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LATTICE RULES FOR MULTIPLE INTEGRATION 
AND DISCREPANCY 

HARALD NIEDERREITER AND IAN H. SLOAN 

ABSTRACT. Upper and lower bounds for the discrepancy of nodes in lattice 
rules for multidimensional numerical integration are established. In this way 
the applicability of lattice rules is extended to nonperiodic integrands. 

1. INTRODUCTION 

Lattice rules for numerical integration over the s-dimensional unit cube 
[0, 1 ]s were introduced by Sloan [1 1] and Sloan and Kachoyan [13], and the 
theory of lattice rules was developed further by Sloan and Walsh [12], Sloan 
and Kachoyan [14], and Sloan and Lyness [15]. An N-point lattice rule approx- 
imates the integral of a function f over [0, 1 ]s by 

N-1 

(1) X Pxn), 
n=0 

with distinct nodes xo, .. ., 1 c Us = [0, 1)s for which the corresponding 

residue classes x0 + 7, ..., XN1 + Z/ form a subgroup L of the torus group 

2s5/S Geometrically, this means that L = UnNI1 (Xn + ZS), considered as a 
subset of ]Rs, is a lattice in Rs, whence the name "lattice rule". The special 
case where L is a finite cyclic subgroup of Rs/7S yields the number-theoretic 
method of good lattice points due to Korobov [5] and Hlawka [3] (see also [4, 
8] for expository accounts of this method and the recent survey in [10]). 

Lattice rules were originally conceived for the numerical integration of peri- 
odic functions having [0, 1 ]s as their period interval, but the approximation (1) 
can of course also be used for nonperiodic integrands f . An upper bound for 
the integration error is obtained from the classical Koksma-Hlawka inequality 
[2] whenever the total variation V(f) of f over [0, 1 ]s in the sense of Hardy 
and Krause is finite (compare also with [6, Chapter 2]). The resulting error 
bound is V(f)DN, where DN is the discrepancy of the nodes xoI ...,0 XN- I 
We recall that the discrepancy of any points to a . . . , tN- E Us is defined by 

A(J;N) l 
DN =DN~O ,..tN- )=su NU olj 
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where J runs through all half-open subintervals of Us of the form J = 

]7Ii[u1, bv), A(J; N) is the number of integers n, 0 < n < N - 1, with 

tnc J, and Vol(J) denotes the volume of J. 
In the present paper we study the discrepancy of the nodes in a lattice rule. 

We will establish upper and lower bounds for the discrepancy, which provide 
links with the figure of merit p(L) introduced by Zaremba [16] for the method 
of good lattice points and extended to general lattice rules by Sloan and Ka- 
choyan [14]. We will also point out some useful properties of p(L). To define 
p(L), we consider the dual lattice 

LI={h ERs: h-xcforallxcL}, 

where h* x denotes the standard inner product of h and x. Since L contains 
Zs as a sublattice, it follows that Lo C ZS. For h c Z put r(h) = max(l, hil), 

andforh=(hl,...,hs)EZs put 

r(h) = J7r(h1). 
J=1 

Then the figure of merit is defined by 

(2) p(L)= min r(h). 
hEL' 
h#O 

2. UPPER BOUNDS FOR THE DISCREPANCY 

Let x0,..., XN1 E Us be the nodes in an N-point lattice rule with N > 2, 
and let L be the corresponding lattice in lRs. We assume from now on that 
s > 2, since the case s = 1 is trivial (the nodes then form a set of equidistant 
points in [0, 1)). Let C(N) be the set of all nonzero h = (hl , ... , hs) E ES 
with -N/2 < h_ < N/2 for 1 < j < s. For integers h C (-N/2, N/2] we put 

N sin(7rjhi/N) ifh$540, 
r(h, N) = 

{I if h =0. 

For h= (hl, .., hs) E C(N) we write 

S 

r(h, N) = J1 r(h1, N). 
J=1 

Then we define 

(3) R(L)= Z 1 

hEC(N)nL' r(h, N) 

It is an easy result (see Proposition 3 in the next section) that C(N) n L' is 
nonempty for s > 2. 
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Theorem 1. The discrepancy DN of the nodes x0, ... , XN1 E Us in an N-point 
lattice rule satisfies 

DN < k +R(L). 

Proof. By [14, Lemma 1] we have Nxn c ZS for 0 < n < N - 1. Thus we can 
apply [7, Lemma 2.2], which yields 

5 1 1 ~27rih-x 
D < S + E I | E e Z@n| DN 

?-N r(h, N)N 
hEC(N) n=O 

For h c 7S it was shown in [14, Theorem 1] that 

I N-I 
I if h cL', E e27rih-x = I fh 

N n=O 0 { ifhOL', 

and so the desired result follows. n 
We show now that R(L) can be bounded from above in terms of the figure 

of merit p(L) defined in (2). 

Theorem 2. We have 

R(L) < ( 2) (logN) + (logN)+1) 

Proof. We have r(h, N) > 2r(h) for 0 < IhI < N/2, since sinkrx > 2x 
for 0 < x < 1/2, and also r(O, N) = r(O). Thus, r(h, N) > 2r(h) for all 
h E C(N), and so 

(4) R(L) < S E 1 (L) 
hEC(N)nL' r(h) 

To bound R1(L), we split up C(N) into 2s "quadrants" as follows. Put 
Io = (-N/2, 0], I, = (0, N/2], and for d = (d,..., ds) with di = 0 or 1, 
define 

Q(d) = {h= (hl, ...,hs)cZs: hJ cId for 1 < j<s andh$O0}. 

Then we can write 

RI (L) = ES(d), with S(d) = E 1 
d hEQ(d)nL' r(h) 

We consider now S(d) for fixed d. Let w( be the smallest integer with 20 > 
N/2, and let yu be the largest integer with 28' < p(L); we can assume 1u > 0, 
since the case p(L) = 1 is easily dealt with by [7, Lemma 2.3]. To allow us to 
further decompose the sum S(d), we now define, for each q = (q2, ..., qs) c 

s-' with 1 < qj < w 2 < j < s, 
M I-( s s':2jI< ~ q 

o j 
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Then it is clear that we may write S(d) as the sum, over all permissible vectors 
q, of 

S(d, q)= 1 

hEQ(d)nL 
(h2 ..., h)EM(q) 

Case 1: q2+ +q5<8+s-1.Put 

A _q) 2-q2--qs +s-l p(L) >l 
K(q, b) = {h Z: bA(q) < r(h) < (b + 1)A(q)} for b c Z, O < b < [N/2]. 

We claim that if q = (q2, ... , q5) belonging to Case 1 and b c Z, O < b < 

[N/2], are given, then there exists at most one h = (h , ... , hs) c Q(d) n 
L' such that h1 c K(q, b) and (h2, ..., 1s) c M(q). For suppose h' = 

(h1, .. ., hs) $ h" = (h12, .. ., 12j) are two points satisfying all these conditions. 
Then bA(q) < r(h' ), r(h"') < (b + 1)A(q) and h' , h12 c d , hence r(h' - h') < 

A(q). For 2 < j < s we have 2q7 1 < r(hj), r(hJ') < 2qj and h>", h" I 
j dj 

hence r(hS - h[') < 2q,-1 . Therefore, 

S 

r(h' - h") r(h' - h1) < A(q)2(q)2++qss+l = p(L). 
j=1 

On the other hand, h h" c L', since L' is an additive subgroup of RS, 
and also h' - h" $& 0, thus r(h' - h") > p(L) by (2). This contradiction proves 
the claim. 

Consider the contribution to S(d, q) arising from those h = (hI, ...h, 1S) 

Q(d) n L' with (h2, .. ., hs) c M(q) for which h, c K(q, b). For b =0 we 
have, trivially, r(h) > p(L), and for b > 1 

r(h) > bA =)2q2+ +s-S+ bp(L). 

Summing over b, we obtain 

1 [N12- 
(5) S(d, p(L) <1l+ E b) p<(L+logN) 

where we used [7, Lemma 3.7]. 

Case 2: q2 + + qs > u + s - 1 . Choose integers v2, ... s with 0 < v < qj 
for 2 < j < s and v + + vs = u. For every a = (a2, ...,a) with 
0<a1 < 2qj-,l- for 2<j<s let 

M(q, a) ={(h2, .. ., 2q-1 + aJ2" < r(hs q 

< 2q-1 +(a1+1)2v1 for2<j<s}. 

Then M(q) defined above is the disjoint union of the sets M(q, a). Put 

K(b) = {h cZ: 2b < r(h) < 2b+ 1} for bcZ, 0 < b < [N/4]. 
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We claim that if q = (q2, ... , q,) belonging to Case 2, a = (a2, ... , aS) satis- 
fying the restrictions above, and b E Z, 0 < b < [N/4], are given, then there 
exists at most one h = (h1, ..., hs) c Q(d) n L' such that hi c K(b) and 
(h2, ..., Is) c M(q, a). For suppose h' = (hi,..., hs) t h = (hi, ..., hS1) 
are two points satisfying all these conditions. Then h1, h'' G K(b) n Id , hence 

r(h' - h') = 1, and for 2 < j < s we have r(h) - hIi) < 2"i . Therefore, 

S 

r(h' -h") = fIr(hJ -1') < 2"2+.+Vs = 2' < p(L). 
j=l 

On the other hand, h' - h" E L' and h' - h" 54 0, thus r(h' - h") > p(L) by 
(2). This contradiction proves the claim. 

Since there are HS=2 2qj -' 1 = 2q2+ +qs-Iu-s+l choices for a, it follows 

that if b is given as above, then there are at most 2q2+ +q, -j-s+l points h = 

(hI, ... , hs) c Q(d) n L such that hI c K(b) and (h2, ...,hs) z M(q). 
Therefore, 

q +---+qs-y-s+I -q 
[N/4] 

S(d, q) < 2q2+ +qs-I-+2q2 2-qs+S-1 + A) 2b 

( 2 E T p(L) ( E b ) 

where we used 2k+1 > p(L) in the last step. Applying [7, Lemma 3.7] with 
m = [N/2] + 2 , we get 

[N/41 1 g([] +2) 

Z <log 
b= 1 

and so for N > 19, 
[N/41 1 1 

b< log N - 2 
b=l 

The last inequality is shown by inspection for 2 < N < 18, N f 4. Thus for 
N $4 4, 

S(d,1q) < 
3 3 

+logN 
p (L) 2 

By (5) this bound can also be used in Case 1. Since there are w.) S1 choices 
for q, we get 

S(d) < s-l (3 1gN) 

There are 2s possibilities for d, hence 

R1 (L) < (L) (2 ) (3 + 2 log N). 
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Since the definition of w implies 2w < N. we obtain 

RI(L) < p(L) (lg)2 (2(logN)s + 3(logN) ) 1) 

and together with (4) this completes the proof for N :$ 4. For N = 4 we 
trivially have 

R(L) ? E 1~h 1)< E r,4 
<2s 

hEC(4) h) 
and since p(L) < 4 by Proposition 2 below, the inequality of Theorem 2 is 
checked immediately for s > 3. In the remaining case N = 4 and s = 2, 
we note that r(h) = 1, 2, 4 for h c C(4), and so by Proposition 1 below, 
p(L) can only attain the values 1, 2, 4. If p(L) < 2, then R(L) < 4 shows 
that the inequality of Theorem 2 holds. If p(L) = 4, then C(4) n consists 
only of the point (2, 2), which is impossible, since it contradicts Proposition 
3 below. n 

By combining Theorems 1 and 2 we obtain the discrepancy bound 

(6) DN < 1 (2j' ((log N) + 2(logN)S ) N p(L) ~log 2~ 

Since p(L) < N by Proposition 2 below, it follows that DN = O(p(L)71 (log N)s) 
with an implied constant depending only on the dimension s. 

Remark 1. A similar discrepancy bound can also be obtained in the more general 
case of a displaced lattice rule. According to [14, p. 119], if x0) ... , XN 1 
are the nodes in a lattice rule, then the nodes in a corresponding displaced 
lattice rule are given by {x0 + Y}, ... , {xN-1 + y} with y c Us, where the 
fractional part {t} E Us is obtained by reducing all coordinates of t C Rs 
modulo 1. We can write y = y' + z, where Ny' E Z/ and z E [0, I /N)s . The 
method in the proof of Theorem 1 shows that the discrepancy DN of the points 
{xo+y'},..., {xNl + y'} satisfies 

DN <J +R(L), 

where L is the lattice UNI I (x +Z5) . Since {x +y} = {xx +y'}+z for 0< n K 
N - 1, it is easily seen (compare with the argument in the proof of [6, p. 132, 
Theorem 4.1 ]) that the discrepancy DN of the points {x + Y}, .. , {XN-1 + Y} 
satisfies 

DN < ? + DN ?< + R(L). 

Together with Theorem 2 we get a discrepancy bound analogous to (6). 

3. PROPERTIES OF THE FIGURE OF MERIT 

We prove simple properties of the figure of merit p(L), already used in ?2, 
and also of general interest in the theory of lattice rules. 
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Proposition 1. The figure of merit p(L) is also given by 

p(L) = min r(h). 
hEC(N)nL' 

Proof. By [14, Lemma 1] the nodes x0, ... xN, i of the lattice rule satisfy 

Nx n E Z/ for 0 < n < N - 1, hence L' contains (NZ)s as a subgroup. Since 

L' has determinant N by [14, pp. 119-120], and the cube [-N11s, N1/s]S 
has volume 2S N, it follows from Minkowski's convex body theorem [1, p. 71] 
that this cube contains an element ho :0 ? of L' . Clearly, r(ho) < N. Since 
h c ZS and [NI/S] < N/2 for N > 2 and s > 2, we have ho E [-N/2, N/2]s. 
By replacing, if necessary, every coordinate of ho equal to -N/2 by N/2, we 

get an hi C(N) n L' with r(hl) < N. To prove the proposition, it suffices 
to show that for any h c L', h : 0, there exists an h2 E C(N) n L' with 
r(h2) < r(h). If all coordinates of h are multiples of N, then r(h) > N, and 
so we can take h2 = hi . Otherwise, we obtain a suitable h2 by reducing each 
coordinate of h modulo N to get numbers in (-N/2, N/2]. n 

Proposition 2. We always have p(L) < N. 

Proof. Since L' contains (NZ)s, we have h = (N, 0, ..., 0) E LL' hence 

p(L) < r(h) = N. 5 

Proposition 3. The set C(N) n L' contains exactly Ns -' 1 elements. 

Proof. Let z c ZS/, and consider the translate Nz + C* (N), where C* (N) = 
C(N) U {0}. Since L' contains (N)s ,it is clear that (Nz + C*(N)) n L= 
Nz + (C* (N) n L1 ), so that (Nz + C* (N)) n L' contains the same number 
of elements as C*(N) n L, say v(N). Since L' is the union of disjoint 
subsets (Nz + C* (N)) n L', each containing v (N) elements, that number is 
obtained by dividing the volume of the cube (-N/2, N/2]s, namely Ns, by 
the determinant of L', which by [14, pp. 119-120] has the value N. Thus 
v(N) = N' l. Finally, C(N) n L' contains v (N) - 1 elements, because it 
does not contain zero. E 

4. LOWER BOUNDS FOR THE DISCREPANCY 

Let DN again be the discrepancy of the nodes x0, ... , XN- 1 c US in an N- 
point lattice rule. A simple lower bound for DN is obtained as follows. Since 
Nx nEZs for 0<n<N-lwehave x n c[0, 1- 1/N]s for 0< n <N-I. 
For 0 < e < 1/N let Je = [0, I - l/N+ )5. Then the definition of DN implies 

D__A(J,; N) -VlJ DN > _ 
( ~ Vol(J')| I -I -N + ?) 

Letting e 0+, we obtain 

DN > 1 - 
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In first approximation this lower bound is equal to s/N, which happens to be 
the first term in the upper bound (6). 

A more important result is the lower bound for DN in terms of the figure of 
merit p(L) to be shown in Theorem 3. We need an auxiliary result which is a 
variant of [9, Lemma 5.4]. 

Lemma. For any points to, ... I c Us, any nonzero h c ZS, and any real 
0 we have 

I N-1 2 
|NE cos 27f(h * t n -0) < -((7r + 1)s - I)r(h)DN(tO, tN-1) 

n=0 

Proof. By [9, p. 64] we have 

I N-1 2 

provided that all coordinates hl,..., hs of h are $& 0. Since then r(h) = 

i... hsI, the lemma holds in this case. Now we take an arbitrary h = 

(hl, ..., hs) $ 0 and we assume without loss of generality that h1 $ 0 for 
1 < j < k and h1 =0 for k +1 ?j< < s. Let h= (hl, ...,hk), and if 

t = (tl), ..., tns)) , we put t'n = (t1l), ..., tk)). By what we have already 
shown, we get 

+ cos27f(h tn-0) E cosN27r(h t--0) n=O n=O 
2 ((r+ 1k _ 
_((r + 1) - 1)r(h')DN(tO, ** , tN-1) 

2 
< _((7r + 1)s - 1)r(h')DN(to, t-i) 

Since r(h') = r(h) and 

DN(to) ** tN- 1) < D~O) .. tN-1)) 

we have proved the lemma in the general case. El 

Theorem 3. The discrepancy DN of the nodes xo,..., XN- I E Us in an N-point 

lattice rule satisfies 

Csp(L) 

with C2 =4, C3 =27, and Cs = 2((7T+ I)s- 1) for s>4. 

Proof. Choose h E L', h 0,. with r(h) = p(L). Then h * x c Z for 0 < 
n < N - I, and so an application of the lemma with tn = xn for O< n < N-1 
and 0 = 0 yields 

2 
1 <-((7r + I)s _- )p(L)DN. 

This is the desired result for s > 4. For s = 2 and s = 3 we use a different 
method to get a smaller value of Cs. Choose h = (hI, ... , hs) as before and 



LATTICE RULES FOR MULTIPLE INTEGRATION AND DISCREPANCY 311 

assume first that E>=, Ihil > 2. Then an application of [9, Lemma 5.5] with 
tn,= x n for O < n < N- 1 and 0 = 0 yields 

(7) DN > I 
NSSp(L) 

If Es=, jhjj = 1, then for some i, 1 < i < s, we have hi =?I and hj = 0 

for all j :& i. From h * xn c Z it follows then that the ith coordinate of each 
x n is 0. This yields DN = 1, and so (7) holds trivially. From (7) we get the 
desired value of Cs for s =2 and s = 3. 5 

Remark 2. The lower bound in Theorem 3 holds also for the nodes Yn = {xn + 
y}, 0 < n < N - 1, in a displaced lattice rule (compare with Remark 1). In the 
first part of the proof of Theorem 3 one applies the lemma with tn = Yn for 
0 < n < N - 1 and 0 = h * y. In the second part (cases s = 2 and s = 3) one 
applies [9, Lemma 5.5] with tn =Yn for 0 < n < N- I and 0 = {h.y}, and 
this yields (7) provided that EJ>1/i > 2. If Es=, h =1, then for some i, 
1 < i < s, each yn has the same ith coordinate, and this implies D > 2 SO 
that (7) holds again. 

5. CONCLUSIONS 

It follows from the upper bound in (6) and the lower bound in Theorem 3 
that these two results are best possible up to factors of the order (log N)s . Fur- 
thermore, these two results show that the order of magnitude of the discrepancy 
of nodes in a lattice rule is essentially given by 1 /p(L) (compare also with the 
information on p(L) given in the next paragraph). This suggests that the figure 
of merit p(L) of the lattice L should be large if one wants to obtain an efficient 
numerical integration method, agreeing with the conclusion reached by Sloan 
and Kachoyan [14] in their analysis of lattice rules with periodic integrands. 
Similar comments apply to displaced lattice rules because of Remarks 1 and 2. 

The simple upper bound for p(L) in Proposition 2 is nearly best possible. 
In fact, in the special case of the method of good lattice points one can already 
find, for each s > 2 and all sufficiently large N, a suitable lattice L such that 
p(L) is at least of the order of magnitude N/(log N)s- I, and in the case s = 2 
there exist infinitely many N and corresponding lattices L such that p(L) is 
of the order of magnitude N (see [8, ?4]). Therefore, N-point lattice rules are 
capable of producing error bounds of the form O(N I (log N)c(s)) when applied 
to integrands of bounded variation in the sense of Hardy and Krause, where the 
constant c(s) > 0 depends only on s. An important task that remains to be 
carried out is to find many concrete examples of lattice rules that improve on 
the method of good lattice points, e.g., in the sense of a larger figure of merit. 
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