
MATHEMATICS OF COMPUTATION
VOLUME 54, NUMBER 189
JANUARY 1990, PAGES 231-243

EVALUATION OF MULTIVARIATE POLYNOMIALS
AND THEIR DERIVATIVES

J. CARNICER AND M. GASCA

ABSTRACT. An extension of Horner's algorithm to the evaluation of m-variate
polynomials and their derivatives is obtained. The schemes of computation are
represented by trees because this type of graph describes exactly in which order
the computations must be done. Some examples of algorithms for one and two
variables are given.

1. INTRODUCTION

It is well known that Horner's algorithm for evaluation of univariate poly-
nomials and their derivatives is based upon the nested reformulation of the
polynomial. Our aim is to extend this idea to multivariate polynomials.

Let K[X] be the ring of m-variate polynomials on a field K, and P be the
set of polynomials of exact total degree 1.

Consider p E K[X], written in the form
n

(1.1) p = a+ fipl
i=1

where n E No = N U {O}, a E K, f, cE P, and pi C K[X] i = 1,. .., n As
usual, empty sums are 0.

Obviously this representation is not unique. We will restrict our attention to
the most interesting case where p1 (i = 1, 2, ... , n) are of lower degree than
p. Observe that this need not always be true because, for example, one could
write

-2x = 1 + x * (2x2 + x) + (-2x - 1) . (x + 1).
For any linear form L on K[X] one has

n

(1.2) L(p) = aL(l) + L(fip,),
'= I

and sometimes L(fipl) can be easily computed from L(fl) and L(pl). In this
case it is possible to construct an algorithm to compute L(p) recursively. That
happens, for example, when L is

1.3 ox): pr) U G
a i\._ on

Received April 26, 1988; revised January 6, 1989.
1980 Mathemnatcs Subject Classification (1985 Revision). Primary 65D15, 68R10, 05C05.
Kelp wffords and phrases. Evaluation, multivariate polynomials, derivatives.
Both authors were partially supported by C.I.C.Y.T.

(X 1990 American Mathematical Society
0025-5718/90 $1.00 + $.25 per page

231

232 J. CARNICER AND M. GASCA

since L(fipi) = L(fi) .L(pi). As we shall see, Leibniz's rule for derivatives leads
to a similar situation when L is the evaluation of a derivative.

2. MULTIVARIATE POLYNOMIALS AND TREES

Since the form (1.1) of writing polynomials can be graphically described by
trees, we recall some related definitions (see [1, 4]).

Definition 2.1. Let I be a nonempty finite set and a a binary relation in I.
The ordered pair (I, a) is called a directed (labelled) graph, and the elements
of I are called labels.

Definition 2.2. Two directed (labelled) graphs (I, a) and (I', a') are isomor-
phic if there is a bijection q: I -- I' such that

(2.1) ((x), ?(y)) C a' X (x, y) E a.

We consider two isomorphic directed graphs as identical.

A directed graph is said to be connected when it cannot be obtained as the
union of two disjoint graphs.

Definition 2.3. An oriented tree is a connected directed graph with a label r E I,
which is called the root of the tree, such that

(1) for each y E I \ {r}, there exists a unique x e I with (y, x) E a (x
is called the successor to y, and y a predecessor of x),

(2) there is no x c I such that (r, x) c a.
The elements of I which have no predecessor are called initial elements.

Remark 2.4. In the following, we will say only the words "graph" and "tree"
instead of "directed graph" and "oriented tree".

As a consequence, an ordering is established in I, saying that x -< y if
and only if there exist (unique) za, z2, ... , z1 such that (x, z1), (zoo Z2), ...

(ziI y) belong to a. Roughly speaking, y lies on the unique "path" from x
to the root.

k Let us consider now the set of all multi-indices Uk>o N . We write 0 for the

empty multi-index 0 = ();then one has N? = {0} and Nk = (il. . ij C
k N, j = 1,I...,k} for all k > 1. If i E N , we say that the length of i is

/(i)=k, and thus l(0)=0.

Definition 2.5. Let i = (il I2' ... i/(,)), i = 'l ' i2' .. JIl(j)) cUk> N be
multi-indices. We define the juxtaposition of i and j by

(2.2) ij I (i2, ... I z(), Il 1 i2? * ' .Il()) ec U N
k>o

Remark 2.6. In particular, we have for the empty multi-index 0,

iO=Oi=i Vi.

EVALUATION OF MULTIVARIATE POLYNOMIALS 233

Given any tree, let us take now as the set of its labels a finite set of multi-
indices

(2.3) I C U Nk
k>O

of the following form. The root must be 0, and every label is taken so that if
i = (il , '2 ... , il)) is a label with ni predecessors, these are the labels i1 =

(il i i21 ... X 'l(i) I1), i2 = (ij X i2 *-.. il(,), 2), *--., ini = (ill i2, *X ilij) ni).
In the case of the root 0, the predecessors are 1 = (1) , 2 = (2), ... , no = (no) .

An example of a tree and its labelling is shown in Figure 2.1, where we draw
the root at the bottom.

i (2,1,1)

(1,1) * (1,2) * (2,1) (2,2)

(1)
*

(2)
*

(3)

0

FIGURE 2.1

Given a (labelled) tree (I, a) and two mappings

I -K,
(2.4) i-

aii

a -

(2.5) ai j)+ @ 5,

we associate to each label i a polynomial p,,

n,

(2.6) Pi ai
h= 1

where n1 is the cardinality of the set of predecessors of i. That is, pi = ai
if i is an initial label and pi = a, + Eh=.l fih Pih otherwise. In particular,
p0 - a_ + Z 1 fh *h for the root of the tree.

234 J. CARNICER AND M. GASCA

Since we have defined an ordering in I, formula (2.6) gives a recursive way
to get the polynomial

(2.7) PO = EaI fif Iil 12 * **'i2-..il(i)

iEI

where, as usual, the empty product is 1.
Figure 2.2 shows the tree of Figure 2.1 equipped with the two mappings of

formulae (2.4) and (2.5).

.a2,

f2 a1

alla a12 . a21 / a22

f 12 f2i
fli f/22

a a2 a3

ao

FIGURE 2.2

In this particular case, formula (2.6) gives

P211 = a211'

PI1 =all, P12 = a12,

P21 = a2l + f2l IP21,1 P22 = a22 ,

PI = a, + il A I + fi2P12, P2 = a2 + f2pP21 + f22P22, p3 =a3,

po = ao + f1P1 + f2P2 + f3P3

3. EVALUATION OF A POLYNOMIAL

Let us consider the problem of evaluating at u E K"' the polynomial po of
(2.7) by using successively formulae of type (2.6). Since we have

no

(3.1) p0(u) = ao + Zfh(u) Ph(U)
h= 1

and fh(u) is easily computed, evaluation of po is reduced to the computation
of each ph(U), h = , .. ., no . And in order to compute every Ph I we need to
know each Phk(U), k = 1, ..., nh, and so on:

n,

(3 .2) p,(u) a, + y fh (U) *Plh (U) iEI.

h=l

EVALUATION OF MULTIVARIATE POLYNOMIALS 235

This process finishes in a finite number of steps, since we always reach in the
end polynomials pi which are associated with initial labels and are explicitly
given by

(3.3) pi(u) = ai.

Formulae (3.1), (3.2), (3.3) really constitute an evaluation algorithm.
Now we must pay attention to a problem of practical implementation. What

remains to be solved is the question of the order in which the computations are
to be done. The most general answer is: every order of the computational steps
is acceptable if the following condition is satisfied:

(3.4) i -< j => pi is evaluated before pj.

In particular, the polynomial po associated with the root is always the last one
to be evaluated.

Let /max be

(3.5) /max =maxl(i).
iEI

We show now an algorithm to evaluate po(u) in which the order of the
computations is made by a criterion on the lengths of the labels.

Algorithm 3.1.
begin

for I = Imax to O step -l
for all i E {i E I1(i) = I}

if i is an initial node
p,(u) = a,

else
p, (u) = a, + Zh- I fh (U) Pih (U)

endif
next i

next I
end.

A second criterion of ordering for the same computations consists in making
reference to the greatest "length" of a path to a label from an initial label.
Roughly speaking, we evaluate first every polynomial associated with an initial
label, then polynomials associated with labels next to initial labels, etc., until
the root is reached. More precisely, we define the set of labels

(3.6) I, := {i E I max /(h) =I
ihEI J

for 1 = 0, ..., /maxn In particular, one has IO = {i E IIi is an initial label} and
it = {0}, i.e., the root.

max

Algorithm 3.2.
begin

for I = 0 to /max
for all i E I

if I = 0

236 J. CARNICER AND M. GASCA

pi(u) = a1
else

p1(U) = al + Z =:1 fih(U) Pih(U)
end if

next i
next /

end.

In the example of Figures 2.1 and 2.2 one has Iax = 3 and

Io= {(1, 1), (1, 2), (2, 1, 1), (2, 2), (3)},

II = {(2, 1), (1)},

I2 = {(2)},
I3 = {O}.

Other similar criteria of ordering can be used, as we shall see in the examples
of ?5.

4. EVALUATION OF THE DERIVATIVES OF A POLYNOMIAL

In this section we extend the ideas of ?3 to evaluate any derivative of the
polynomial p0 at a point u E Km. We get an algorithm which includes the
evaluation of p0 as a particular case.

Let p~ - (P(J), ...W, Pm) EK, j= 1, 2,..., n, be n vectors not neces-
sarily linearly independent. Denote by

(4.1) =~~~O () Op (J))~ (i Op (J)
(41) Dip X Pi O+3X P2 + %X Pm X1 2 M

the derivative of p in the direction POJ), and by D p(u) the value of Dip at
u E Km

Given any multi-index t = (t I, t2, ..., tn) E Nn, we write

(4.2) |t| = ti + t2 + + tn
(4.3) Dt = D'ID2... D'n 1 2 n'
and

(4.4) EE t D' = t DIID2 ... Dn
12 n 1 2 n~

In the following we shall consider two kinds of multi-indices: t E Nn for the
upper index of differential operators, and i E I C Uk>o Nk for the labels of a
tree. While the ordering of labels i is prescribed by the structure of the tree (see
?2), the upper indices t are ordered in the usual way: for t = (tI, t2, ...,tn)

S = (SI n 52 ... Sn) E N~n
(4.5) t < S -tj< Si, j= l.,n.

Let us apply Leibniz's rule

(4.6) E'(gq)(u) = HE' Sg(u) *Esq(u) Vg, q E K[X], Vu E Km, t EN
Sit

EVALUATION OF MULTIVARIATE POLYNOMIALS 237

to formula (2.6). Since fih are polynomials of degree 1, we get for any t with
Itj > 1 ,

n, n n,

(4.7) E pi(u) = f (EDjJh Et JPih(U)) +Etih(u) .Epih(u),
h=1 jj=1 h=

where ej is the jth canonical vector (0, ...,0, 1, 0, ..., 0) and Et -e is

taken as the zero operator if t = 0. Observe that the constants Djfih can be
easily computed. In the particular case of i being an initial label, one obtains
EtPi(u) = 0.

Formula (4.7) means that Etp, (u) can be computed in terms of lower-order
derivatives (Et ejpih (u)) and derivatives of the same order (Etpih (u)) applied
to polynomials whose labels are the predecessors of i.

In other words, if we denote
n, n

(4.8) = f (j L* EtJpei(u))

(in particular, Etpl(u) =bt = 0 for initial labels), formula (4.7) reads
n,

(4.9) E p1(u) = b + S f*(u)* EtPi*(u),
h= 1

which has the same structure as (3.2).
This suggests an algorithm for evaluating derivatives. In order to compute

Etpi(u), we need the values of

ESp1(U) Vj_<i, Vs<t.

Hence, similarly to (3.4), the computations can be done in any order which
satisfies the following condition:

(4.10) s < t, i -< j => Espi is evaluated before Etp

Observe that by computing p0(u) by Algorithm 3.1 or 3.2 we obtain as in-
termediate results p, (u), all that is needed to compute E'po(u) with ItI = 1 .
In general, having computed Et eJpo(u), j = 1, ... , n, we have obtained as
intermediate results Et eJp (U) ,which are needed to compute E'po(u) .

As was remarked after (4.8), E'p,(u) = bt = 0 for all initial labels when
Itl > 1 . In general, it is easily seen that

(4.11) E'p,(u) = b =0 ViEIou ..u I111.

Since they are the most typical examples, let us see what happens for

(4.12) E E ?k.0o) 1 Dk
k! J

and for

(4.13) E 0) -D DA.

238 J. CARNICER AND M. GASCA

In the first case, for any i,
n,

b (o,...0, ok,0o,...' 0) -d E (0 k-iE , O- .
I

, O...., 0)
j-f~~~h ~Pih (U),

h=1 i

(4.14) k (1,1, O. ... 0() = 0,k,0.0)

n,

+ Zfih(U) E . 0ih0, k,* 0,.. 0) ' 'U)

h~~~~~~l=
(4. 1 5) + E (D~~~~tih * E pih ~ Pih)u)

h~~~h=

Then, after computing Eae.0,k- 0.0 pi(u) for all i E I, we can compute
each of the E(O -k.0) aps(u) using, for example, the ordering in Algorithm
3.1 or 3.2 for the labelsnd .

-,
0?

k O)
for all(u) is the last value computed.

For t I (1, 1, 0, ? , 0) one has

ni
.0) Z=D E~ I w r e A it.PhM(U))

h= 1

nb
(4.15) alZ(D21h E s that '0 <'. 0

P =

h= i

ni

for _ allZfEi1E' .0

ifh (U) Ph (UY -
h= 1

In this case we must compute first

po(u) = E)'0
(0)

Po (U),

with pi-(u) = . 0O'--Opj(u) as intermediate results. This allows us to compute
E("0,0"'Op0(u) as well as E(0' I ''.' p0) o(U). In this process we get

.0'OO'--Opj(u) and E(0' 1,0.0'Opj(u) for all i, and this allows us to compute
finally E(1'1'O''0.0pO(u).

We show now an algorithm to evaluate E'pO (u) that also includes the case
t = 0 , which reduces to Algorithm 3.2.

Algorithm 4.1.
begin

for k = 0 to Itl
for all s such that s < t, Isl = k

for I1= k to /max
for all i E I

if k 0

else

edif
if / = k

EVALUATION OF MULTIVARIATE POLYNOMIALS 239

Espi(u) = bs
else

Espi(u) =bs + En, flh(u) Espih(u)
end if

next i
next I

next s
next k

end.

We observe that in the step k only the results obtained in the step k - 1
must be kept in memory.

Remark 4.2. Given a vector basis p(j), j = 1, 2, ..., m, of the vector space
K we can write any derivative in terms of Dj, j = 1, 2, ..., m. However,
derivatives can be computed directly in Algorithm 4.1 for any set of vectors

fp(Aj l= 1, 2,. nj.

5. SOME APPLICATIONS: ALGORITHMS FOR POLYNOMIALS

OF ONE AND TWO VARIABLES

We now present some examples of algorithms for the evaluation of polyno-
mials and their derivatives. The notation introduced in ?2 has been useful to
represent general polynomials. But it can be simplified in many particular cases.
This will be shown in each example. For the order of the computational steps,
condition (4.10) must be observed, but not necessarily the order of the steps in
Algorithm 4.1.

(a) Univariate polynomials. A univariate polynomial, written in the form
n

(5.1) po(X) =E aifo(x) i (x) ...fi- (x)
1=0

(with Ji polynomials of degree one), can be represented as in Figure 5.1.
Algorithm 4.1 with these new notations gives a simple extension of Horner's

algorithm to evaluate pot)(E) = Dtpo(,), t < n:

Algorithm 5.1
begin

for k = 0 to t
for i = n -k to 0 step -1

if k = 0
a(?) a

else
a(k) D (k 1)

end if
if i=n-k

n-)= an-k
else

()(E)= a.k) + fjd) *P.1(d)

240 J. CARNICER AND M. GASCA

end if
next i

next k
end.

* an

fn-

.l an-1

. a2

f,

a,
fo

* aO

FIGURE 5.1

The most interesting case is when 4 = x - xi, that is
n

(5.2) PO= Eaj(x -xO)(x -xI) (x-x1-1);
,=0

in this case, one has a(k) = p(k- 1) () (k > 0) and Algorithm 5.1 can be rewritten
as

Algorithm 5.2.
begin

Pn ()-an

for i = n - 1 to O step -1

p(?) (<= a + (< - x,) *P (0)
next i
for k = 1 to t

p(A) = p(k- 1)

for i = n - k - 1 to 0 step -1

l (k)(~ Pk+l () + 4X, .p (k)l 4

next i
next k

end.

EVALUATION OF MULTIVARIATE POLYNOMIALS 241

a rmr

armr - 1

armrll a
*arl mr

7//

* r / ar lmrvr 1 0am0 s

Pr0 /1m1-1 (POmO-1

aro ar- 1 alml- a0

r o a r-0o~~~~~~
\a lo / a

02

I 901I
a

I 0
a01

(Po\ (Poo

a00

FIGURE 5.2

(0,0) 0 1 0,2)

(1 ,0) (1) (1 ,2)

(2,0) (2,1) (2,2)

(3,0) (3,1) - (3,2)

FIGURE 5.3

In Algorithm 5.2, separate steps are made for evaluating the function and for
evaluating derivatives, and the values p~k) () are directly computed without

using the a(k)

In particular, x, = 0, i = 0, ... , n - , gives the classical Horner's algorithm.

b) A bivariate example. Consider a bivariate polynomial written in the form

r M1I

(5.3) p00(x y) = El aO(P0X y) ..(I-, (X, Y)(Pio(x, Y) ...qly-1(X, Y),
,=0 J=O

where (O, ?,J are polynomials of degree 1. This can be represented by a tree
as in Figure 5.2.

242 J. CARNICER AND M. GASCA

In order to evaluate

(5.4) p(o)(q 77) = E Poo
(1) = t! S!DID2POO 7) t, s E No

(where D1, D2 are directional derivatives), we first compute all E(v' w)poo(u)
with v < t and w < s. For example, it is possible to do this with the ordering
shown in Figure 5.3 (for (t, s) = (3, 2)).

With this ordering, p)t E S) = t's)po(, 7) can be computed by the following
algorithm, where we have used that {(v, w)10 < v < t 0 < w < s; v +w -

k} = {(v, x)lmax(O, k-s) <v < min(k, t); w =k-v}:

Algorithm 5.3.
begin

for k = 0 to t +s
for v = max(O, k - s) to min(k, t)

w = k-v
for i= r to O step -1

for j = mi to O step -I
if k = 0

a(0,0) a
else

if j = 0

a()Ou) - lDi(iVl (' 77) + D~0 j+, 77) aio0 IU = Dli Pi+lo') C IO D2fi 'Pi+io(0 C

+ D1io .P(v-lW), + D2(p1.p(Vw-)()
else
a("ju)) - D (v p>71,W)(, r) D q W-

vvl)(7

end if
end if
if j= 0

P 'W(' j) a 'w) + 7) = (V 7 +) *)

+ (Pj(: q) .p(V'W)((: q)

else
(v I')(l 7) = a(vw) + (77) PIJ+1 ,77)

end if
next j

next i
next v

next k
end.

In this algorithm, all the terms with a negative upper index, or lower index j
greater than mi., or lower index i greater than r, must be defined to be zero.
Further, as a consequence of (4.1 1), we have

(5.5) a(""' =0 forj>m, -v-w.
ii

EVALUATION OF MULTIVARIATE POLYNOMIALS 243

Similarly to the univariate case, this algorithm gives the general framework
for many particular cases, some of them being very simple. For example, when

(5.6) P9i = X - Xi, CD,= aXX D2 =
(9

v (Pl
= -

~ 1, (9X, 2 &y'

we have
()v- w-l1)

((5,.7)) lw)(
) + p (, 0) for (v, w) :$ (0, 0),

(5.8) a(v =p(v4u-() , a) for (v, w) :/ (0, 0), j : 0,

(5.9) p("u a(v7 "v) + (4-Xi)-V) (vw q) + (vq `w)

(5.10) P("aU'w) a(v
'inW)

+(q-yij) p(v` w)(4; q) for j):v 0.

Algorithm 5.3 can be advantageously used to compute the interpolating poly-
nomial in [2, 3].

BIBLIOGRAPHY

1. J. Butcher, Numerical analysis of differential equations, Wiley, New York, 1985.
2. M. Gasca and J. I. Maeztu, On Lagrange and Hermite interpolation in Rn , Numer. Math. 39

(1982), 1-14.
k - 1 3. M Gasca and V. Ramirez, Interpolation systems in R , J. Approx. Theory 42 (1984), 36-51.

4. D. Knuth, The art of computer programming: Fundamental algorithms, Addison-Wesley, 1975.
5. L. Schumaker and W. Volk, Efficient evaluation of multivariate polynomials, Comput. Aided

Geom. Des. 3 (1986), 149-154.

DEPARTAMENTO DE MATEMATICA APLICADA, UNIVERSIDAD DE ZARAGOZA, EDIFICIO MATE-

MATICAS-PLANTA 1A, 50009 ZARAGOZA, SPAIN

