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ERROR AND STABILITY ANALYSIS OF BOUNDARY METHODS 
FOR ELLIPTIC PROBLEMS WITH INTERFACES 

ZI-CAI LI AND RUDOLF MATHON 

ABSTRACT. In boundary methods, piecewise particular solutions are employed 
to solve a given elliptic equation within subdomains of some region of interest. 
A boundary approximation is then obtained by satisfying the interior and ex- 
terior boundary conditions in a least squares sense. In this paper, we examine 
convergence, derive error norm bounds for approximate solutions and conduct 
a stability analysis of the associated algebraic problem. The aim of this analysis 
is to help choosing good partitions of subdomains. Finally, numerical experi- 
ments are carried out for a typical interface problem, demonstrating that very 
accurate solutions can be obtained while at the same time keeping small the 
condition numbers of the associated coefficient matrices. 

1. INTRODUCTION 

Consider an elliptic boundary value problem on a domain divided into sev- 
eral subdomains by artificial or material interfaces. If the admissible functions 
consist of particular solutions of the underlying elliptic equation on the sub- 
domains, an approximate solution can be obtained by satisfying the exterior 
boundary conditions and the continuity conditions on the interior boundary as 
much as possible in a least squares sense. Since the approximation is performed 
only on the exterior and interior boundaries, we call these methods boundary 
methods (see Li [12] and Li, Mathon and Sermer [16]). 

The advantages of boundary methods are summarized as follows: 
1. It is easy to solve problems with corners and interface singularities as well 

as with unbounded domains, with which the finite element and finite difference 
methods have difficulties coping. 

2. The solution procedure is simple to carry out because only the interior and 
exterior boundary conditions are taken into account in the solution process. 

3. A very accurate solution can be obtained by using relatively few expan- 
sion terms of particular solutions (approximation in one lower dimension), thus 
saving on work and storage space. 

4. It is possible to estimate errors in the approximate solutions, although 
the exact solution of the physical problem is unknown. In this paper, a useful 
relation for the error behavior will be established, 

(1.1 ) 11811H = O(WlI1IB) ' 
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where M is the total number of unknown coefficients in the piecewise expan- 
sions used. The formula (1.1) is significant in practical calculation because we 
can compute the error in the domain I I IH in terms of the errors on the bound- 
ary 1I I, which is naturally obtained from the boundary methods. Once the 
errors of solutions are known, we can easily control the calculation procedure. 

However, the following two difficulties arise in using boundary methods. 
1. Piecewise particular solutions of elliptic equations have to be known. 

For the most important elliptic equations in application, we may find useful 
particular solutions in textbooks of partial differential equations, e.g., Tikhonov 
and Samarskii [21]. But quite often, an analysis is essential to yield asymptotic 
expansions near singular points and infinity, since the behavior of the solution 
near them is unknown or unclear. 

2. Stability of numerical solutions is also important. The numerical experi- 
ments in [16] report that using several subdomains leads to better stability but 
lower accuracy of the numerical solutions. In fact, stability will rely substan- 
tially on both the choice of piecewise particular solutions and the partition of 
the solution domain. Our intention in this paper is to use a stability analysis 
to guide us in choosing partitions so that better solutions can be obtained via 
boundary methods. 

In this paper we present an analysis of errors and stability, as well as numer- 
ical experiments for the equation 

(1.2) -Au + u = 0, 

with interface singularities by boundary methods on a decomposed domain, to 
show not only that the solutions obtained are extremely accurate, but also that 
the condition numbers of the coefficient matrices are surprisingly small. 

It should be noted that the infinite grid refinements of Han [8] and Thatcher 
[19, 20] cannot be applied to the equation (1.2). 

2. BOUNDARY APPROXIMATIONS 

Let Q be a bounded domain divided by a surface I0 into two subdomains 
Q+ and Q , i.e., Q = Q+ U Q . In this paper, we will consider the piecewise 
equations 

(2.1) p+(-Au+a) = 0 in Q+, 

(2.2) pf(-Au+u)=0 inQY, 

with the interior and exterior boundary conditions 

(2.3) U+ = U , p+ u+ =p u on IFO 

(2.4) u=f onF D, u5 =g on FN, 

where f and g are sufficiently smooth functions, FD U F N = Q and FD $h 0 , 

UV is the normal derivative, and u? = u in Q 
Let p+ and p- be different positive constants that are related to different 

materials in Q+ and Q , i.e., 

(2.5) + 
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Then equations (2.1) and (2.2) become 

(2.6) -AuA +uA =0 inQ+. 

When p+ = p -, is an artificial interface, cf. [16]. 
We need some notation. Define a space on Q, 

(2.7) H = {v EL2(Q)Iv -H'(Q+), v eH (Q ), 
and - AV + v = O in Q+ and Q }, 

and a functional on F0 and aQ, 

(2.8) I(v)= j (v- f)2ds w f (vv-g)2ds+ (v v, ds 

+ w2 (p+v+ _ p-V)2 ds, 

where w is also a positive weight. On H x H we will use a bilinear form [.,*] 
defined by 

[u v] = uvds w j uvds+j (u -v)(v -v )ds 

(2.9) D N 

+2 ( 
2 + - u)( + - v) ds, 

and an inner product 

(2.10) 2vIB = [V, V]. 

The norm IIVIIH on H is defined as follows: 

(2.11) IVIIH ={IIVIIiQ+ + IIVII Q- 1/2, 

where the Sobolev norms are 
}1/2 

IIVIImQ 

{Iaam'Q 

Consider finite-dimensional spaces Sm 
n 

C H such that 

~~~m 

Sm, n= VIV =V = CiY Kc 
on Q, 

(2.12) I= 

andv=v =EdjqonQ} 

? i~~~~~~~~~~~~~~~=1 where fig are complete sets of particular solutions of (2.1) and (2.2). A bound- 
ary approximation, um n E Sm n I is then found by 

(2.13) I(Um n) = min I(v). 
VESmn 
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It is worth pointing out that the boundary methods here may fall into the 
class of general, weighted least squares methods for elliptic systems of Aziz, 
Kellogg and Stephens [3], which are applied both within small elements (viewed 
as subdomains here) and on their boundaries (viewed as interfaces). Since 
only particular solutions are chosen to be admissible functions, the number of 
unknown coefficients decreases drastically. Good boundary approximation can 
be obtained even if several subdomains are used (see the numerical examples in 
?5). It would also be interesting to develop least squares methods in which the 
number of trial, functions (as in this paper) and the number of subdomains (as 
in [3] and in the finite element method [18]) are both changing, in particular 
for those elliptic problems for which particular solutions cannot be found. In 
this latter case, also residuals within the subdomains (as in [3]) have to be 
considered. 

3. ERROR ANALYSIS 

For the space Sm n , we assume that the inverse property and the approxima- 
bility property hold as in [ 16]. 

Inverse Property. For any v E Sm, n we have 

(3.1) VV loF ? km nHIVIIHH IVJ0', ? km n IVIIH5 

where km n is unbounded as m, n x-+ o and the norms on the boundary or 
interface are defined by 

H0~= (jV2d5 1/2 IV lo, r, (I ) 
We note that in (3.1), the inverse property on the interface F7 is assumed 

only for F+ , because the norm bounds of errors in the following proof are 
needed only on one side of [O, say Fr (see (3.1 1)). 

Approximability Property. For any u E H, there exists a function v E Sm n 
such that 

(3.2a) lu-V~ lOQ+< klUkOQ+, l0 < k < k 

(3.2b) Hu v l - ?ckq1iU qaQ- - O <I<qu 

where <k/+ asq, O as m, n - oo, and 

{f( a ) ds , vKI = { zj ) ds} 

Approximability properties may be found in Cheney [5] for some spaces, or 
in Eisenstat [6] for the Bergman-Vekua space. For the equation -Au + u = 0, 
the approximability properties of Smn can be obtained only when the given 
subdomains are imbedded into sectors of a circle, which are within the solution 
domains. In other cases, a further study of the approximating spaces needs to 
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be done (refer to the density study in Aziz, Dorr and Kellogg [2] and Browder 
[4]). 

Under the above assumptions, we will provide error estimates and establish 
the relation (1. 1). First we cite two lemmas and a theorem, which can be proved 
along the same lines as in [16]. 

For v E H, there exists an imbedding constant C, > 0 in the Sobolev 
imbedding theorem such that [ 17] 

(3.3) I~~?CHH, V :: ?CHH ??CHv~ ( *3) lv10r rD < CsIIVIIH 10 I- o r < Cs IIVl 11 a < Cs IIV IHi 

Then we have 

Lemma 3.1. Let v E Sm nI and suppose that the inverse property holds. Then, 
when w > 0, there exist norm bounds 

(3.4) HVHH < t (kmn + 

where the constant 

t max(p , p ) 
min(p+, P-) 

Lemma 3.2. Let u be the solution of equations (2.1)-(2.4). Then for any w > 
O, there exists a unique function, umn E SmC n such that 

(3.5) [umn vI] = fv ds + w 2 gv, ds for all v E Sm n I 
D N 

(3.6) [u-um n IV] = 0 for all v E Smn I 

(3.7) lum ~nIH < ? (km n + {H ofD +WlgI0o }. 

Also, um n minimizes I over Sm n if and only if (3.5) holds. 

The next estimate bounds the errors in the H-norm. 

Theorem 3.1. Let u E H1 (Q) be the solution of (2.1)-(2.4), and let um n E 
Sm n be the boundary approximation (3.5). If the inverse property holds, then 
for any w > 0, there exist error bounds 

(3.8) ||u - n lH ? inf {Ilu-VllH + t (kmrn +- u 
C 

- Va} 

where t is defined in Lemma 3.1, km, n is defined in (3.1) and Cs is given in 
(3.3). 

Corollaries similar to those in [16] can be easily derived. Here, our main 
interest is in the relation between IHu - umrniHH and Iu - umr nB only. 
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Let u be the solution of (2.1)-(2.4); then the error norms satisfy 
112 -U _ 2 
|EB =|-m nlB 

= U~~~~~~~~a 
=] |(Um, n-f) ds + ? 

2 
( ,n -g) ds 

D N 

(3.9) +| (U +-Umn ds 

au+ O - 2 

+W2 (+ Umrn Ur nn ds\ 

We note that the true solution u disappears in I8IB (see (3.9)) and also the 
values of Ie B are easily computed in the least squares procedure employed in 
the boundary method. We can then evaluate 11e 1H in terms of eIB Such a 
relation for the norms is given in the following theorem. 

Theorem 3.2. Let u e H'(Q) be the solution of (2.1)-(2.4), and let Um n E 

Sm n be the boundary approximation (3.5). If the inverse property holds for the 
difference u - Um n I then for any w > O, the error is bounded by 

(3.10) Ju -Ur flH < t (krnn + ? - 

where the constants t, kmrn and Cs are the same as in Theorem 3. 1. 

Proof. Letting v = um n E Sm n and 3 = min(p+, pV), we have from (2.3) 

Hu- VIIH < | p+(uV - v)(u+ - v+) ds 

+ j -(uV - v7)(u - v ) ds 

-{i Pr Vv)(f - v) ds + p(g - 
v)(u - v)fds 

(3.11) + j [(v - v)p(uV - V ) 

< t{fUV - v0,,lrD If - V1orD + Ig - V 0,FN u -1?,N 

+I+ - V lo~-<ulJ -VI eO 

orol VIJ -P VIJ l0r}. 

The inverse property (3.1) and the imbedding theorem (3.3) imply that 

(3.12) ||u - ?IH t{kkmnlf - 
V10, D 

+ C5lg 
- 

Vo10rN 

+ km nIV - l o r 

+ Cs Ip v p vj,,o}HIIu 
- VIIH 
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Dividing both sides by 11u - v11H and using the definition (2.10), we obtain 

(3.13) I1u-VIIH < t (kmn, + ) IIU VB. 

The inequality (3.10) follows from the substitution v = umrn , thus completing 
the proof of Theorem 3.2. o 

Based on Theorem 3.2, we have 

Corollary 3.1. Let the weight w = 1/M, where M = max(m, n), and suppose 
that all conditions in Theorem 3.2 hold. Also suppose that the constant km n in 
the inverse property satisfies 

(3.14) km n<CM5 

where C is a bounded constant independent of m, n and u. Then 

(3.15) Hju - umrn1H = O(MIu - 
UmnIB) 

A discussion of the bounds on km m, can be found in [12]. 

4. STABILITY ANALYSIS 

In this section we will present a stability analysis for boundary methods based 
on domain decomposition and discuss the choice of geometric shapes for the 
subdomains. 

In order to discuss stability of the solution ur ,, we need to estimate the 
value of the condition numbers 

1mx( ) 1/2 

(4.1) cond = (mxk 
(4 1min(B) / 

Here, imax and imin are the maximal and minimal eigenvalues of the associated 
coefficient matrix B defined by 

(4.2) XTBX |vl2 V ESm'n 

where the vector X is composed of the unknown coefficients ci and di in 
(2.12). 

Let the bounded domains Q ? and be such that 

(4.3) Q+ Q+cQi QccQccQ-, 
and define two matrices as follows: 

(4.4) FQ+ = (+j), FQ- = (I,-), 

where the matrix elements ji j are 

(4.5a) ipj = ( si t<)Q+ + ( I/i , X? + (0j{/i+, Vc;I )+ 

(4.5b) fii = 
('i V/j )Q + ( oV7)j + (ov'7, V3if) 
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Then we have 

(4.6) (X+)TFX= X+ 1 + Q+I (X-)TFX- _ 

where 
m n 

(4.7) V+ =ZcIv<, V =Z ydi7, 
i=l i=l 

T --T (4.8) X = (C1, C2, .., Cm) , X =(d1 , d2, ,dn) 
We will prove the following results. 

Theorem 4.1. Suppose that for any V E Sm n' 

(4.9) IV,, and Iv ? < k 

for some positive constants km n . Then for any w > 0, there exist bounds 

) _ tw [(1 + pmaxkm, n + 
- 2 

{m.x[max(Fj+ ) 1 imax(Fj-n)] 1} (4. 10) cond < tw [(I + Pmax)km, n + CS]2 fLmnF?~ira }12 

where Pmax = max(p+, p ), Cs is defined in (3.3), and t is given in Lemma 
3.1. 

Proof. We have from Lemma 3.1 

2__ _ _ _ _ _ _ _ _ _ _ _ +v IH 211 
2 

(4.1 1) IvIB 
> 

2 
| 

2 2> 21 
1 n 1 

(4.11) 
HB?~~ t(kmn +Cs /W)2 t (kmn+ Cs/W) 

Then 

(4.12 imin(B) =min IVIB> 1 mn -HvK 
+II 

+H Q-- 
X X t (km, n+5 ) X X 

If we denote 

T [FQ+ FQ] 
L ? F- i 

we obtain a relation for the smallest eigenvalues of the matrices T. FQ+ and 

FQ 

2v~ Q? + lV1 Q-~~~~~IVI1 ,Q 

i8min(T) = min - 1 = min[,:.mn(F?) , '~min(F -)]. 

Obviously, 

(4.13) (min(B) ? 1 )2 min[,min(FQ+), i~min(FQ-)]I 
t (km + C/ 

Similarly, from the assumption (4.9) and the Sobolev imbedding theorem we 

can see that 

IV IB < (Cs + PmaxWkm n) VIIH 

(4.14) < (CS +PmaXWkm n) [HV+12?i+ + lIV 11 2 Q I 
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Therefore, 

(4.15) i max(B) < (Cspmaxwkm n)2maxLimax (F?) ) Frnax (T)] 

It follows by computing (4.13) and (4.15) that 

(416 'max (B) 2 t~2 [( 
- 

CS]-4max[, max(Fj?)~ 5 'max(F~j)I 
(4.1) A~min (B) < [(W + Pmax) km ,n +W min[Amin(FQ+)ti~min(FQA )] 

which leads to the inequality (4.10). This completes the proof of Theorem 
4.1. o 

Below, we will apply Theorem 4.1 to the partition displayed in Figure 1 and 
the admissible functions: 

m (4. 17) v + = E il8(+ 17 sin + S. (r , 0) E=Q 

(4.18) v =Edi > # ) sinfulq$, (pq$)EQ, 

where cl and di are known coefficients, iu = in/E&, &+ are the intersection 
angles, (r, 0) and (p, q0) are the polar coordinates with the origins A and A*, 
respectively, and the radii Ro are defined by the formulas (4.19) below. 

R+ 

A r 

A~~~~~~~~~~ A# 

FIGURE 1. A partition of Q =Q U Q 

Let the sectors Q and Q satisfy (4.3) and 

(4.19a) = {0 <p <R0 and O< q < O9}, 
Q 0< p < ro and 0< < 9}, 

(4.19b) 0={0<r<RO and0<6 } 
Q = {0 < r < r and 0 < 0 < WI} 
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In (4.17) and (4.18), I (r) are the Bessel functions for a purely imaginary 
argument defined by (see Tikhonov and Samarskii [211) 

Ir) E F(k + 1)F(k + u + 1) 2 
k=0 

Then we have 

Corollary 4.1. Let vi be admissible functions given by (4.17) and (4.18) on 
the division in Figure 1. If m = 0(n) and the conditions in Theorem 4.1 are 
satisfied, then there exists a bounded constant C independent of m, n and u 
such that 

(4.20) cond < Ctw [(1 + Pmax)km~n + ' ] max { [0+] [ ] } 

? ?~~~n 

where the radii R' and r0 are defined by (4.19). 

Proof. Using the orthogonality of sinL+, we can see that 

(4.21) I1vII2 _ = z2i rG+(r) dr 

(4.22) 11III2 =I c2 rG+(r)=dr, 
1=0 

where 

(4.23) _+ _ _ [[I>(r)1 + 21 (r) + 12?(r)] 

On the other hand, the functions Is (r) can also be expressed as (Abramowitz 
and Stegun [1, equation 9.6.18]) 

(Pr e?rt -/ 
I'u (r) 

2 e (1 - dt 
8 r(i 2 R( + 2I) 1- 

The Bessel functions It(r) are known to satisfy the bounds 

(4.24) r~e- max- r < (r) < m8 raemax 
r 

where 

(4.25) 23A2 = f 11(1-t< dt, 

with ),,+ < fl. Moreover, by noting the formula (see Gradshteyn and Ryzhik 
[7, equation 8.486.4]) 

(4.26) Is (r) = I (r) + Is+, (r), rU r 
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we can obtain the following bounds 

lr+ +R rT+ + FR+ 1 2/ 

(4.27) I~rGi r) dr < C < e, ] rG+ r) dr > 301<e 40 10 
Jo o [~~IUR+ 

with constants 0 < Jo < C < 0. This yields 

(4.28) i max(F-+) ? C1m, Jmin(FQ+) > JOmin I'A ( ?+) ] 

Similarly, we obtain 

(4.29) iAxF- < C/1, A i(Fj2_) > 50 min [1 A(R ) ] 

At least one of the following two inequalities 

ro < RO ro < Ro 

must hold. Therefore, 

[nmin(FQ+), ) = A0min [i+ (RjQ) '- (M o ) j 

for some large numbers ,Um and ,Un. Consequently, Theorem 4.1 yields 

cond < Ctw [(1 + Pmax)km n + W 1 

(4.30) m -1/2 

x max[/tm Aln] 
m'in{u+ (rO/1Ro)2m,jun-( O-/Ro-2n}L 

The desired inequality (4.20) is obtained from the fact 

(4.31) = 

which results from Pi = iu/e) and the assumption m = 0(n). This com- 
pletes the proof of Corollary 4.1. 0 

As a result of Corollary 4. 1, the following formula holds for w = 1/M: 

(4.32) cond = O M x max [(R +)0 (Ro )] } 

provided that the bounds (3.14) are satisfied. 
To end this section, we will make a few observations on how the shape of 

subdomains affects the stability of computations. If the solution domain is a 
rhomboid (Figure 2), the values of cond in Case b with a straight line rO are 
smaller than those in Case a with a circular arc F0 (based on (4.20) or (4.32)), 
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a b 
FIGURE 2. Partitions of a rhomboid 

a) A circular arc F0 
b) A straight line F0 

F~~~~~~~~~~~~~~ 

0 

FIGURE 3. Good partitions for boundary methods 

because in Case b, the maximum ratios R+/r+ and Ro /r7 are closer to 1. 
Also the divisions in Figure 3 should have good stability properties. These 
conclusions will be verified by numerical examples given in the next section. 

5. NUMERICAL EXPERIMENTS 

In this section, we will apply the boundary method to an interface problem 
and investigate the effect of different admissible functions and different divisions 
of the solution domain on the accuracy and stability of numerical solutions. 

Consider the problem 

(5.1) p+(-Au+u)=0 inQ+, 

(5.2) p (-Au+u) =0 in K2, 

(5.3) u+ = u p+u+ =p up on Fo, 
(5.4) u=1 onOQ, 

where Q* = Q+ U Q (see Figure 4), Q* is a square domain (-1 < x < 
1,-l <y< 1), Q isasmallersquaredomain (- <x < 1 , -- <y< 1), 

IF is the interface boundary of Q+ and Q-, and p+ and p- are different pos- 
itive constants. Because of the model's symmetry, it suffices to solve equations 
(5.1)-(5.4) only on Q, the eighth part of Q* as in Figure 5. 

We note that no numerical solution exists of such a complicated interface 
problem, while the infinite element approach of Han [8] and Thatcher [19, 20] 
is invalid for the equation -Au + u = 0. 
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y 

u=l 1id Singularity 

1* 0I.L =Interface Singularity 

/ 0 

B Uv=0 

FIGURE 4. An interface problem FIGURE 5. A fundamental region 
on the domain K2* Q of K2 

Since the intersection angle of the interface is e) = 7r/2, we will use the 
following admissible functions: 

(0) )Uu r 0 

I (1)~~~~~~~~~~~~~~~~~~~~~N 

where c areunknowncoefficients, I(r) are the Bessel functions for a purely 
imaginary argument, and (D. include both Kellogg eigenfunctions (Kellogg [9- 
1 1 ], also see Strang and Fix [ 1 8]) and additional eigenfunctions [12, 1 3] for a 
periodic Sturm-Liouville interface problem. 

In fact, the Kellogg functions are defined by 

(5.6) = ( cosj, 101 < (/2, 
aJ jCos, i (7t - 0), 101 > 0/2, 

where the constants oej and (rj satisfy 

Cost #jE/2 
( ) J ~~~~~~cos yj (7r - 0/2)' 

(5.8) p- tan # -0/2 + p+ tan ltj(7t - 03/2) = O. 

Take g = ar/2 as an example; it follows from equations (5.6)-(5.8) that (see 
, als s Strang and Fix [18 ] l 2n) 

(5.9) (j = 4j f a* , 

where the constant s* is defined by 

4 coli(i-lp/2)'/ 

(5.10) a ) 
7t 1 + 3p-lp+ 
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It is pointed out in [12, 13] that when 9 = r/2 the Kellogg functions (5.6)- 
(5.10) are not complete. The additional functions (DI (0) with 4u, = 4i and 
4i + 2 are provided as 

(5.1la) 04i(0) =cos4i6, i=0, 1 ..., 

and 

f cos(4i + 2)0, I0J < 0/2 = r/4, 

(5.llb) O41?2(0)=K E+L cos(4i+2)0, 101J> n/4, fori=0, 1 

Now both the Kellogg functions (5.6) and the additional functions (5.11) 
form a complete set of eigenfunctions of the Sturm-Liouville problem, which 
are used as admissible functions (5.5). 

Clearly, the admissible functions (5.5) satisfy equations (5.1)-(5.3) exactly. 
Because there exists a mild singularity A in Figure 5 (see [12, 15]), it is necessary 
to employ piecewise particular functions. In other words, we have to divide Q 
into two or more subdomains such that any one subdomain includes at most one 
singularity (see Figure 6 or 7). Besides, we are also interested in the artificial 
boundary F0 which is made up of circular arcs or straight lines (like in most 
applications). 

U=; U =0 u=1 U =O 

110 QO~~~~~~~~~~~~~~~~~~ 

Q.r 
0 0~~~~~~~~~ 

A 
A~~~BU'= B U 0 

V 

a b 

FIGURE 6. Partitions of Q c Q* into two subdomains Q0 and Ql 
a) A circular arc iTO 
b) A straight line 17O 

On the basis of asymptotic expansions near the mild singularity [12, 15], we 
will choose the admissible functions 

4mn-1 J(r) 
(0) 

i (1) g0 
i 

90' 
1=0 #i 

2 

NE 

(5.12) V = V = 1 + W1i+1(p)sin2(2i+ 1)0 
i=O 

+ Ed11 (1) sin2(2i+ 1)0 in Q1, 
i=O 2(2i+ 1) ( 2) 
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for the partitions in Figure 6, where Q = Qo U K2, and choose 

() 4m- J (r) v(O Y C c. (6)in0 

NE 

V = 1 + W2i+I(p)sin2(2i+ 1)q 
1=0 

''2(2i+ 1) (2) 

V) = cosh(g sin) + d bi2i() sin(2i+1) inQ2 
2(i=0)21 +1(2) 

V(3) = coshin 1i bi. sin(2a + 1~) in Q3, 

i=0 2 ( 1 I2 

for the partition in Figure 7, where Q = Q0 U Q1 U Q2 U Q3, and the polar 
coordinates, (r, 0), (p, /), (g, w) and (ij, Vg), as shown in Figures 6, 7. In 
(5.12) and (5.13), the constants It (2) etc. in the denominators are used for 
scale factors. 

u=1 u=0 
3 132 i \ 

0~~~~~~~~~~~~~~ 

uv=0 3v=0 1 0 

a b 

FIGURE 7. Partitions of Q C Q* into four subdomains Qo, Q1, Q2 andQ3 
a) A semicircle F0 
b) Piecewise straight lines T'O 

In (5.12) and (5.13), the known functions w2*1+1(p) are defined by 

00 

(5.14) W W = ( i + fji In p)p i 
i=O 

where j = 21+ 1, and aj and j, 1 are real coefficients, 

(5.15) a j,= 0+1 = 21+1 -0 for / 0, 1 , . 1, 
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TABLE 1 
Numerical results for partitions in Figure 6 

with w = 1/ max(4m, 2(2k + 1)) 

Partition m k N condo 

1 0 299 8.006 x I0-3 38.3 

2 1 299 9.002 x I0-5 219.7 

Partition 3 2 299 1.514 x 10 5 1602 
in 

- -6 
Figure 6a 4 3 999 1.205 x 10 6 24933 

5 4 999 2.299 x 10-7 428726 

6 5 999 3.468 x 10-8 7868170 

1 1 299 4.553 x 10-3 48 

2 1 299 5.872 x 10-5 214 

Partition 3 2 299 6.037 x 10-6 1031 
in - 7 

Figure 6b 4 3 999 1.867 x 10 7 4707 

5 4 999 3.126 x 10-8 32564 

6 5 999 3.388 x 10-9 291763 

and the coefficients aj i and f3J are defined by the following recursive for- 
mulas [12, 15]: 

1. When (i+2)>2j, 

ji 
i + 2 _(j 

(5.16) (i?2) 1 
a. =[a -2(i +2)flR .. CJ,i (i + 2) 2-_ (2j,2 (j, i-2 -2a+2ji 

2.When (i+2)<21, 

_____ a -2 fo >2 
(5.17) fl i= a aao2 ' for i > 24 

3. When i+2=2j, 

(5.18) a1 i = 0, fl10 = b1/4, ,B - for i > 2, 

where bj = 4/j7r. 
Since the admissible functions (5.12)-(5.13) satisfy equations (5.1)-(5.4) and 

the symmetric boundary conditions au/Ov = 0 on aQ in Figure 5, the bound- 
ary method (2.13) needs to approximate only on the artificial interface FO. 

In our calculation, p = 1 and p+ = 0.2; then a* from (5.10) has the 
value a* = 0.78365310406121. The error norms and condition numbers of 
the numerical solutions are summarized in Tables 1 and 2. All results were 
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TABLE 2 
Numerical results for partitions in Figure 7 

with w =1/max(4m, 2(2k + 1), 2n + 1, 41) 

Partition / m n k NE | IB cond 

0 1 2 0 299 5.854 x 10-3 70.5 

1 2 3 1 299 8.105 x 10-5 168.1 

Partition 2 3 5 2 299 8.281 x 10 6 319.4 
in-- _ _ 

Figure 7a 3 4 7 3 999 6.951 x I0 7 1587 

4 5 9 4 999 9.425 x 1O-8 8201 

5 6 11 5 999 1.730x 1O-8 43976 

0 1 2 0 299 3.179 x 10-3 48.1 

1 2 3 1 299 8.715x 10-5 81.2 

Partition 2 3 5 2 299 4.874 x 10 6 118 
in 3 4 7 3 999 3.184 x 10 7 156 

Figure 7b- 

4 5 9 4 999 2.345 x 1O-8 228 

5 6 11 5 999 2.164x 10-9 571 

6 7 13 6 3299 2.075 x 10-10 1443 

computed in double precision on an IBM 360 computer at the University of 
Toronto. The Bessel functions for a purely imaginary argument were evaluated 
by using a standard subroutine library. 

From the numerical results listed in Tables 1 and 2, we can find the following 
asymptotic relations: 

(5.19a) IIB = 0(0.68m'), cond = 0(1.79MI) for Figure 6a, 

(5.19b) ICIB = 0(0.64 '), cond = 0(1.55 ') for Figure 6b, 

(5.19c) 'eB = 0(0.81m2 , cond = Q(1.23M2 ) for Figure 7a, 

(5.19d) ICIB = 0(0.74 2), cond = 0(1.12 M2) for Figure 7b, 

where Ml and M2 are the total numbers of unknown coefficients, Ml = 4m + 
k+ 1 and M2 = 4m+k+n+1?+ 3. It is worth noting that the solution errors I1IB 
in (5.19), as well as ie "H by Corollary 3.1, show the exponential convergence 
rates with respect to the total number of unknowns. 

Traditional integration rules such as Simpson's rule can be used for comput- 
ing the integrals in (3.9) as long as m, k, n, I are not too large. We expect 
this to be the case in most practical applications. Otherwise, special treatments 
are needed for estimating the integration error in case of highly oscillatory in- 
tegrands. Although NE (i < NE) is large, since the size of the coefficient func- 
tions w*i+1(p) at sin(2i+ 1)0 is of the order 0(1/(2i+ I)3), we have obtained 
good accuracy using the Newton-Cotes formulas with appropriate subdomains. 



58 ZI-CAI LI AND RUDOLF MATHON 

TABLE 3 
Coefficients in (5.13) for the partitions in Figure 7b 

with I = 6, m = 7, n = 13, k =6, NE = 3299 and w = 1/28 

A. Coefficients ai and d1 

i a, di 
0 +.6062843226890 x 10? 0 -.1215834775893 x 100 
1 -.1613104434818 x 10-2 1 +.1933144810146 x 1O-2 
2 +1795608091823 x IO-3 2 -.1784437702781 x 10-3 

3 -.2122223809031 x 10-4 3 +.2396263820099 x 10-4 

4 +.3119724065311 x 10-5 4 -.3744000695104 x 10-5 

5 -.4978713964725 x 10-6 5 +.6298085376459 x 10-6 

6 +.6260235169312 x IO-7 6 -.8328685743963 x 10-7 

B. Coefficients b1 

i bi bi 
0 -.4954573232094 x I0 7 -.6376812990395 x 10-5 

1 +.3113760526508 x 10-1 8 -.5328917747106 x 10-5 

2 +.3729769816638 x 10-2 9 +.1038709724291 x 10-5 

3 -.3495905082665 x 10-3 10 +.8676086700602 x 1O-6 
4 -.2686360265942 x IO-3 11 -.1755774436774 x 1O-6 
5 +.4539675028774 x IO-4 12 -.1094832562485 x 10-6 

6 +.3495651965563 x IO-4 13 +.2276829890655 x 10-7 

C. Coefficients c, 

0 0 ++7006583869858 x lo, 14 14 -.247584087615 x 10-6 

1 Q* -.1147786373534 x 100 15 16-ck* +.2096278762216 x 10-6 

2 2 -.1289426764916 x 10-1 16 16 -.1639818111048 x 10-6 

3 4 - c* +.5778523669877 x 10-2 17 16+ck* +.8750969335584 x 10-7 

4 4 -.2974571685497 x 10-2 18 18 -.3299285102818 x 10-7 

5 4 + a* +.4847232200890 x 10-3 19 20-ck* +.2719051046239 x 10-7 

6 6 -.3979913627169 x 10-4 20 20 -.2200843353643 x 10-7 

7 8 - a* +.4066132127014 x 10-4 21 20 +c* +.1234412863930 x I0-7 

8 8 -.1101625715174 x 10-4 22 22 -.4196295750141 x 1O-8 
9 8 + a* +.9399214433512 x 10-5 23 24-ck* +.6048883773878 x 10-8 

10 10 -.4499904891205 x IO-5 24 24 -.1820811027684 x 1O-8 
11 12-s* +.2410784033101 x 10-5 25 24+ck* +.1910127167080x 1O-8 
12 12 -.2382249955680 x IO-5 26 26 -.6138215056792 x 10-9 

13 12 + a* +.9508207885880 x 1O-6 27 28 - c* +.1685056895614 x I0-9 
where a* = 0.7836531046121 

We note that the related integration does not involve the matrix B, which is 
used to calculate the expansion coefficients. 

First, let us compare the results in (5.19). The values of both e IB and cond 
for Figure 6b (or 7b) are smaller than those for Figure 6a (or 7a). This agrees 
with the conclusions in ?4 that using straight lines F0 is more advantageous. 
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Second, we note that the condition number behavior 

(5.20) cond= 0(1.12 2) 

for the subdomain of Figure 7b is very good. This demonstrates the fact that 
approximate solutions calculated by using boundary methods can have excellent 
stability if the domain decomposition is equitable and if reasonable admissible 
functions are chosen analytically. It is because of this excellent stability and 
extremely high accuracy that boundary methods are very promising for solving 
certain partial differential equations in complicated domains, especially in the 
presence of singularities. 

Third, the best results in our calculation, 

(5.21) JejB = 2 x 10 , cond= 1443, 
correspond to 56 unknown coefficients, which are listed in Table 3. It follows 
from (5.21) and Corollary 3.1 that 

(5.22) 11CIIH = 0?(0 ) 
Therefore, relative average errors of solutions and their generalized derivatives 
in Q, obtained by boundary methods, can achieve 0(10 9) since 11U11H = 

0(1) . This shows the extreme accuracy of our numerical solutions. On the other 
hand, the condition number is only 1443. Such a stability behavior can even 
cope with the stability problems arising in nonconforming combined methods 
[14]. 

2~~~~~~~~~~~~ 

0~~~~~~~~~~~~~~~~~~~F 

Q3 

a b 

FIGURE 8. The partitions of the whole solution domain Q*, 
corresponding to Figure 7 

a) Circles F0 
b) Piecewise straight lines F0 

In view of the above analysis and numerical experiments, we conclude that 
the best partition for our problem is that of Figure 7b (i.e., Figure 8b on the 
whole solution domain Q*). 

ACKNOWLEDGMENTS 

This work was supported by the Departments of Computer Science, Math- 
ematics and Applied Mathematics, University of Toronto, the Department of 



60 ZI-CAI LI AND RUDOLF MATHON 

Computer Science, Concordia University, Centre de recherche informatique de 
Montreal, Inc., and in part by the Natural Science and Engineering Research 
Council of Canada under Grant No. A865 1 and B94, by the Fonds pour la For- 
mation de Chercheurs et l'Aide a la Recherche of Quebec, and by the Ministere 
de l'Enseignement Superieur et de la Science (Action Structurante). We also 
would like to thank the referee for his valuable suggestions. 

BIBLIOGRAPHY 

1. M. Abramowitz and I. A. Stegun, Handbook of mathematicalfunctions with formulas, graphs 
and mathematical tables, Dover, New York, 1980. 

2. A. K. Aziz, M. R. Dorr and R. B. Kellogg, A new approximation method for the Helmholtz 
equation in an exterior domain, SIAM J. Numer. Anal. 19 (1982), 899-908. 

3. A. K. Aziz, R. B. Kellogg and A. B. Stephens, Least squares methods for elliptic systems, Math. 
Comp. 44 (1985), 53-70. 

4. F. E. Browder, Approximation by solutions of partial differential equations, Amer. J. Math. 84 
(1962), 134-160. 

5. E. W. Cheney, Introduction to approximation theory, McGraw-Hill, New York, 1966. 
6. S. C. Eisenstat, On the rate of convergence of the Bergman- Vekua method for the numerical 

solution of elliptic boundary value problems, SIAM J. Numer. Anal. 11 (1974), 654-680. 
7. I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, Academic Press, 

New York, 1980. 
8. H. Han, The numerical solution of interface problems in finite element methods, Numer. Math. 

39 (1982), 39-50. 
9. R. B. Kellogg, Singularities in interface problems, in Numerical Solution of Partial Differential 

Equations II (B. Hubbard, ed.), Academic Press, New York, 1971, pp. 351-400. 
10. , Higher order singularities for interface problems, in The Mathematical Foundations of 

the Finite Element Method with Application to Partial Differential Equations (A. K. Aziz, 
ed.). Academic Press, New York, London, 1972, pp. 589-602. 

11. , On the Poisson equations with intersecting interface, Applicable Anal. 4 (1975), 101-129. 
12. Z. C. Li, Numerical methods for elliptic boundary value problems with singularities, Part I: 

Boundary methods for solving elliptic problems with singularities; Part II: Nonconforming com- 
binations for solving elliptic problems with singularities, Ph.D. thesis, Department of Mathe- 
matics and Applied Mathematics, University of Toronto, May 1986. 

13. , A note on Kellogg's eigenfunctions of a periodic Sturm-Liouville system, Appl. Math. 
Letters 1 (1988), 123-126. 

14. , A nonconforming combination for elliptic problems with interfaces, J. Comput. Phys. 80 
(1989), 288-313. 

15. Z. C. Li and R. Mathon, Boundary approximation methods for solving elliptic problems on 
unbounded domains, J. Comput. Phys. (to appear). 

16. Z. C. Li, R. Mathon and P. Sermer, Boundary methods for solving elliptic problems with 
singularities and interfaces, SIAM J. Numer. Anal. 24 (1987), 487-498. 

17. S. L. Sobolev, Application offunctional analysis in mathematical physics, Transl. Math. Mono- 
graphs, vol. 7, Amer. Math. Soc., Providence, R.I., 1963. 

18. G. Strang and G. J. Fix, An analysis offinite element methods, Prentice-Hall, Englewood Cliffs, 
N.J., 1973. 

19. R. W. Thatcher, The use of infinite grid refinement at singularities in the solution of Laplace 's 
equation, Numer. Math. 25 (1976), 163-178. 

20. , On the finite element methodfor unbounded regions, SIAM J. Numer. Anal. 15 (1978), 
466-477. 



BOUNDARY METHODS FOR ELLIPTIC PROBLEMS WITH INTERFACES 61 

21. A. N. Tikhonov and A. A. Samarskii, Equations of mathematical physics, Macmillan, New 
York, 1973. 

CENTRE DE RECHERCHE INFORMATIQUE DE MONTREAL, INC., 1550 DE MAISONNEUVE BLVD., 
WEST, BUREAU 901, MONTREAL, QUEBEC H3G 1N2, CANADA 

DEPARTMENT OF COMPUTER SCIENCE, CONCORDIA UNIVERSITY, 1455 DE MAISONNEUVE BLVD., 
WEST, MONTREAL, QUEBEC H3G 1M8, CANADA. 

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF TORONTO, TORONTO, ONTARIO M5S 1 A4, 
CANADA 


	Cit r52_c52: 


