b is chosen at random with 1 < b < x,-1, and 

(iii) n is a probable prime to the base b. 
It is well known that there some composite numbers n, namely the Carmichael 

numbers, such that (iii) holds for every b coprime to n. However, Carmichael num- 
bers are rare, so presumably the odds of choosing one in (i) is small. In fact, 
extensiv e nume ri cal Pevidenc suges s ta P(osis quite small when x is large. 

In practice, if a large random number n passes a random probable prime test, 
then one strongly conjectures that n is prime. As Henri Cohen has colorfully put 
it, such an n can be considered an "industrial grade prime." That is, although n 
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has not been proved prime, the probability it is composite is so small that n might 
be used as a prime for industrial (cryptographic) purposes. 

We do know theoretically that if x is sufficiently large, then P(x) is small. Indeed, 
from Theorem 2.2 in Erdos and Pomerance [2], we have that 

(1.1) P(x) < exp(-(1 + o(1)) log x log log log x/ log log x) 

as x -? ox. In particular, limP(x) = 0. 
Although we have the strong inequality (1.1) and the practical experience of 

many people to draw on, we still do not have any good estimate for P(x) for 
various finite values of x. The problem is the "o(1)" in (1.1) which renders the 
inequality computationally useless. 

In this paper we replace the asymptotic inequality (1.1) with a weaker, but 
explicit inequality. The argument is loosely based on the proof in [2] of (1.1) above, 
but a number of difficulties are encountered. For delicate estimates involving prime 
numbers, we use the results of Rosser and Schoenfeld [5]. However, the rest of our 
work is elementary and involves only moderate computation. 

We prove that 

(1.2) P(x) < (logx)-197 for x > 10.05 

For smaller values of x, our results are summarized in Table 1. To find an upper 
estimate for P(x) for some x not in the table with 1060 < x < 1010, one can 
find the largest x0 in the table with xo < x and multiply the estimate at x0 by 
log x/ log xo. 

It is highly likely that our upper bounds can be improved upon. To some extent, 
it is a matter of how hard one is willing to work. Sometimes we make trivial 
estimates for simplicity, but a more careful estimation would give a better result. 

One possible way to gain an improvement is to replace the Fermat congruence 
with the strong probable prime test of Selfridge. This test is just as easy to perform 
and it "lies" less frequently about composite numbers. To describe this test, let 
n > 1 be an odd number. First one computes s, t with n - 1 = 28t and t odd. Next, 
one chooses a number b, 1 < b < n - 1. The number n passes the test (and is called 
a strong probable prime to the base b) if either 

(1.3) bt _ 1 (modn) or b2t 2 -1 (modn) for some i < s. 

Every odd prime must pass this test. Moreover, Monier [3] and Rabin [4] have 
shown that if n > 1 is an odd composite, then the probability that it is a strong 

probable prime to a random base b, 1 < b < n - 1, is less than 4. 

Let P1 (x) denote the same probability as P(x), except that (iii) is changed to 
(iii)' n is a strong probable prime to the base b. 

Based on the Monier-Rabin theorem, one is tempted to say that P1 (x) < 4, but as 
pointed out in [1], this reasoning is fallacious. In fact, if a is the probability that a 
random odd number up to x is prime and d is an upper bound for the probability 
that an odd composite number up to x passes a random strong probable prime test, 
then 
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TABLE 1*** 

Upper bound Upper bound 
x for P(x) x for P(x) 

1.OE + 60 7.16E - 2 1.OE + 0300 5.8E - 0029 

1.OE + 70 2.87E - 3 1.OE + 0400 5.7E - 0042 

1.OE + 80 8.46E - 5 1.OE + 0500 2.3E - 0055 

1.OE + 90 1.70E - 6 1.OE + 0600 1.7E - 0068 

1.OE + 100 2.77E - 8 1.OE + 0700 1.8E - 0082 

1.OE + 110 4.03E - 10 1.OE+ 0800 5.4E - 0096 

1.OE+ 120 5.28E - 12 1.OE+0900 1.OE - 0109 

1.OE + 130 7.54E - 14 1.OE + 1000 1.2E - 0123 

1.OE + 140 1.08E - 15 1.OE + 2000 8.6E - 0262 

1.OE + 150 1.49E - 17 1.OE + 3000 3.8E - 0397 

1.OE + 160 1.81E - 19 1.0E + 4000 7.8E - 0537 

1.OE + 170 2.27E - 21 1.OE + 5000 7.6E - 0680 

1.OE + 180 2.76E - 23 1.OE + 6000 3.9E - 0820 

1.OE + 190 3.26E - 25 1.OE + 7000 1.1E - 0951 

1.OE + 200 3.85E - 27 1.OE + 8000 7.3E - 1081 

1.OE + 9000 1.7E - 1207 

1.OE + 10000 1.6E - 1331 

1.OE + 100000 1.3E - 10584 

From Monier-Rabin, we have that < < 4. Thus all we get from this theorem is that 

-a 
(1.5) Pi 1 +x 3 

If x is very large, then a is very small and so (1.5) is a quite weak result. 
However, presumably much is lost using the worst case upper bound ,3. This is 

attained only for very special composites which, like Carmichael numbers, are rare. 
The results of this paper also apply to P1(x), since we trivially have P1(x) < 

P(x). If one were to concentrate solely on P1(x), it is possible that considerably 
stronger estimates could be obtained. We remark that by using the formulas of 
Monier [3] for the number of b for which n is a probable prime, respectively strong 
probable prime, our estimates for P(x) can be multiplied by 2 when applied to 
Pi (x). 

Consider finally a procedure which chooses a random odd number n < x and 
then performs k strong probable prime tests on n with k independently drawn 
random numbers b, 1 < b < n - 1. Let Pk (x) denote the probability that this 

***The notation aEn means a x lO'. 
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procedure accepts a composite number. Combining our results with the Monier- 
Rabin theorem, we have 

(1.6) Pk(X) < 4 (k 1)p1(X)/(1 _ Pi(X)) < 4 (k1)p(X)/( - P(x)). 

The popularly believed inequality is that Pk(x) < 4-k, but as we have seen, the 
reasoning for this is fallacious. However, if we have P(x) < 1, then (1.6) does imply 
that Pk(x) < 4-k for every k. In particular, from the results of this paper, this 
inequality holds for all x > 1060. 

2. The Basic Method. Let 

F(n) = #{b e (Z/n)*: P- 1 (mod n)}. 
If n > 1 is odd, then b = +1 both satisfy bn-1 1 (mod n). Thus for these n, 
F(n) -2 is the number of b, 1 < b < n - 1, with bn-1=1 (mod n). Also note that 
by Fermat's theorem, if p is a prime, then F(p) = p - 1. We thus have for x > 5, 

P() n<x,n odd, composite(F(nl) 
- 2) 

(2.1) Zl<n<x,n 
odd (F(n) - 2) 

< n<x,n odd, composite F(n) 

F2<p<x(p - 3)X 
where here and throughout the paper, p denotes a prime. 

Hence, to get an upper bound for P(x), we shall be interested in obtaining a lower 
bound for Z2<p<x(P - 3) and an upper bound for En<x, n odd, composite F(n). 

For this purpose we shall prove two theorems. 

THEOREM 2.1. For x > 37, we have 
X2 

E (P 3) > 2(2 + log x) 
2<p:5x 

THEOREM 2.2. Suppose c, L1 and L are arbitrary real numbers satisfying 2 < 
c <1, 1 <L1 <L. Then for anyx>L2, we have 

S F(n) 
n<x,n odd, 
composite 

X2 x2 x2 
-<L + L(1 + log Li) + ( Z .2(log+L1)2 

+ Kc xl+cL2(l-c) (1 + log Lj) 5 r 1 (m) exp(2-cfc(m)), 
-c m<L2L1 m 

where 

KC = exp (Z k lp kc), 

p>2 k=2 

fc(m) = 7(I - p-) 
pim 

and FL1 (m) is the number of divisors of m up to L1. 

Before we prove Theorems 2.1 and 2.2, we state a theorem that is an immediate 
consequence of them and (2.1). Say that g(x, c, L, L1) is the right member of the 
inequality in Theorem 2.2. 
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THEOREM 2.3. For all real numbers c,L and L1 with 2 < c < 1, 1 < L1 < L 
and for all x > L2 > 37, we have 

P(x) :5 2(2 + log x)g(x, c, L, L)/x2. 

Thus, our upper bound for P(x) depends on the choices of the variables x, c, L 
and L1. 

Now let us prove Theorems 2.1 and 2.2. 
Proof of Theorem 2.1. Let ir(x) denote the number of primes not exceeding x. 

We have 

(2.2) ir(x) > x/(logx-2) for x > 67 

and 

(2.3) ir(x) < x/(log - ) for x > e3/2 (x > 4.48169) 

by (3.3) and (3.4) in [5, p. 69]. 
Using partial summation, (2.2) and (2.3), we have 

rx 

E(p - 3) = (x - 3)7r(x) - 7 r(t) dt 

(2.4) 2<p<x ( 

> lg ( ) -1 7r (t)dt. 

Now for x > 245, 

_ x 2452 

+ I 
x: t dt 

3 tdt<245lg + 3+ ir(t) dt 
because 2452 

-2(logx - 2) -(log 245 -3 

.2(loX-(og_)- 

so that 

x2 

+3 T()d < log t - d + 710g 54)2 

Putting this estimate in (2.4), we have for x > 245 

(2.5) E P- 3 2>log x - 3 2(logx- 2) 3(logz- )2 
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We replace the right side of (2.5) with the simpler expression x2/2(2 + log x) which 
is smaller for all x > 20, 000. Moreover, we have checked numerically that 

E (P-3) > 2(2 + log n) 

for every integer n with 38 < n < 20, 000. Thus we have Theorem 2.1. 
Proof of Theorem 2.2. Since F(n) is the cardinality of a subgroup of (Z/n)*, we 

have that for any n, F(n)Ir(n), where q is Euler's function. That is, F(n) = q(n)/k 
for some integer k > 0. 

Let Ck(x) denote the set of odd, composite n < x such that F(n) = q(n)/k, and 
let Ck(X) = #Ck(X). 

For any x > L2 where L > L1 > 1, 

, F(n) = , F(n)= E () 

n<x,n odd, k=1 nECk(x) k=1 nECk(X) 

composite 

= ? k : E ?(n) + E (n) 

(2.6) k<Ll nECk(X) k>L1 nECk(x) 

Ck(X) + 
1 

(no 2) 
k<Ll 

k L 
1 <n<x 
n odd 

Ck (X) 
X2 

< Z E k 4L,' 

It will thus be desirable to obtain an upper bound for Ck (x). Three classes are 
considered to estimate Ck(x) for k < L1: 

(i) n < x/L, 
(ii) n is divisible by some prime p > L, 

(iii) n > x/L and every prime p in n is at most L. 
Let Ck,1(X), Ck,2(x) and Ck,3(X) denote the number of n < x counted by Ck(X) 

for each class respectively. Thus, 

(2.7) Ck(X) < Ck,1 (X) + Ck,2(X) + Ck,3(X)- 

Obviously, 

(2.8) Ck,1 (x) < x/2L. 

We now state a result that will be useful for classes (ii) and (iii). This result is 

(2.11) in [2]. 

LEMMA 2.4. If F(n) = 0(n)/k, then A(n)lk(n - 1), where A(n) is the Car- 
michael universal exponent function; that is, A (n) is the least positive integer with 
bA(n) 1 (mod n) for all integers b with (b, n) = 1. 

Let d be a natural number. We consider those n counted by Ck(x) with dln. If 

dln, then A(d)IA(n), so that the condition A(n)lk(n - 1) from Lemma 2.4 implies 
A(d)lk(n - 1). Thus, the number of n counted by Ck(X) with din is at most the 
number of composite numbers n < x with 

(2.9) n _ 0 (mod d), k(n- 1) _ 0 (modA(d)). 
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The latter congruence is equivalent to 

n-10(mod (k(d)))) 

If there is any such n that satisfies (2.9), it is necessary that 

(d (k A(d)) 1 

Thus, by the Chinese remainder theorem, the number of n counted by Ck(x) with 

dln is at most 

(2.10) 1 [ A(d))] 

Further, if d = p is prime, then the solution n = p of (2.9) should not be counted 
since it is not composite. Thus for p prime, the number of n counted by Ck (x) with 

pin is at most 

(2.11) [ P(P-l)] p(p -1)J 

We now estimate Ck,2(x) by using (2.11). For any k < L1 < L, 

Ck,2(E) < X d I 
P>Ldpp lk p >L Pp- 

(k,p-l)=d 

d 1 
?xE E (md+1)md<xE E m2d 

dlk p>L dlk m>(L-1)/d 

(2.12' 
p-l=md 

for some m 

1 ( d2 r0 \ 
? xEd I (LP2I dti 

dk k (LE 1)2 L- 1)/d 
t2 

El (Lt - 1)2 (L -1))-L-1 (L-_1 +1() 
dlk 

where r (k) is the number of divisors of k. 

Suppose n is in class (iii). Let do be the least divisor of n with do > x/L2. If p 
is any prime factor of do and do > x/L, then do/p > do/L > x/L2, which gives a 
contradiction. Hence, n must have a divisor d with 

x x 
(2.13) L2 < d < - 

-L' 

Thus by (2.10), 

(2.14) Ck,3(X) < (1 + [dA(d) ]) 

where ' denotes a sum over odd d satisfying (2.13). 
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We thus have 

Ck,3(x) X + x (k dA(d)) 
dA(d)<x(k,A(d)) dA(d) 

X 1 - / 1 

2L 
m?L2 mA (d)/(k,A(d))=m 

(2.15) 2 

2L 
ulk m?L2 A(d)=mud 

(k,A(d))=u 

x 
2L + m<L2 m d 

ulk m?L2 A(d)=mu 

Using partial summation for the inner sum in (2.15), we have 

(2.16) A(d)=mu 
d 

xA(d)=mu /L2 t2 d<t 
A(d)=mu 

We thus shall be interested in obtaining an upper bound for A(t, mu), the number 
of odd d < t with A (d) = mu. 

LEMMA 2.5. Let A(m) be the Carmichael universal exponent function. Then, 

A(x, n) #{m < x: m odd, A(m) = n} 

< KcXc exp(2-cfc (n)) 

for any x > 1, < c < 1, where Kc and fc(n) are defined in Theorem 2.2. 

The proof of Lemma 2.5 will be given later. Using it now in (2.16), we have 

?1 < L (x)Kcexp(2-cfc(mu)) 

A(d)=mu 

r' xL 1 
+ J t2 tcKc exp(2-cfc (mu)) dt 

L2t2 

(2.17) (L) Kc exp(2-cfc (mu)) 

?1Kc~ ex(2- ep(cfc(mu)) . 
c p( fct 

))cc- [L) (L2) 

K ( L2 1 l-c 

Putting this estimate in (2.15), we have 

1 Kc 2 - 

Ck,3(X) < 2 + xYE Y - K ( ) exp(2-cf(mu)) 
2L ulk <L2 1 

(2.18) ulk m?L2 

< x + -c xcL (i-c) E 1 exp(2-cfc(mu)). 
- 2L 1 - cL2 m<L ulk m<L2 
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Using estimates (2.8), (2.12) and (2.18) in (2.7), we have 

Ck (X )-L L-1 (L-1 ) r(k) 

+ 
K 

xcL2(1 c) > - exp(2 cfc(mu)). -c ml < 

Using this estimate in (2.6), we get 

E F(n) 
n<x, n odd, 

composite 

(2.19) < ~+ + x2_ ___ _k 
4L L 

k<Lk 
L-1 L-1 

k<l 
k 

+ Kc zl+cL2(c E E > I 1 exp(2-cfc(mu)). 
+1 c C 

k<Ll ulk m<L2 

The single sums on the right of (2.19) are dealt with in the following lemma. 

LEMMA 2.6. For any x > 1 we have 

,Ei<l+logx, < ( -(2+10gx)2, 
k<x k<x 

where r(k) is the number of divisors of k. 

We defer the proof of Lemma 2.6 until later. 
We deal with the final triple sum on the right of (2.19) as follows. We have, 

using Lemma 2.6, 

E 1 E 1: ?exp(2c-fc(mu)) 
k<Ll ulk m<L2 

= E E E 
1 

exp(2-cfc(mu)) 
u<L1 m<L2 v<Li/u 

? (1 +logL 1) e x ! 2exp(2fc (mu)) 
u<L1 m<L2 mu 

<(l+logLi) E L'()exp(2-cf (p)) 
,O<L2LI 

where rL, (,u) is the number of divisors of , up to L1. Using this estimate and 
Lemma 2.6 on the right of (2.19) immediately gives the theorem. 

We now prove Lemmas 2.5 and 2.6. 
Proof of Lemma 2.5. If c > 0, 

A(x,n)= < xc m-c < xc E mrc 
m<x A(m)=n plm 

m odd m odd (p-l)In, 
,\(m)=n p odd 

=XC II (1 _ p-C)- 

(p-1)In 
p odd 
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Hence, 

A(x,n)<xcexp -(p-i)nlog(lp c) 
(p-l)ln 
p odd 

=xCexp E (p-c+lp-2c+ p-3c 

(p-l)ln 
p odd 

We have 

i PC < E (d + 1)-c < E d-c < 2-c d-c 
(p-l)ln dln dln din 
p odd d even d even 

< 2-c fJ(i - p-C)l = 2-cfc (n) 

pln 

We recall that Kc = exp(p>2 Zk=2 kp-kc), which is finite for c > 2. Thus we 

have Lemma 2.5. 
Proof of Lemma 2.6. From Euler's summation formula, 

E < 1 + j dt = 1 + logx. 
k<xk 

Using partial summation, 

Es = x Er(k) + iA 2 E r (k) dt. 
k<x k<x k<t 

We have by the first part of the lemma 

E,(k) =E E 1= E -d < -d~ < t(l + log t). 
k<t k<t dlk d<t 

d 
d<t 

Thus, 

= 1+ logx+ log2 + log E ~ < 2 . (loz + 2og) d 

3. The Range x > 10300. In this section we shall use Theorem 2.3 to prove 
(1.2) and establish the estimates in Table 1 for x > 10300. For the record, we make 

the following formal statement. 

THEOREM 3.1. If x > 010l, then P(x) ? 1/(logx)l97. 

We shall prove Theorem 3.1 by choosing 

(3.1) L = (logX)200, L1i (o gL) c = 0.75 
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in Theorem 2.3. However, there is some substantial work to do since the last term 
in Theorem 2.2 is not in closed form. The last term in Theorem 2.2 is 

(3.2) KC xl+cL2(l-c)(l + logL) Li (m) exp(2 cfc(m)), -c m 
m<L2 L1 

where 

00 

KC = exp ( d2 klp kc 

ip odd k=2J 

fc(m) = 7J(1 - p-C)-1 
pifn 

and rL1 (m) is the number of divisors of m up to L1. 
To get an upper bound for (3.2), we first get an upper bound for Kc. Let pi 

denote the ith prime. We have 

1' 1 1k c3 C+P2 ZE -k < Ep-2c +_-E3c(1+pc+-2c+.. 
p>2 k=2 p>2 p>2 

2 p-2c +3 3 = Ep-2c (1 + 2 3(pc 1) 

11 

< EPt2c (p +l) + 
(37+ 

l ) E -2- 
i=2 ~~~~~~~~~p?37 

Now, 
00 ~ ~ ~ ? 0 r2k+1 

E p-2c < 1 (2k + 1)-2c < 1 
1 t-2c dt 

p>37 k=18 k=18 

j37 1 2k 12k+1) 
<j t-2cdt?+ I +2 t-2fcdt 

36. k= 19 2k-1 2k J 

r37 
2c 

1 ?? 
=J t- Cdt + - t- c dt 

36 2 37 

=2c _ l (361-2c - 1 3712C) 

Thus, if 

11 

K = Ep-2c (1+) 

+ 1 1 ) 361 2c 371 2 
(2c - 1) (2 3(37c - 1) 2 2 ) 

then 

(3.3) KC < exp(Kc) 

We now obtain an upper bound for Em<L2L, 'rL1 (m)/m. 
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LEMMA 3.2. If 1 < L1 < L, then 

L(m) (1 + log Li)(1 + log L2Li). 
m<L2Li 

Proof. We have 

L , (i) - rL (m) +f|jiEL( 
m 12,Et 

r m t 

m<L2L1 m<L2L, m<t 

Note that by Lemma 2.6 

ETLl(m)=> 

E1= E 

[A] 
m<t m<t dim d<Li 

d<L, 

< t E d < t(l +log Li). 
d<Li 

Thus, 

'rL,(m) < (1 +log Li) + 
L 

(1 + log L) dt 
m<L2L in .I (+lg1 

= (1 + logLi)(1 + logL2Li). 

This completes the proof of Lemma 3.2. 

Using Lemma 3.2, we can get an upper bound for 

rL,(m) exp(2 c fc (m)). 
m<L2L, 

We define 

(3.4) mi = PlP2 .*. Pi, 

the product of the first i primes, and let j be an integer such that 

(3.5) mj < L2L1 < mj+1. 

PROPOSITION 3.3. If 1 < L1 < L, then 

L, (in) exp(2-cfc(m)) 
m<L2L, 

< (1 + log L1)(1 + log L2L1) exp(2-cfc(mj)). 

Proof. Suppose that m has k distinct prime factors qi, q2... qk and that 

P1,P2, .. . , Pk are the first k primes. Then 

fc(m)= 7J (1_qi-c<l fJ (1_pc)l= fc(mk). 
1<i<k 1<i<k 

Because j is chosen as PlP2 ..Pj < L2L1 < PlP2 . Pj+?, clearly j is the largest 

possible value for the number of primes in m < L2L1. Thus fc(mj) is a universal 

upper bound for fc((m) for any m < L2L1. Thus, 

rL1 (m) exp(2-cfc(m)) < exp(2-cfc(mj)) > rLl(m) 

m<L2Li m<L2L in 
< exp(2c-fc(mj))(1 + log Li)(1 + log L2Li) 

by Lemma 3.2. 
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Now we prove Theorem 3.1. Assume x > 101O? and L, L1, c are as given in 
(3.1). From Theorem 2.3 and Proposition 3.3, we have 

P(x) ? Z?n<x, n odd, composite F(n) 

E2<px(p- 3) 

<2~2+1ox~' ((log L)2 log L (log L)2 
< 2(2 +log x) (( -: + L +( ) 

(3.6) + ~~~~~~~3Kc L 2(1-c) 3 
(3.6) 3KC t( 1c Xl-c ogL) exp(2-cfc(mj))J 

- 2(2 +log x) (5(log L)2 +4logL 

3Kc L 2(1-c) 3 
+3 c (l 

) 
(logL) 3exp(2-cfc(mj))) 

We shall be interested in getting an upper bound for 2-cfc(mj). We have 

(3.7) f2-cf(mj) =2c 11(1 - p-Cl = 2C _ 1 17(1 - ) 
plmj i=2 

Now, 

1ogl(o _p-C)-l = _ log(1 _p-C) = EVC p + EE -kp 
i=2 i=2 i=2 i=2 k=2 

Hence, 

(3.8) fJ(1i pC)-l < Kc exp (PTC) 
i=2 i=2 

Putting (3.8) in (3.7), we have 

(3.9) 2-cfc(mj) < 2- _ exp (?Pc) 

Now for j > 16, 

j 16 j 

(3.10) jp-C = Ep-C + L p-C. 
i=2 i=2 i=17 

Using partial summation for Ej=17 p-C we have 

(3.11) I pC p- = jp-C - 16 59-c + cf t-c-17r(t) dt. 
i=17 59<p5pj 9 

We use the following upper bound for 7r(t): 

(3.12) ir(t) < t 1 + 2lt) for t > 1, 
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which is (3.2) in [5, p. 69]. Thus, for S = f5l 
I t 1rw(t) dt, we have 

I < 1 + dt 

(3.13) - 
9 log t 2 log t 

- 1 tlc PJ + 1 fPjt ct 

1=1 dt+ + I dt . 

og259 1-c 5 

+ log2 15 1 - c J ic] 

Thus, 

<1 p'9 1 591-C 

-? 1 - clogp 1-c - c log d 9 

(3.14) + (2 + 1-c) ((1- -5 J (1-c)1og259 591c 

1 

_ 

p 

- pi ) +1oc log2p 1-c log2pc 

Now by (3.12), 

(3.15) j = wr(p,) < i'. (1 + 2tlg)- 

Assembling (3.10), (3.11), (3.14), (3.15), and simplifying with c = 0.75, we have 

1 
1-c 

~1/ 1/411/ 

(3.16) <<4. +67.5 P +p1 -66 l - 

1 clopj 1 logp1 lg51 o2p 

From (3.5) and Theorems 9 and 10 in [5, p. 71], we have 

Pj < 1.O4logL2L1 < 3.2 log L for logL2L1 > 2703. 

Putting this in (3.16) and taking L-= (log x)200, we get 

Z Pi-075 <4.8(log logx)1/4 for xp> i105 
i=2 

From (3.3) with c = 0.75, we have KC <e04. Thus, from the above and (3.9), 
we have 

(3.17) exp(2cfc(m6)) 4 exp (62c't 1 exp ( - 6) ) 

< exp(2.2 exp(4.8(iog log x)1/4)) <x0 

for x4> 101o . 
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We put (3.17) in (3.6), getting 

P(x) < 2(2+logx) 

(3.18) 5 (logL)2 +4log L+1/2 )3 

t 4L ~~~~+ 18.0Xo1 (log L) 

for x > 100 , where L = (log x)200. Since x0 15 > (log x)1200 for all x > 10105 it is 
easy to check that (3.18) implies P(x) < 1/(logx)197 for all x > 100 , which was 
to be proved. 

To establish the estimates in Table 1 for x > 10300, we use the same values 
of the parameters L1,c in Theorem 2.3 as given in (3.1) and then we choose L 
optimally. We also use Proposition 3.3 for the sumi in the last term in Theorem 
2.2, to obtain (3.6). The principal difference between the range x > 101? and 

10300 < x < 101? is that instead of using (3.7)-(3.17) to estimate exp(2-cfc(mj)), 
we directly compute this quantity, which is not too hard to do when given a finite 
value of x that is not too large. 

4. A Refinement of the Basic Method. To get good results for smaller 
values of x, we shall use a more elaborate version of Theorem 2.2 and Proposition 
3.3. 

THEOREM 4. 1. Suppose c, L1, L, L2 and M are arbitrary real numbers satisfy- 
ing 2 ,< 10 <L, <L<L2 <M/2, L3/2 <1OM. Then for anyx>L2, we 
have 

X2 50 x 2(Li 
S (- +9F(n) ? 1 +1) (2+logLi)2 

n<?x, n odd, 1 9L composite 

+L (2 log x \ 10 x2 ) 
+xL2 lg 0)(1 +logL,)+ 9 y(1 +logLi)2 

+ 125 2(1+log L2) (4+logLi)4+ 0x(1+logLj) 
+3564 M -2L2 99 L 

+ lOOKc 1 x 1cMl-c(1 +logLi) 
+(1 - c)(10l+c - 1) 

* E L' (m) exp(2-cfc(m)), 
m<L2L, 

where Kc, fc(m) and TL, (m) are defined in Theorem 2.2. 

Proof. Although the assertion appears to be considerably more complicated, the 
proof of Theorem 4.1 follows fairly directly from the same methods used to prove 
Theorem 2.2. By the same argument that establishes (2.6), we have 

(4.1) E F(n) < x E Ck(X) - Ck(X/10) + 1 (n -2). 
x/10<n<x k<L 

k 
x/0<n<x 

n odd, composite n odd 
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To obtain the theorem, we add (4.1) at x, x/10, ... , x/10', where x/10u > L2 > 
x/10u+l. Thus it shall be sufficient to prove that 

E Ck(X)-Ck(X/10) 

k?Li~~ k<Li 

1 x Li_2__) 

< - 
z (L (2 +log Li) 

x 
(1+log Li2 2 L2 -1 kL2 - 1J M ' 

(4.2) 5 x(M+logL2)2 4 logL1)4+1x (l+logLi) 
144 M -2L2 2 L 

+L2(1 +logLi) 

+ 10-Kc xcMl-c(l +logLi) i rLm( ) exp(2-cfc(m)). 

1-c m<L2 L1 

The expression Ck (X) - Ck(X /10) is the cardinality of the set of odd, composite 
integers n with x/1O < n < x and F(n) = q$(n)/k. We let Bk,1(x),Bk,2(x),Bk,3(x) 

denote the number of such n that satisfy, respectively, 

(1) n is divisible by some prime p > L2, 
(2) n has a divisor pq > M, where q < p are prime, but n is not counted by 

(1), 
(3) n is not counted by (1) or (2). 

Thus, Ck(X) - Ck(X/10) = Bk, 1(x) + Bk,2 (X) + Bk,3 (x) 

From the argument which gives (2.12) we have immediately that 

Bk,1(x) <L2-1 (Li1) r(k), 

so that from Lemma 2.6, we have 

Bkk?Li L 
( ) ~~k<L k 2 L2 -1 L2 - 1 

To analyze Bk,2 (x), we consider separately the case q < p and q = p. The 
contribution to Bk,2(X) from the case q < p is, by (2.10), at most 

1+ x(k, [p-1, q-1]) 

q<p<L2 pq[p- 1, q- 1] 
pq>M 

(4.4) 1 2 1 (k,[p-1,q-1]) 

-2 2 2 E pq[p-l,q-1] 
q,p<L2 
pq>M 

p$q 

For this last sum, we write p-1 = md, q- 1 = nd, where (m, n) = 1. Since pq > M 
and p, q < L2 imply (p-1)(q-1) > M-2L2 := M', we have 

(4.5) (k,[p-1,q-1] < (k,mnd) 
p,?L pq[p - 1, q - 1] m2n2d3 p,q'<L2 q P1 q1 d<L2 m,n<L2/d 
pq>M mn>M'/d2 

p$q (m,n)=1 
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If we let ul = (k, m), U2 = (k, n), then the condition (m, n) = 1 implies ulu2jk. Let 
U3 = (k/u,u2,d). Thus, (k,mmnd) = U1U2U3. Let U4 be such that k = U1u2U3U4, 

and let ,u, v, 6 be such that m = u,ts, n = U2v, d = U36. Thus, from (4.5), 

,: (k, [p -l, q -1]) 

p,q<L2 pq[p- 1,q -1] 
pq>M 

p:Aq 

<~~~~~ 2, 2263U, U2U 2 z z 1tjM/(6U1 2 1 
ulu2u3u4=k 6<L2/u3 k&>M'/(v62U1u2u3) 

(4.6) (ul,u2)=l v-<L2/U2 

51 
< 3MI V6 > 

ulu2u3u4=k 6<L2/u3 

v<L2/U2 

< 3,(1?+logL2)2 Z 1, 
U1U2U3U4=k 

where we used the inequality 

(4.7) E 
1 

< 
5 for y > O. 

IL>y/ 3Y 

The proof of (4.7) follows from the facts that 

??1 72 5 5 

= = - < < forO<y<1, 

1 1 2 5 
E 1 <E 1 <2<- forl<y<2.5, 

,r.1 f~1 1 5 
<<-t2 dt < for y > 2.5. E w< -1 ~~~~3y 

Putting (4.6) into (4.4), we have 

1 x(k, [p' 1, q-11]) 

k<L1 q<p<L2 pq[p-1, q-1] 
(4.8) pq>M 

< L2(1+logL,)+6M,(+xog2)2 
'r4 (k 

k<Ll 

where r(t) (k) is the number of ordered factorizations of k into i positive factors. 
It is not hard to prove by induction on i that 

(4.9) S ()(k) <T! (i+logy)i 
k<y 

for any natural number i and for any y > 1; in fact, Lemma 2.6 gives the cases 
i = 1, 2. We shall use (4.9) with i = 4 in a moment. 

We now consider the contribution to Bk,2 (x) when q = p. If p2 In and F(n) = 

0(n)/k, we have from (2.9) that 

n 0 O (modp2), k(n - 1) 0 O (modp(p - 1)). 
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Thus, pik, and the number of such n < x is at most 

[x(k,p -1)] x x 
+ 

p2(p ) < 1 + p2 < 1 + M 

if p2 > M. Since k < L1, the number of primes pjk with p > M'/2 is at most 
(logLi)/log(M1/2) < logL1. Thus, the contribution to Bk,2(x) when q = p is at 
most (1 + x/M) log Li. 

Using this result together with (4.8) and (4.9) gives 

Bk, (X)<L2(1+log L)+x(1+log L)2 

(4.10) k<L1 

+ 144M' (1 + log L2)2(4 + log Li)4. 

We now turn our attention to Bk,3 (x), the number of odd, composite n with 
x/10 < n < x, p < L2 for every prime pln, and pq < M for all primes p, q with 

pqIn. Factor such a number n as qjq2* * -qt, where qi > q2 > > qt are primes. 
Then, qi < L2 and qjq2 < M. Note that 

n n x 

qjq2- M lOM 

Suppose n/qlq2 > x/L. Then, qjq2 < L, so that q2 < L1/2. Thus, n has a divisor 
d with x/L3/2 < d < x/L. But x/L3/2 > x/(1OM), so that in either case, n has a 
divisor d satisfying 

(4.11) 1GM< d &< 

We next repeat the calculations (2.15)-(2.18), but with E' now representing a sum 
over odd d satisfying (4.11). Thus, 

Bk,3(x) < z+ _Kc (10M)l-cE Z exp(2-cfc (mu)), 
2 L 1 c ulk m<L2 

and so, as in Section 2, we get 

Bk3EX < x 
(1 +log Li)+ lKc xc(10M) 

1-c 
( + lo Li) 

(4.12) k<Ll 
(412 'L (M) exp(2-cfc(m)). 

m<L2L, M 

Our proof is now complete, since adding (4.3), (4.10) and (4.12) gives (4.2), 
which, as we have seen, is sufficient for the proof of the theorein. 

We shall also wish to use a sharper result than Proposition 3.3. Let 

(4.13) 2 < I < L1, l = (1 _ 1-c)-log(L 2L)/logl 

where ce, depends on the choice of c, L, L1, 1. 
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PROPOSITION 4.2. If 2 < c < 1, 1 < L1 < L and l,c a are given by (4.13), we 

have 

EJJ,,(m) exp(2-cfc(m)) 
m 

m<L2L, 

< (1+lgLo)L i j2E!) exp(2-caifc(mi)) 1+log Li) 

where mi and j are defined in (3.4) and (3.5). 

To prove Proposition 4.2, we state a result that will be useful. We first make a 
definition as follows. Let S(l, k) = E -, where u runs over the squarefree integers 
that are the product of k distinct primes up to 1. 

LEMMA 4.3. For any nonnegative integer k and any I > 2, we have 

S (l,k) ? o 

p? 

Proof. This elementary result follows by expanding the right side of this inequal- 
ity with the multinomial theorem. 

We now prove Proposition 4.2. 
Proof of Proposition 4.2. To estimate fc(m), we ask how many primes p > 1 can 

divide m. The number of such primes is at most log(L2Li)/ log 1. Thus, 

fc(m) = J7(i_ p-Cl = JJ(i p-Cl * fJ(i _pC)l 

pln pim pim 
p>1 p<l 

< (1 _ 1-C)- log(L2 Li)/Iog I. 1_p- C) -1 < ei fc (mi) 

plm 
p<l 

if m has exactly i distinct primes up to 1. In general, let wj(m) be the number of 
distinct prime factors of m at most 1 and w(m) be the number of distinct primes 
in i. 

Now, 

-FL ,(M) TrL ,(M) M exp(2-cfc(m)) < M exp(2 cfc(m)). 
m<L2L 

i 
i=O wl(m)=z 

m<L2L1 

For the inner sum, we have 

TL,(m) exp(2-cfc(m))<exp(2-calfc(mi)) E L1(m) 

WI (m) =i w (m) = 
m<L2L, m<L2L1 

< exp(2-cajfc(mi)) 5 5 TL(Ut) 

w(u)=wI(u)=i t<L2Lj/mg 
u squarefree 
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since any m < L2L1 with wi (m) = i may be factored as ut, where u is the product 
of i distinct primes up to 1 and t is an integer at most L2Ll/u < L2Ll/mi. Using 

TL , (Ut) < ?L1 (u)TL 1 (t) < T (u) rL (t) = 2 fL1 (t) 

we have 

Er L1 (m) exp (2 -'fc(m)) 
m 

WI (m)=i 
m<L2Li 

(4.14) < exp(2-calfc(mi)) E U E TL,(t) 

J(u)=W (u)=i t<L2L /m 
t 

u squarefree 

< exp(2-cajfc(m))T (2E ) (1 +logLi) +log LiL) 

by Lemmas 3.2 and 4.3. Therefore, taking the summation of (4.14) from i = 0 to 
j completes the proof. 

Putting together Theorems 2.1 and 4.1 and Proposition 4.2, we have the following 
result. 

THEOREM 4.4. If 2 < c < 1, 10 < L1 < L < L2 < M/2, L3/2 < ?1M, and 
x > L2, then 

fi 50 /LI (2 +log L1)2 
P(x) < 2(2+logx) { 1 + 509 L- 

+ 1) 1 2 - 1) 

1 / L2 (2 +log 100 (1 + log Li )2 
+-1L22 ~2+ 11)(1 +logLi) + 9 

+125 (1 +log L2)2 (4 +lo L, )4+ 5 1 +log L, 
+3564 M-2L2 (og1 +99 L 

+ Kc (M) (+log Li)2 
+(1 - c)(10i+c 1) (x)1c( +lgL) 

2 ! (l+log exp(2-calfc(Mi))1 
i=0 in2 

where l, a!l are given by (4.13), mi is defined in (3.4) and j is defined in (3.5). 

While admittedly looking complicated, Theorem 4.4 can be readily used to get 
explicit upper bounds for P(x) for various values of x. The art is to choose the 
many free parameters optimally. Of the seven terms in the brackets, it is clear 
that some dominate ot,hers. For example, the fourth term is small compared to 
the fifth term. We choose the parameters so that the first four terms are the least 
important and the seventh is the most important. We feel these choices are close 
to the optimal ones. Our results are recorded in Table 2 and summarized in Table 
1 in the Introduction. An asterisk in the M column signifies that M was chosen as 
L3/2 /10. 



PROBABILITY THAT A RANDOM PROBABLE PRIME IS COMPOSITE 741 

TABLE 2 

Upper Bound 
x L Li L2 M I c for P(x) 

l.OE + 60 3.6E + 5 5.4E + 3 2.0E + 6 6.2E + 9 350 0.7125 7.16E - 2 

l.OE + 70 1.1E + 7 1.7E + 5 1.2E + 8 5.9E + 11 600 0.7125 2.87E - 3 

l.OE + 80 7.2E + 8 llE + 7 1.4E + 10 9.9E + 13 850 0.7125 8.46E - 5 

l.OE +90 4.5E + 10 7.0E + 8 1.4E + 12 1.4E + 16 1400 0.7100 1.70E -6 

l.OE + 100 3.3E + 12 5.5E + 10 1.7E + 14 2.5E + 18 1850 0.7100 2.77E - 8 

l.OE + 110 2.6E + 14 5.3E + 12 2.3E + 16 4.3E + 20 1850 0.7100 4.03E - 10 

l.OE + 120 1.2E + 16 4.4E + 14 2.5E +18 *1.3E + 23 2350 0.7075 5.28E - 12 

l.OE + 130 6.7E + 17 5.6E+ 16 4.2E + 20 *5.5E + 25 2590 0.7075 7.54E-14 

l.OE + 140 6.8E + 19 5.7E + 18 5.3E + 22 *5.6E + 28 2800 0.7075 1.08E-15 

l.OE + 150 2.7E + 21 2.2E+ 20 2.4E + 24 *1.4E + 31 3250 0.7075 1.49E-17 

l.OE + 160 4.2E + 23 3.8E + 22 5.1E + 26 *2.7E + 34 4900 0.7050 1.81E-19 

l.OE + 170 3.9E + 25 3.5E + 24 5.6E + 28 *2.4E + 37 6300 0.7025 2.27E-21 

l.OE + 180 3.7E + 27 3.3E + 26 6.2E + 30 *2.3E + 40 8000 0.7025 2.76E-23 

l.OE + 190 2.9E + 29 2.4E + 28 5.4E + 32 *1.6E + 43 9300 0.7025 3.26E-25 

l.OE + 200 2.7E + 31 3.3E + 30 8.2E + 34 *1.4E + 46 12000 0.7025 3.85E-27 
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