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A FINITE ELEMENT METHOD FOR TIME-DEPENDENT 
CONVECTION-DIFFUSION EQUATIONS 

GERARD R. RICHTER 

ABSTRACT. We present a finite element method for time-dependent convection- 
diffusion equations. The method is explicit and is applicable with piecewise 
polynomials of degree n > 2. In the limit of zero diffusion, it reduces to a 
recently analyzed finite element method for hyperbolic equations. Near optimal 
error estimates are derived. Numerical results are given. 

1. INTRODUCTION 

In this paper we describe and analyze a new finite element method for time- 
dependent convection-diffusion equations. The method employs space-time el- 
ements of arbitrarily high order and is "explicit", allowing the approximate 
solution to be computed one element at a time. It is tailored to the hyperbolic 
limit and is potentially well suited to convection-dominated problems. 

Our framework will be the model equation 

(1.1) =Us aUx +f(x, t), (x, t) E 

where Q is a rectangular domain in R2. The term uQ denotes the directional 
derivative a * Vu = aIuX + a2ut, where a is a unit vector with a2 > 0. We 
assume a and a are constant, and that appropriate Dirichlet data is prescribed 
on the boundary F of Q. 

The basis of our method is the hyperbolic limit of (1.1): 

(1.2) U = f in Q. 

For (1.2) we assume u is given on the inflow portion of F, 

in (Q) =_ {(x, t) E F I a * n < 0}, 

where n is the unit outer normal to Q. Given a triangulation of Q, one 
may develop a finite element approximation for (1.2) in an explicit manner, 
processing the triangles one at a time in an order consistent with domain of 
dependence requirements. That such an ordering always exists is shown in [4]. 
Our finite element approximation uh will be a continuous piecewise polynomial 
of degree < n. We start uh as a standard interpolant (e.g., piecewise equi- 
nodal) on Fin(Q)), and define it in individual triangles T by the conditions 

(1.3) ((Uh)a 5Vh)T = (fi Vh)T all vh E Pn-p(T)(T). 
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Here, ( ) T is the L 2(T) inner product, Pk(T) is the space of polynomials 
of degree < k over T, and p(T) is the number of inflow sides that T has. 
Assuming no triangle side is parallel to a, p(T) is unequivocally equal to either 
1 (a type I triangle) or 2 (a type II triangle). For a triangle T of either type, 
the dimension of the test space in (1.3) is equal to the number of remaining 
degrees of freedom for uh in T, given that it will already be known on the 
inflow side(s) of T when conditions (1.3) are imposed. We assume n > 2, for 
if n = 1 the inner product conditions (1.3) are vacuous for a type II triangle. 

The method (1.3) was proposed by Reed and Hill [6]. In [1], the approximate 
solution was shown to satisfy an error bound of the form 

(1.4) hUh-UhIL2(Q) < Chn 1/4IuII n+I(Q)1 

although the optimal O(hn+1) convergence rate is commonly observed com- 
putationally. Numerical evidence [1] also indicates that the method handles 
discontinuities well, with relatively little spurious propagation to other parts of 
the domain. These properties, together with the fact that it employs a continu- 
ous approximation subspace, make the method a potentially attractive candidate 
for extension to convection-dominated convection-diffusion problems. 

Returning to the convection-diffusion problem (1 .1), we retain the distinction 
between type I and type II triangles, based on the convection term. One way to 
accommodate the presence of diffusion would be to simply include an additional 
inner product of au(uh),X against Vh in (1.3). However, we have found that the 
following alternative yields better accuracy for convection-dominated problems: 

(1.5) ((uO)a - (uh)xxI vh)T 
+ /r [(uh)xi 

- (Uh)x Vh eI 
. po 

=(f, vh)T, all vh E Pn-p(T)(T). 

Here, F* (T) is the inflow boundary of T, exclusive of any sides lying on the 
boundary of Q, if T should have any. For a point P E F* (T), where the first 
derivative of uh is in general discontinuous, 

(U ah) - lim+ ( a x( 

The integral over IF* (T) is taken with respect to arclength, with e1 and n de- 
noting unit vectors in the x and outer normal directions (equivalently, 
e n = n1, the horizontal component of n ). The IF*(T) integral in (1.5) 
produces a more tractable boundary term when (1.5) is integrated by parts. An 
analogous boundary integral appears in the discontinuous Galerkin method for 
(1.2) [3]. 

The finite element method (1.5) is explicit. Accordingly, a restriction on the 
size of 

(1.6) q =k 

emerges as a stability condition, where h and k are the triangle projections 
onto the x and t axes. In a convection-dominated case with a < h, this need 
not be a severe restriction. Moreover, the "time step" k may be varied spatially, 
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allowing development of the approximation in a time-staggered manner rather 
than along lines t = constant. This added flexibility could be advantageous 
in a problem where the maximum stable time step exhibits a strong spatial 
dependence. 

Assuming the stability condition is met, we will establish error estimates of 
the form 

(1.7) Huh - U11L2(Q) < Cq-l\I/Fhfn lUjflln+,(Q) 

(1.8) 1l (Uh - U)X HL2(A) < Cq- Ihn11U11H n+ (2) 

where C signifies a generic constant, independent of u and the triangulation. 
For fixed a > 0, (1.7) and (1.8) give 0(hn) error bounds for both uh and 
(uh)X. For a family of problems in which a is proportional to h, the bound 

on uh improves to 0(hn+112) . This is the same as that obtained in [2, 5] for the 
streamline diffusion method with a < h. The latter method requires Q to be 
triangulated in strips ti < t < t1i+, and the approximation is implicit within the 
strips. We note that the bounds (1.7) and (1.8) become meaningless as a -) 0 
for a fixed triangulation, for in this limit, q -) 0 too. A refinement of the basic 
analysis will handle this limit correctly, producing in place of (1.7), (1.8) the 

corresponding hyperbolic estimates, O(h n+14), 0(hn-112), given in [1]. 
In the following four sections, we analyze the finite element scheme under 

the assumption that (1.1) and its discretization are spatially periodic. This 
precludes the possibility of physical inflow or outflow boundaries. In ?2 we state 
our assumptions on the triangulation and show that the approximate solution is 
well defined provided q is sufficiently small. In ?3 we obtain a global stability 
result and then use it in ?4 to obtain the error estimates (1.7) and (1.8). The 
hyperbolic limit a -) 0 is dealt with in ?5. In ?6 we remove the assumption of 
periodicity in x. The prescription (1.5) must then be altered for triangles with 
a side lying along the outflow boundary where "parabolic" boundary data for u 
is given. In the convection-dominated case a < 0(h), the resulting disturbance 
can be confined to an outflow boundary layer. Computational results are given 
in ?7. 

2. PRELIMINARIES 

Here we state our basic assumptions and prove existence and uniqueness of 
the approximate solution. 

Our analysis will apply to a family of problems (1.1) for which a2 is uni- 
formly positive and a > 0. In ??2-5, we assume (1.1) and its discretization 
are spatially periodic and take Q to consist of a single period, [0, X] x (0, T), 
say. This allows us to defer the issue of spatial boundary conditions to a later 
section, simplifying the exposition. Figure 7. la illustrates such a situation, with 
Uh evolving (explicitly) upward through alternate layers of type I and type II 
triangles. In addition to being periodic, we assume our triangulations have the 
following properties: 

Hi. The ratio of the maximum to minimum h over a triangulation is uni- 
formly bounded, and similarly for k. 
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H2. There exists a constant K1 > 0 such that 

(2.1) sin?>K k 

for each interior angle 0 of each triangle. 
H3. There exists a constant K2 > 0 such that for all triangle sides 

(2.2) le. nI < K2 . 

H4. I a. n I is uniformly bounded away from zero over all sides of all triangles. 
Assumptions HI and H2 imply that our triangulations are the result of com- 

pressing by factors h, k in directions x, t, respectively, a set of quasi-uniform 
triangulations with side length 0(1) and minimum angle bounded away from 
zero. H3 will be needed to permit upstream propagation of "parabolic" infor- 
mation, and H4 is a requirement of the hyperbolic analysis in [1]. Conditions 
H1-H3 are automatically satisfied by a family of uniform isosceles triangula- 
tions like that shown in Figure 7. la, provided k < O(h) . Note that, in general, 
H2 implies that k < O(h) as h -O 0. 

For a generic triangle T, we denote by 11 IIT and I Ir(T) the interior and 

boundary L2 norms. The following bounds are easily obtained: 

Lemma 2.1. For vh EPn(T), 

(2.3) (i) I hIF(T) < C em 

(2.4) (ii) II(Vh)xllT < Ch IIVhIIT 

(2.5) (iii) II(Vh)UIIT < Ck 'IlVhlIT 
(iv) If Vh = O at some point of T, 

(2.6) IIVh I|T < C (kI| (Vh)a lI T + h II (Vh)x lI T). 

We now establish existence and uniqueness of the approximate solution. For 
a triangle T with dimensions h and k, we define 

x t 

and transform the inner product relations (1.5) to a "reference" triangle T for 
which h = k = 1. The result can be written 

(2.7) ) -n (fih) ^ Vh)T + | ( hh v + h ii dl 

-fi(f' Vh)T+ Uf /rt ^ (Uh~X vhel .hdi, allvh E Pf_(t(T), 
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where 

Uh(X' 1) = Uh(X, t), fQx, i) =f(x, t), 
1 (24) 

(2.8) ?7= a2 

k 

ak2 

(2.9) ai= 2 

Note that (2.7) is to be supplemented by given values for fih on Fin(T) . 
Representing Uh in Lagrange form in terms of its values ft at the standard 

equispaced nodes for nth degree interpolation, then applying the inflow condi- 
tions and enforcing (2.7) for the Lagrange basis functions for PflP(t) (T), we 
obtain a linear algebraic system 

(2.10) a 

where 

(2.11) max Ibl < C (uinT)+ &Viuh)JJFI(tn) + /311fHl). 

To establish uniqueness (hence existence), we show that if fi_ 0 in T. (h= 0 
on ren(T), and (u'h)i = 0 on fr(T) (making b = 0 in (2.10)), then sa= 0 
also, assuming a is sufficiently small. 

Lemma 2.2. There exists a constant ag> 0 such thatffor a E [0, ], the only 
solution of 

(2.12) all = Eb 

Uh = 0 on J7I( T) 

is Uh-O in T . 

Proof. Since e nh = 0 on F (F), we may factor from fh a function 5 E 

PP(T)(T) for which 4 = 0 on F* (T). An illustration appears in Figure 2.1. For 

a type I triangle, e is the distance from the inflow side; for a type II triangle, 
4' is the product of coordinates 4 and ,) aligned with the two inflow sides. 
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Type I triangle Type II triangle 

FIGURE 2.1 

We thus have the representation 

Uh CWh 5 ' = 0 on rin(T) h e P (-)(T). 

We choose Vh in (2.12) to be tbh . Integrating twice by parts and using the fact 
that (0) > 0 in the interior of T, we obtain 

((Uh)<i 'dh)T ((4'dh)i w h)T 

(C ' (1d h<) 6)+ Wh a di 

= -( () tb1))T+ - ( *) 

where ,u is a positive constant. Using inverse inequalities an~d equivalence of 
norms in the reference triangle, 

A~~~~ A -&((~~h2 (()wh h~ir J .hdai M 

? ff 1l ( ;Wh ) x- r1l T l l + 8 1 ( 'zbh )xjF'o (T) WIAF(T) 

<:C&H|| tbh~t 1 T * ||Whf1l2T ? CI ItIh 2112 

' IHWhH - TC6HZlh} K 0. 

This implies apsh 0 (hence tUhs0) for sufficiently small a, e.g., for q E 

[0,Hj. O 

The parameters on which A in (2.10) depends are the reference triangle T, 
unit vector &, and & E [0, &0]. The set S of all such parameters is closed 
and bounded, and 11A1 Kl is continuous over it. Therefore, supn 11A K is 
attained at an element of S, implying the existence of a uniform bound on 
ThAu lthe Hence, from (2.11), 

TUhhH < C (tbh - fo + ( h)- E() ) 
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Transforming back to the actual triangle T, applying (2.8) and (2.9), and re- 
calling that k < 0(h), we obtain 

Lemma 2.3. For q sufficiently small, 

(2.13) IIUhIIT < C (vkWIUhIF (T) + qhV (u h)Xf I F T) +kIfI). 

3. STABILITY 

In this section we derive a global stability result for the finite element scheme, 
implicitly assuming q to be small enough so that uh is well defined. A key test 
function of the hyperbolic analysis [1] was (uh)T I, where -i 1 and z2 denote 
the unit tangents to the two outflow (inflow) sides to a type I (type II) triangle, 
taken counterclockwise, and (uh)T T is the corresponding mixed derivative. 
(See Figure 3.1.) Fortunately, this is also a good test function for the diffusion 
term ar(uh)x X. For if a is a positive constant, k = 0(h2) is required for 
boundedness of q. Thus by assumption H3, triangle sides must become more 
nearly horizontal as h -? 0, and this causes (uh), T to behave like (uh)xX. 
Another key test function which works well for both convection and diffusion 
terms is Pn-2uh h where Pn-2 is the L2 projection operator into Pn-2(T). 
Together, these test functions lead to control over uh and its derivatives. 

Ict 

I'3 

r2 p1 
p29r 

)~~~~~~~~~~ P 

r3 

Type I triangle Type II triangle 
FIGURE 3.1 

In what follows, all norms and inner products are taken over T unless oth- 
erwise signified, and f( - ) will denote an integral around the boundary F(T) . 
We denote by I(T) the triangles) lying along the upstream side of F* (T); if 
F* (T) = 0 we define I(T) = 0 also. 

We first bound the inflow boundary integral in (1.5) in terms of (uh)(, a 
quantity that can be controlled directly. 
Lemma 3.1. The integral over F*,( T) in (1.5) can be bounded as follows: 

(3.1) a / [(u1h){ - (uh,)] V1Ae1 n dz < Cq II(u1,)(JITUI(T) . I.Vh 
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Proof. We assume F* (T) $ 0, for otherwise the result is trivially true. Via 
the Schwarz inequality, (2.2), and (2.3), 

(3.2) f [(uh)x - (Uh)x] Vh e, * n dT <- Ca h I(Uh), (Uh)x IIin(T) |I h 1 

Let T denote the unit tangent along the boundary of T, measured clockwise, 

and n = ( ') the unit outer normal. The directional derivatives (Uh)a and 

(uh)Z along F* (T) are given by 

k (Uh) J _2 (Uh)x 

(Uh)T J -n2 n, (Uh)tJ 

whose inverse is 

(Uh)x _ 21 (n 2) (Uh)o) 

(Uh)t a *n Vn2 a1 I (Uh)T 

Since (uh) is continuous along F*i(T), 

(uh)x - (Uh)X = . n [h)a -(Uh)a] 

Thus by assumption H3, H4, and (2.3), 

OX h Ox~x IF(T) < CC I(Uh)) - (Uh)oF IF* (T) < C-h II(Uh)oIITUI(T) 

Insertion into (3.2) gives the desired result. o 

We now show: 

Lemma 3.2. There exists a constant 4 > 0 such that 

( U t * n dT + 4C1(Uh)XH2 -a2 j (uh)Xuh e1 n 

< 2(f, Uh) + C i ((Uh)coK1TUI(T) + IIfI), 

where F*(T) = F(T) - (F(T) n Iin A) . 
Proof. Taking vh = 2Pn_2Uh in (1.5) and integrating ((uh)xx, PIl2uh) = 

((uh)xx Uh) by parts over T, we obtain 

(3.4) fu n dT + 2a(uh)x -2a (uh)x h e ndT=2(fUh)+Y, 

where 

2((Uh)a - f, (I - Pn2)Uh) + 2a IF*(T) [(uh)- (uh)X] (I -Pf2)uh el n dT. 

The integral over F* (T) reflects the fact that e1 * n = 0 on Fin(Q). (A non- 

horizontal Fn(Q) satisfying (2.2) could be handled with a slightly modified 

form of (3.3).) Using (3.1) and the fact that q is bounded, we obtain 

IYI c (Cu(uh)(JITUI(T) + fH)* (kH(uh)j + hII(Uh)XH1) 
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where (2.6) has been applied to (I - P,-2)uh. Via the Schwarz and arithmetic- 
geometric mean inequalities: 

Hyj < Ck ( 2(Uh)JqUI(T) + 2fH) 

+ ll(Uh))x ll + C- (H(Uh)a}TUI(T) + lifil 

where E > 0. Replacing ha by kq, we may write 

HYI < ecoj(uh)Xll + C- ((1 + Oq)H(uh)a11TUI(T) + lif ) 

Fixing c at a value less than 2 and substituting in (3.4), we obtain (3.3) with 
=2-c. o 

The stability result (3.3) will not stand alone because of the presence of 
Il(uh)( HJU2(T) on the right-hand side. However, this is a quantity which we can 

control via the second test function 

* = -2(uh)TT2 

Vh ((aX n,)(a * n2) 

This test function approaches a scalar multiple of (uh)xx as q - 0, in a sense 
made precise by the following lemma. 

Lemma 3.3. The testfunction vh satisfies 

(3.5) v*- -2 
(3 5) a~~~ ~~h =-2 (Uh)xx + ' 

a2 

where 

(3.6) I',, < C- 1(Uh)aH Oa1 
Proof. If v is a twice differentiable function on T, 

OvT a 1 n, n', A VxA 
vT2 a2 a -n2 n2,, Vae 

Here, n1 is the unit outer normal to side F1 of T and ni , is its first (hori- 
zontal) component. We thus have 

= - [(a. n)Vx + n1, 1V] 
I a2 

Differentiating with respect to T2, we obtain 

r (2 = 1)(. 2) XX+ (a2n a + In) VOx + n 2In (t a22 2 

Hence, vh has the representation (3.5), where 

2 _ _ =____ _ 2 (uh)(+]. 

a2 2 2 
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Applying assumption H4 and (2.2), then (2.4) and (2.5): 

|V'H < c ( V(Uh)axil + () Uh)al) 

< k q 
< C- 2|(Uh)(J? < C a- 1(Uh)JI. E 

Lemma 3.4. As in Figure 3. 1, let F3 ( T) denote the inflow (outflow) side of a type 
I (type II) triangle, 01 and 02 the two interior angles of T adjoining F3(T), and 
ni, i = 1, 2, 3, the unit outer normals to the three sides of T. For vh = v*, the 
inner products in (1.5) then satisfy the following relations, with E an arbitrary 
positive constant: 

(3.7) (i) ((Uh)(t, Vh ) = ndT + lhlr() 

(3.8) (ii) a7 ((uh)XX, v h) =- 2a I(uh)xxH2 + rn 2 

where 0r < 0a2(uh)Xj 2 +C 9-(uh)a 2 

(3.9) (iii) a I|aT [(uh) - (uh)x ] vh el n ldT 

(3.10) (iv) af v( ) ? 2a 2 
+I(uh)Vjr 

+ Ca' (q2II(uh) + (I +1) IPfH2) 

Proof . (i) This identity is proved in [ 1, p. 264]. We have made the substitutions 
Tl* n3 = - sin 02 and T2 * n3 = sin 01 in transcribing the result into the form 

(3.7). 
(ii) From (3.5) and (3.6) we obtain (3.8) with 

| rl = aT | ( (uh ) , r 'gy)~ ? ' C q 11uh)VVH Vu~)Jx ( h 
C 

11 11 ( 1 

from which the desired result follows, upon application of the Schwarz inequal- 
ity. 

(iii) Using (3.1) and Lemma 3.3, 

a9 j [(uh)- (uh)x] vh eV * ndT 

< Cq I(Uh)(jlTUI(T) ( I(uh)V + 1(u h)2i) 

The bound (3.9) then follows from a suitable application of the arithmetic- 
geometric inequality to the product Vuh)alTUi(T) * the . 
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(iv) We have from Lemma 3.3: 

(f, Vh) 2 (Pn-2f (Uh)xx) + (Pn-2f I VI) 
a2 

Thus, 

(f, V ,) I < C 1I (uh)xx 1I || Pn-2f II + jj Cj || IIP -2f || 

? |II('h)xxII + -IP n-2fIK2 + a 11V112 + C 
- IIp2fI12. 

The result follows from (3.6). 0 

We can now state the result of taking vh =V* in (1.5). With c = 2( - 1), 
a2 

it is: 

(3.11) fU ht dTr+ sin1 2inuh)aO) +'Cllh)xx1l 
(3.11) a i=H , (a -ni) 3T 

< Ca (q 1(uh)JIrTUI(T) + IIPn-2fII) 

With some additional work, we can recast this as follows: 

Lemma 3.5. For sufficiently small q, uh satisfies 

(3.12) (h ) T 

< Ca (q2II(uh)(JIIl(T) + IIPn-2flI + qIfII2) 

where ,u is a positive constant. 
Proof. We first consider the case of a type I triangle T, for which (uh)(, can 
be used as a test function. Upon application of (3.2), this choice leads to 

II(uh)(JI < aII(Uh)rxjI + C (q 1(uh)(JITUI(T) + IfII) 

By the arithmetic-geometric mean inequality, 

(3.13) II(uh)JI 
< 

2a2II(uh2xI2 + C (q q2 1uh)jIUu2(T) + If 112) 

Hence, 

2 1 2 C 
(3.14) aII(uh)x)II > 2a1 |(uh) 11- -( q 1I(uh)JI11ruI(T) + If ) 

Also, from assumptions H3, H4 and (2.3), we have 

(3.15) s n6 |(uh) 3(T) < C -fl(uh)\l 

Now note that (3.11) remains valid upon replacement of aII(uh)xx I2 by 
4qC'aII(u )42 provided q < IC. Substitution of (3.14) and (3.15) into hen 4Cy 
(3.1 1) then yields (3.12). 
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We next assume that T is of type II and take vh = Pn-2(Uh)a in (1.5). This 
yields, in analogy with (3.13) and (3.14): 

(3.16) H|Pn-2(Uh)(j|| ? 2cT H(uh)xxII + C (q2H(uh)aITUI(T) + Pn-2fl ) 

and 

(3.17) oHUl(uh)xxII 2o 11P 2(Uh2 - ?1 
(q2a(Uh)a1TUI(T) + Pn-2f )1 

Note that H (a.= n1 ) is positive for a type II triangle; thus by (2.1), 

(3.18) ~sin O, sinO2 2 q2 (3. 18) 3 

'2 
( I.n)l(U )(lrI(T > A qk I (Uh)o IF 

HW1(an1)n(uh) 3(T) 3#<k~a(T)~ 
where A is a positive constant. Combining (3.17) and (3.18), we obtain 

sinO1 sin 02 (U 
2 + 2Eli 2 

H>an) h aIF3(T) O~hxxH1 

(3.19) > a Akl(Uh), F3(T) + P11f-2(Uh)a2 

- C(q2 O (Uh)j 11 TUI(T) + 1Pn-2fI2)] 

provided q < 1. The following inequality is easily proved for Vh e Pre (T): 

(3.20) V lVh IF3(T) + IIPn-2Vh ?I l>HVhII 

where vi is a positive constant. Thus Akl(uh)2 T + 2P2(uh)H in (3.19) 

coerces 11(uh)(JI2, and (3.11) again leads to the desired result for a type II 
triangle. n 

We are now ready to combine the results of Lemmas 3.2 and 3.5 into a 
stability result for a single triangle T of either type. Multiplying (3.12) by 

M2 Mh , where M is a constant to be specified below, and adding to (3.3), we 
obtain 

2 2~~~~~~ [h n+ q a * n ]OA+ s|(U)| 

(3.21) - 2a (uh)Xuh el n dT + (Mji - C) -k (Uh)a2 

< 2(f, uh) + C -(Mq + 1)2(uh)jl(T) 

+ C - (1 + M)HlfH2 + CM -P 2fH 
q q 

where the fact that = k has been used. Without loss of generality, we may ci q 

assume that C has the same value wherever it appears in (3.21). In (3.21), the 
ratio of the coefficient of 11(h) i2(T) to that of (uh)a2 is 

C(Mq + 1) 



TIME-DEPENDENT CONVECTION-DIFFUSION EQUATIONS 93 

which can be made smaller than any given c > 0 by taking q < I where 
M = C (1 + '2). With these stipulations we may write 

JIU 

[U a n + Mh (Uh) dT + I(Uh)X 2+ N-k1(Uh)u 
2 

(3.22) -2a j (uh) h el *ndT 

<?2(f S uh) +EN-(uh) oIII(T) + C (lfH2 + 1IIP 
qk q q H~f2 

where N is a positive constant. 
We can now establish a global stability result: 

Theorem 3.1. There exist positive constants M, q0, 4, q such that for q < q0, 

J(Q [2 Mh2 (Uh)T 12T(U)k 2!~(h~H J Uh 1la n l + q k d T + 45 ll(U ah)x i l + q- l1!( O )R1II 
[Uutfl+ q la~nl q 

(3.23) < 2 + Mh (Uh)T 
1 dT 

Jv (Q) [L ~n 

+ 2(f, uh)+C- (k f 2 1 2 + h)Q +C-lifil - +-ip-2fl I. q \\ q n 

Proof. For any triangle T, I(T) consists of at most two triangles, so that by 
taking c < I in (3.22), the term eN k 1(Uh)(2(T) can be absorbed by the cor- 
responding term on the left-hand side when (3.22) is summed over all triangles. 
Such summation also yields the term -2ar tt (Q)(uhiXuh e1 . n dT, which has 
been absorbed by the left-hand side of (3.23). For, by (2.2) and (2.3), we have 

2a t (uh)x h e1 n dT <Ca h u(uh)XHQ UhlF(Q) 

2Q +C 2 
< E lu hIrou (Q) + / qu II (Uh)xIIQ 

where c' > 0. Taking first c', then q, sufficiently small, we obtain (3.23) (for 
different M, nq0, than in (3.22)). o 

Note that in the above proof, we have not used the fact that e, * n = 0 on 
Fout(Q) . The result therefore holds not just over an entire triangulation of Q 
but also over any subset of triangles Q' for which F.n(Q') c rin(Q) (in which 
case uh can be developed in Q' independently of Q - Q) 

4. ERROR ESTIMATES 

We now use the local stability result (3.23) to obtain global error estimates. 
The exact solution to (1.1) satisfies the same inner product relations (1.5) as 
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Uh; thus for all Vh E Pn-p(T)(T), 

((Uh - U)a-(Uh - U)x Vh) 

(4.1) + or [(Uh - -u - (U )xl ]vhel * ndT = 0. 

Let ui denote a continuous piecewise nth degree interpolant for u over the 
triangulation, and eh Uh - u1. From (4.1) we obtain 

(4.2) ((eh) - a(eh)XX, vh)+aj [(eh< -(eh)j ] vhel nd = (r+s, vh), 

where 

r = (u - ui)a - U(u - U)xx 

and s E Pn P(T)(T) is defined by 

(S, vh) = -( j [(U1)i -(u1)7] Vh e, * n dT, all Vh E Pn-p(T)(T). 

As in [1], we define ui as follows: 

(i) uI = u at the vertices of T. 

(ii) On each side Fi of T, 

(u - u1) v dT = 0 for polynomials v(T) of degree < n - 2. 

(iii) fIT(U - U1) w dx dy = 0 for polynomials w E PI-3(T). 

The following error estimates hold for u1, where 11 11n+1 denotes the norm on 

Hn+1 (T): 

(4.3) Iju - u111 < Ch n+1 IIuIn+1 

(4.4) II (u - UI)a < Ck Ihn+l II uIrn+1 
(4.5) I(u - u)xxlI < Ch n IIuIIn+1, 
(4.6) U - UII(T) < Ck /2hn+IUI+, 

(4.7) I(U - uI)xlr(T) < Ck 112hhIuIIIn+1. 

Note also that 

(4.8) Pn-2_(U-UI)a = 
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since integration by parts yields 

((u - UI)a, Vh) = f(U - U) Vh a n dT - (u - u1, (Vh),), 

and the terms on the right vanish for vh E Pn-2(T) by conditions (ii) and (iii) 
above. 

Applying (3.23) to (4.2), we obtain 

Af2 22 kIIII 

I| ) [eh2 1a - n +M h (eh) )dT+ lal(e)2 + 1-el2Q 

(4.9) 2 ehl-+Mh l(eh)Tl d 
,k 2 1 S12 + 2(r + s, eh)Q + C llr + sll + -11Pn 2(r 

q ~~q - 

Lemma 4.1. For arbitrary e > 0, 

2(r + s, eh)Q +C llr + s + Pn 2(r + S)1?) 
/)2 2kk K 

(4.10) < eh (l ) + all(eh)X 
2 

+ 
k 

11(eh)a2) 

+ I (i + q) a h2nU 2 

Proof. From (4.4)-(4.8), 

(4.11) IT,-21l, < Cqk- 1h n+I 
lln1 

llrHl < Ck-'h hn+u1 l lQ 

llsl < Cqk-l hn+ln+1,0Q 

Thus, 

(4.12) llr + sH12 + -HP 2(r + S)112 < Ck h 2n 
uH2 1 Q 

Integration by parts yields 

(r+s, eh)= f j(u -Uh)e nhdT - (uv vee ndT 
+() - ut (Q) 

+ U(((U- Ul)x, (eh)x) - (U -UI I (eh)(,)K2, 
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and the terms on the right can be bounded as follows for arbitrary E > 0: 

(u (- uj)eha -n dT < 
I 
ele 2(Q + C Iu - u 2(Q 

< 1Ie le 2 
+2 CC h2n 2 

? h6e/F(Q)+6qh IHIUHn+lI 

a (U ) uj)e hjel e ndT < 1 lehir + C (k) I(u- u)2 

1 cl 2 +C qh2n U 12 < 2 E Ieo (Q) +-qah 1 n+ 

a((u - U)x, (eh)X) ? a (ceh)x2 + E II(u - UI)XII 
2 

< call(eh)X 
2 

+ C- 2n Ilull2 

(u - u1, (eh)9Q< c -(eh) 
2 

E - u2 
q k 

< ck 
2 

C(e 
2 C ch2n IuII2 ?cH h)allQ+-ah nuH,1+lQ 

When the above inequalities are added to Ck times (4.12), and c replaced by 
q 

2, the desired result follows. n 

We can now obtain global error estimates by taking c sufficiently small in 
(4.10) and combining with (4.9). Assuming an optimal-order interpolant has 
been chosen for uh on rFn(Q), we have (for different constants than in (4.9) ): 

Theorem 4.1. There exist positive constants M, q0, X, / such that for q < qO 
the error eh in the finite element scheme satisfies 

2 ~~~~~~2 21 2 

(4.1 3) IF0r (Q)[ aeh* nl l+ h (eh)] + all(eh)JxQ + q - II(eh)J Q 
(4.13) utq I* nl dI + q 

< C ( h2niIuii2 <C- IIn+1,Q' 

Writing eh = (Uh - u) - (us - u) and using the fact that us achieves optimal- 
order accuracy, we conclude: 

Corollary 4.1. There holds 

(4.14) u-uhIr (Q) < C q IIUh I n+ I 

(4.15) IR(u - uh)XHQ ? C- ul+lQ, 

(4.16) II(u - uh~H u~1~ (4.16) Il(U-U~~~~~h)aIIQ < C q IlUlln+I1,0 

Some additional work is needed to derive the estimate (1.7). As in [1], we 
may think of uh as evolving in "layers" of triangles. For a given triangulation 
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{T}, we define 

SO =0, 

Si{TIF(T)ci (K2-yS) } i=1,2. 

The approximate solution can be computed in parallel in the triangles of SI 
then S2, etc. After uh has been computed in Si, it has advanced to the 
"frontline" 

Fi["in Q) - Fi(Ui S) U out (U S ) 
j~~i ~j<i 

Using (2.13) with uh replaced by eh and f by r + s, then extending the 
result to a layer, we obtain 

(4.17) lieh1IS < C(ktehI12 +q 2h2 k(e )x1 +k 2ir+st1)2 

with the (eh) 
- 

term omitted for i = 1 . Via (2.3), I(eh) 12_ < Ck-'I 11(eh)X t12_ 

for i $ 1. Summation of (4.17) over all layers thus gives 

liee 112 < C (ki E Ie 12 + q 2 h 2 || (e )112 + k2 |jr + S|| ) 

< C (k Eeh 12 + h In+211na Q1 

using (4.12) and (4.15). 
Applying Theorem 4.1 to Q.- <, SJ rather than all of Q we infer 

2Ia 
2n 

2 
(4.18) ie _a__ldT _ <2 

Thus: 

Corollary 4.2. Assuming there are 0( 1) layers per triangulation, 

(4. 19) Iju -Uh llQ < Cva~q lh hn IUll n+ l n. 

We summarize some special cases of the error estimates (4.14)-(4.16) and 
(4.19). 1) For constant a > 0, independent of h , we obtain 0(hn) convergence 
for uh and (Uh), and 0(hn-1) for (Uh)( . Both derivative estimates are of 
optimal order on a mesh for which k = 0(h2). 2) For a proportional to h 
as h --+ 0, the stability condition allows k to be chosen in proportion to h. 
Here we obtain 0(hn+ 112) convergence for uh and 0(hn) (optimal) for (uh)x 
and (uh)1 . 3) If a < 0(h) as h -+ 0 (i.e., I -+ 0), we would still want to 
take k proportional to h for approximability, causing q -* 0 as h -) 0. The 
estimate for (uh),, remains of optimal order; however, the others deteriorate. 
A threshold is a = 0(h312), for which the estimates for uh and (uh)x have 
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declined to 0(h'n+14) and 0(hn- 1/2), the same as those previously obtained 
in [1] for the hyperbolic limit. In the next section, we show that these same 
estimates hold in the gap a E (0, 0(h312)). 

5. THE CONVECTION-DOMINATED CASE 

We now extend the preceding analysis to the hyperbolic limit of (1.1). In 
this section, we assume 0 < a < 0(h) as h -4 0 and consider a family of 
triangulations for which the aspect ratio k is uniformly bounded away from h 
zero and infinity. In this setting, assumption H2 is the standard minimum angle 
condition, H3 is vacuous. and q - 0 as h -4 0. 

In place of Lemma 3.2 we derive the following result, which remains well 
behaved regardless of the size of a. 

Lemma 5.1. For h (thus q ) sufficiently small and arbitrary e > 0, 

f uh a* n dT + 2a11(uh)X11 - 2a (uJ ) h e, 

(5.1) _ h"I(uh), 11 TUI(T) 

+ C lPn-2J 11 + EItIfh + hIuhII (T) + h l(uh)TIF,5(T)) 

Proof. Analogously to the proof of Lemma 3.2, we have 

(5.2) u a*.nd+ 2aII(uh)xII-2aj(uh)iuhel n do y, 

where 

IAy < 2 (Pn-2f uh) + CII(Uh)oIITUI(T) 11 ( - Pn-2)UhII 

_ 2 IlPn-2fIl IIUhII + ChII(uh)JIITUI(T) * ITUh|l 

* ch II(uh)(JITUI(T) + luhil + C (IIPn-2fI2 +I h lUh 112 

The desired result then follows by applying the bounds 

(5.3) luhIl ? C ( /i1uhIr (T) + qhII(u )aII(T) + qh 32l(u )TIf~() + hIfii) 

and 

(5.4) IIVuhII < C (x/hl(uh) rlP (T) + qll(uh)llI(T) + Ilfil) 

The first of these can be obtained by taking k = h in (2.13), then using the 
bound 

I(Uh)x IF- (T) < C (I(Uh)TIr*(T) + jhII(Uh)aIII(T)) 

which arises from assumption H4 and (2.3). The second can be shown by 
writing uh = uh(P) + Wh for fixed P E Fin(T) and observing that wh satisfies 
the same inner product relations (1.5) as uh. Applying (5.3) to Wh, then using 
the inequalities 

I Vuh II = IIVWhII< Ch |lWhlI 
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and 
W h IFn(T) 

Ch (Wh)T rn(T) 
= C( h )T I F(T) 

gives (5.4). E 

We next establish a convection-dominated counterpart of Lemma 3.5. 

Lemma 5.2. There exists a constant ,u > 0 such that for h sufficiently small, 

dT + 1h 
(5.5)n 

h 

< C 
a 

2(uh)(T) + hl(uh) (T) + h 2P-2f 2+ h 11fH2) 

Proof. In place of (3.10), we derive a bound which does not degrade as a - 0: 

(f, V*)l < CHI(uh),T T11 lip -2fII 
<Ch 1 2 2fn 

(5.6) < Ch(I |Vu-1hl + jPn-2fII 

< C (111uh 11 + h2 llpn_2 f 11) 

? C (hl(u2)lI=(T) + q 21(u )2IIl(T) + h I2Pn 2f112 + 21f112), 

where (5.4) was used in the last of the above inequalities. Equations (3.7)-(3.9) 
and (5.6) now yield the following analog of (3.1 1): 

, Z ( nh ) r n,+si3 1 ) I ( uh )o r3 ( T) + l ( uh )xx ll 
(5.7) (hd sinO 

? c 1 ($IUh) 2UT + hI(u) 2i ()+ h -2jI 2 2 + I1f112) < h (2 Oa 1 h 1 TUl( T) + h ) r I r, ( T) +h llpn-2f 1 +1lt 

To complete the proof for a type I triangle, we add -h times (3.13) to (5.7), 
apply (3.15), then fix e at a suitably small positive value. For a type II triangle, 
we add h times (3.16) to (5.7), then use (3.18) and (3.20). o 

Adding h3/2 times (5.5) to (5.1), we obtain 

f|ot(T) [Uhla * nj + h a - h dT + (jI - 6)V/hll(Uh)aol + 2all(uh)x 11 

(5.8) -~2ar (uh)X uhel ndT (5.8) r(T) 

< (1 + (1 + 1/E) O(h))j [ua nI + h3/2 (h)j dT 

+C((h +2)x/]II(uh)jIl(T) + h '1/2 I fI2 + h'/2(1 + 1/c)If1I2) 

This result generalizes directly to an entire layer of triangles. If we now take c 
suitably small and sum layer by layer, the 11(uh)(X "1(T) terms on the right can be 
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cancelled by the (uh),,II terms on the left provided h is sufficiently small. We 
thus obtain 

[2 h3/2 (uh)T d2+ux/I~ha! 2 
L Uha * n T+ n J I I (uh)aI|Q 2o1I(uh)XIIQ 

out ~ Iot~2 h0 - I I 
-2a f ( uh)u e1 

(5.9)( [uhIa nj + h 2 dz 

+ h"1/2IIP 2 + h 1/2IfI2) 

where ,u' is a positive constant. Moreover, 

lalr (Uh)ju e1 ndzT < Ca (IVUhI (I)uhIr(Q) 

( 5. 10) < co (lI(uh )r Irou (Q) + h II(uh). IIQ) I Uh Irout(Q) 

< C IUh 2r(Q) + c-( (uhTIr ,(Q) + h 'II(uh 2xYII(Q)) 

* 
uIlrouI (0) + ,i (h I(uh)TIr (Q) + hII(uh) II )' 

since a < O(h) . Fixing e at a suitably small value in (5.10), we see that for h 

sufficiently small, the term -2o Jr (Q)(uh) uh e1 *n dz in (5.9) can be absorbed 

by other terms on the left-hand side of (5.9). This leads to the stability result: 

Theorem 5.1. For h sufficiently small, 
2 3/2 222 

(5.11) JuhF r (9) + h 
I(uh) T 

|Er (Q) + vh II (uh)(.I Q + 
oII(uh)xIIK2 

< C (u 
2 + h3/2 I(u 2 + h II P2 2fIIQ + h "/2IlfIQ) 

Applying this result to eh = Uh - u1, and using the bounds in (4.11), we 
obtain 

2 hIrout(4) +h 2(eh)Ir (Q) + v7hII(e ) 1Il + oII(eh)XII 
(5.12 IeIE( ah32 I 2eh)T 21-(l?) (5.12) < C (1 + hi) h / l"2In+uI Q 

This leads to the following estimates: 

Corollary 5.1. Assuming a < O(h312) as h -O 0, 
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and, applying (5.4) to the bounds on (eh), and (eh)a furnished by (5.1 1), 

11(u - Uh)XIIQ ? Chn12IIUIIl+1,Q. 

These bounds were shown in [ 1 ] to apply when a = 0. We have thus analyzed 
the finite element method (1.5) over the complete range a > 0. A summary 
appears in Table 5.1. 

TABLE 5.1. Error estimates for a = hp 

| k |u - UhIIQ I j(u - U)xllQ I (U - Uh)IIQ 

P E [ 10 11 ] 0(h2-p ) 0(h n+pl2 ) 0(h n) 0(h n-l1+p 

p E [1, 1.5] 0(h) 0(hn+1-p'2) 0(h n+1-p) 0(hn) 
p e [ 1.5, oo) 0(h) 0(hn+'14) 0(hn- 1/2) 0(h ) 

6. BOUNDARY CONDITIONS 

We now consider the model problem (1.1) in a bounded domain Q = [0, 1 ] x 
[0, T] with u given at x = 0 and x = 1. We take a1I > 0, making the flow 
direction be left to right, and refer to triangles having a side along x = 0 
(x = 1 ) as inflow (outflow) triangles. We retain assumptions Hi-H4 on the 
triangulation, with the possible exception of H3 along x = 0 and x = 1 as 
noted below. 

Case A. a > 0(h) as h 0. Here the diffusion term is dominant, and we 
must take k < 0(h) as h - 0 for stability. Since H3 holds for triangle sides 
not lying along x = 0 or x = 1, all such sides must approach horizontal as 
h -4 0, implying that inflow triangles asymptotically are of type II and outflow 
triangles of type I. We assume this is invariably the case. 

Inflow triangles require special consideration because H3 cannot be satisfied 
along the x = 0 side as h -4 0. We can deal with this by relabelling the sides 
so that IF3 (T) is the x = 0 side, rather than the outflow side as depicted in 
Figure 3.1. This changes vh in such a way that Lemma 3.3 and all subsequent 
results remain valid. Minor modifications are required in the proof of Lemma 
3.5 to reflect the fact that the length of F3(T) is now 0(k) rather than 0(h), 
and 01, 02 '-+ as h -+ 0. 

For an outflow triangle T, the inner product conditions (1.5) must be mod- 
ified to accommodate the outflow boundary condition. We consider the most 
obvious alternative: fixing uh on the x = 1 outflow side and treating the tri- 
angle as though it were of type II, with Pn22(T) as the test space in (1.5). To 
deal with the fact that H3 will not be satisfied on x = 1 , we relabel the triangle 
sides so that F3(T) is the x = 1 side. Lemmas 3.3 and 3.4 then still hold, and 
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in place of Lemma 3.5, we have the following result: 

Lemma 6.1. In an outflow triangle T, uh satisfies 

a h dT +,q -II(Uh)(JI2 

(6.1) < C[h'|l(u,)xH2 + I(uh)Z2(T) 

+ a (q 1 (Ih)(jT) + 22 + q If 112)] 

for sufficiently small q, where ,u is a positive constant. 
Proof. Equations (3.1 1) and (3.14) are still valid, but (3.15) must be replaced 
by 

sinO01 sinO02 I (U)I2(T) Q 2 

| i [(2 h )a e[ 3 ( T)- C h ) a, 
I F ( T) H>(a n1)?C(U)p 

(6.2) < C (u 2( + 
2 

? C (h'II(uh)xI3 + I(uh)TIF3(T)) 

The last inequality above reflects the fact that F3 (T) has length k. Replacing 
aII(uh)XxII in (3.11) by qauj(uh)xx112 where q < 1 , then using (3.14) and (6.2), 
we obtain the desired result. 5 

We now multiply (6. 1) by Mh2 and add to (3.3), as before. On the left side of 
q 

(3.22), in place of BasiI (uh)X112, we now have a _ CMh )ll(Uh)X 2 . Since h 
- 0 

as h -4 0, this term can be bounded by 4'a II(uh)XHA2 for h sufficiently small, 
where 4' is a positive constant. The basic stability result of ?3 and subsequent 
error estimates remain in effect. 

Case B. a < 0(h) as h -+ 0. In this setting, the stability condition on q = 
h2 

permits us to take k proportional to h as h -+ 0. Thus assumption H3 is 
inoperative. (In conjunction with the condition on q, H3 ensures compatibility 
between the domain of dependence requirements of a parabolic problem (a > 
0(h) ) and the explicit (hyperbolic) ordering of the triangles.) Inflow triangles 
are thus covered directly by the analysis of ??3 and 4. 

If a is small compared to h , treating outflow triangles as in case A will result 
in oscillations. It is thus inappropriate for convection-dominated problems. Our 
strategy here will be to triangulate Q in such a way that the outflow boundary 
is removed from the domain of dependence of uh in the interior. This could be 
achieved, for example, via the mesh shown in Figure 6.1, where the vertical lines 
act as barriers to right-to-left propagation of information. This triangulation is 
compatible with the conditions of our analysis, and the previous error estimates 
will be valid over a reduced domain which excludes those triangles that impinge 
on x = 1 . The effect of the boundary condition at x = 1 will thus be confined 
to an outflow layer, where a special technique could be employed. 

We note that the decay rate which separates cases A and B above also acts 
as a threshold for the streamline diffusion method [2, 5], where for a < h 
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Ctr 

X=O x = 1 

FIGURE 6.1 

the Galerkin test functions are augmented by streamline derivatives to promote 
stability. 

7. COMPUTATIONAL RESULTS 

We present numerical results for the quadratic ( n = 2 ) version of the finite 
element method, as applied to two test problems. The first problem, 

U( =ouXX, xc [0, 27r], t c (0, 1), 

(7.1) u(x, 0) =sinx, x c[0, 27f], 
periodic boundary conditions, 

has solution 

u(x, t) = sin (x - t) exp (- 

We take a to make an angle of 60 degrees with the horizontal and use a uni- 
form isosceles triangulation of the domain, as depicted in Figure 7.1 a. Along 
lines t = constant, consecutive grid points for piecewise quadratic approxima- 
tion are separated by Ax = h/2. We take the "Courant number" (I2x to be 
less than 1 , so that uh is propagated upward through alternate layers of type I 
and type II triangles. 

0 27r 0 1 

FIGURE 7. la FIGURE 7. lb 
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The results in Table 7.1 correspond to a = 1 ak .4. The quantities 
'(Ax)' 

shown are 

max [u(xf ti) - Uh(X, ti)]2dx, 

taken over horizontal grid lines t = ti, and the analogous error in (uh)x. The 
number of grid points along such lines is N = ax. Ratios of consecutive 
errors in both uh and (uh )x have a limiting value of 4, as predicted by our 
analysis. For this problem we experimentally observed a stability condition of 

ak < -2 = .433, the same as would occur for a finite difference discretization 
(Ax)' - 2- 

of (1.1) using a forward difference in time and centered differences in space. 

TABLE 7.1 

N error in uh ratio error in (uh)x ratio 

8 .928(-1) - .160(-1) - 
16 .194(-1) 4.79 .509(-1) 3.14 
32 .427(-2) 4.54 .130(-1) 3.90 
64 .992(-3) 4.30 .276(-2) 4.71 

128 .244(-3) 4.06 .652(-3) 4.24 
256 .608(-4) 4.02 .160(-3) 4.07 

Table 7.2 contains results for a convection-dominated case of (7.1) in which 
a = Ax and ak - .3 (yielding Courant number .17). The ratios indicate 

(AX), 

that the optimal rate of convergence for quadratics, O(h 3), is occurring, vs. a 
theoretical prediction of O(h 5). We speculate that this improved rate is due to 
damping of the error as the approximate solution develops, as has been shown 
for the discontinuous Galerkin method for (1.2) [7]. 

TABLE 7.2 

N error in uh ratio 

8 .700(-1) - 
16 .139(-1) 5.03 
32 .222(-2) 6.27 
64 .296(-3) 7.50 

128 .383(-4) 7.74 
256 .486(-5) 7.87 
512 .613(-6) 7.93 

Table 7.3 provides justification for including the integral over Fn(T) in 
(1.5). The results shown there are for the same conditions as in Table 7.2, 
except that the inflow integral was omitted in generating Uh. The order of 
accuracy degrades to O(h2). 
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TABLE 7.3 

N error in uh ratio 

8 .475(-1) - 
16 .159(-1) 2.98 
32 .487(-2) 3.28 
64 .125(-3) 3.90 

128 .318(-3) 3.93 
256 .802(-4) 3.96 
512 .201(-4) 3.98 

The second test problem for which we give numerical results is 

t = auxx I 0 <x < 1, t> 0, 
(7.2) u(x, 0) =0, 

u(0, t) =0, u(1, t) = 1, t > 0. 

The steady state solution, 

exp (-L(1 -x)) -exp(I) 
U (X , 00)=- (a) 

has a boundary layer at x = 1 which becomes sharper as a - 0. Using the 
triangulation shown in Figure 7.1b, with boundary conditions provided for as 
in Case A of ?6, we computed the numerical steady state solution and its L2 
error. The results shown in Table 7.4 correspond to a a .60 degree angle, 
as measured from the horizontal, a = .1, and 4k = .39. These results are 

Ax2 

roughly consistent with an O(h 2) rate of convergence. 

TABLE 7.4 

N error in uh(x, oo) ratio 

8 .140(-1) - 

16 .262(-2) 5.34 
32 .651(-3) 4.02 
64 .171(-3) 3.80 

128 .444(-4) 3.85 

Figure 7.3 compares grid values of uh(x, oo) and u(x, oo) for a = 0 4 

N = 64. The time step was chosen to yield Courant number .95 (making ' = 

.0105). The main interest here is the minimal extent to which the boundary 
oscillation propagates back into the flow domain. However, if a is taken still 
smaller while keeping h fixed, the oscillations become more severe, eventually 
causing uh not to reach a steady state. We can see that this must happen by 
taking vh = 1 in (1.5) (this is a valid test function for outflow triangles under 
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Uh(X, oo): .000 .000 .000 .001 -.773 1.000 
u(xox ): .000 .000 .000 .000 .000 1.000 

I I 
x=0 x= 1 

FIGURE 7.3 

the prescription of case A of ?6) and summing over all triangles. For our test 
problem, with a = 0, this yields 

1U(x, t)dx 1- t - -oo as t- oo. 
a2 

A remedy would be to use the triangulation of Figure 6.1. This would isolate 
the outflow boundary from the interior and yield uh = 0 as the steady state 
solution up to the next to last vertical line. The boundary layer could then be 
dealt with separately. 
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