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ABSTRACT. An infinite, modular-part (MP) product is defined to be a product 
of the form HflCS(l- Xn), where S = {n E Z+: n = r, . . , rt (mod m)}. 
Some products of this kind have a mod 2 reciprocal that is also an MP product, 
while others do not. A complete method is first developed which determines 
if a given MP product has an MP reciprocal modulo 2 and finds it if it does. 
Next, a graph-theoretic interpretation of this method is made from which a 
streamlined algorithm is derived for deciding whether the given MP product is 
such a reciprocal. This algorithm is then applied to the single-variable Jacobi 
triple product and the quintuple product to determine the cases when these 
products have an MP reciprocal (mod 2). When this occurs-and this occurs in 
infinitely many cases-the parity of the associated partition function can readily 
be found. A discussion is also made of the probability that a given MP product 
with modulus m has an MP reciprocal (mod 2). 

1. INTRODUCTION 

In this paper we will be dealing with infinite products of the form 

nES 

where S = {n c Z+: n _ rl, ... , rt (mod m)} and r1,..., rt are distinct, 
positive residues of a given modulus m. Products of this form will be referred 
to as "MP products" because their exponents are "modular parts." (It should 
be noted that there are no repeated factors in the MP product defined here.) As 
in [4, equation (6)], we denote the product in (1) by (rl , ... , rt)m . 

In studying the parity of partition functions, we will be concerned in this 
paper with: 

(i) the partition function p(S; n) generated by the reciprocal of a given 
MP product, i.e., 

00(Z S n 
(2) E?p(s; nx= T l- ; 
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(ii) computing the mod 2 reciprocal of an MP product and determining if 
it is an MP product, i.e., whether 

(3) flES(l- _ Xn) I (l-X ) (mod2) 

for some corresponding modular index set SI 
(iii) the power series expansion of the product in (3), i.e., 

00 

(4) fJ (I -x )=anx . 
nES1 n=O 

When the reciprocal in (3) is MP and the expansion in (4) is known, we are 
in a position to compute the parity of the partition function, since then 

p(S;n) =an (mod2). 

(In actual practice we know the expansion in (4) for the set SI and work back- 
wards through the reciprocal in (3) to obtain the set S. Cf. ?9.) 

Our attention in this paper is directed toward solving the two basic questions 
raised in (3), namely, does an MP product have a mod 2 reciprocal that is 
MP, and if it does, what is the reciprocal? In previous papers we have already 
dealt with a few cases of this problem. In [2, pp. 746-747], the reciprocal 
was computed using a simple doubling procedure described in ?3 below. In 
another case [3, equation (4)], we found a reciprocal by a method based on an 
identity of Euler, which is discussed in ?4. In the general case, however, either 
method often continued indefinitely, so it was unclear whether the method itself 
was inadequate to find the reciprocal, or whether an MP reciprocal just did not 
exist. (Here and throughout this paper, the term "MP reciprocal" will mean "MP 
reciprocal (mod 2)".) In those cases where an MP reciprocal actually did exist, 
we were able to determine this fact and to find the r1 and m in (1) through the 
use of a heuristic algorithm described in ?2. Armed with this information, we 
could then appropriately modify the particular method to verify the correctness 
of the heuristically computed reciprocal. 

In the general case, such an ad hoc approach was clearly awkward and unin- 
structive, and it was only when an elaborated form of the Euler reciprocation 
method of ?4 was developed that the reciprocation problem was completely 
solved. This general algorithm is discussed in ??5 and 7. In ?8 we give a 
streamlined decision algorithm based on the graph-theoretic interpretation of 
"doubling mod mi" presented earlier in ?6. An application of the second al- 
gorithm is made in ?9 to determine the conditions under which Jacobi triple 
products and quintuple products have MP reciprocals modulo 2. It is clear from 
the results of this section how to obtain parity theorems for partition functions 
associated with infinitely many of these products. Additional parity results are 
obtained from eleven identities appearing in [3] and [4] that do not come from 
the Jacobi triple product or the quintuple product. The paper concludes with a 
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calculation of the probability that an MP product with an even modulus has an 
MP reciprocal. 

2. THE HEURISTIC PATTERN RECOGNITION (HPR) ALGORITHM 

We begin by establishing a result which shows that the mod 2 reciprocal of 
any product (not necessarily an MP product) of binomials 1 - xa , where the 
exponents form an increasing sequence of positive integers, is a product of the 
same kind. Let ZJ be the set of all increasing finite or infinite sequences of 
positive integers. Throughout this paper, the congruences will be understood to 
be modulo 2. 

Proposition 1. For each {a,} E J there exists a unique {bi} E J such that 

(1 ba) 
- A 

Proof. The product 71 (1_ - Xa) expands uniquely into a power series 1 + 

En-l anX' . Since a power series has an inverse if and only if its constant term 
is a unit, we have 

00 

1+ ?:ko I ae n =1 +ZE0x0. 

Here the fln are uniquely determined by the Cauchy recursion formula 

n 

An- akin-z ' n > 1, flo=1. 

Finally, we note that the series 1 + E /lnx0 factors uniquely mod 2 by the 

greedy algorithm into a product H1 (1 - x b). (See [4, ?6, function DeadEnd- 
Degree].) 0 

In actual practice the exponents b1 of the reciprocal product can be ob- 

tained directly from the a, 's (without the use of intermediate power series) by 
employing the following equation suggested to us by William D. Blair: 

(5) 

1 

= Ho 

+x2k a 

'> k=O 

Let L be a fixed positive integer, usually about 1000. Expand Ha <L (1 -x a')I 

into a direct product H1b <L(1 - Xb) by recursively computing the factors of 

the partial products: 

Lr1 

Pk, (X) = 
fj al =-p (I1 - xt) (mod Xm' 2), k > 1 . 
,= I tESk 

Here, S1 = {al, 2a1, ..., 2raj}, where 2ra, < L < 2r+la1. To obtain the next 

partial product Pk-+l (x) , delete ak+l from Sk to obtain Sk?+ I , if ak?+ l Sk ; 

otherwise, use (5) to expand 1/(1 - Xak+') into factors up to degree L and 
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append their exponents ak+l 2ak+l, 4ak+l ... to Sk to form Sk+l. Note 
that these latter exponents are not in Sk , since t c Sk for t > ak if and only if 
2 c Sk . In order to avoid sorting the exponents in the reciprocal, we introduce 
the following characteristic function for {ai E} > 

(a)f 1, if nc{ai}, 
Xn f 0 otherwise. 

Then we can write r1l - _ Xa) = Hjoo (1 - (a)Xn). 

The following algorithm computes {x(b}nL from {X}(a)L for a fixed 
limit L. 

Algorithm. Invert 

for i = 1 to L do 
x(b) = 0; 

for i= 1 to L do 
if X(a)= 1 then 
begin 

(b) _ (b) 

if %(b)= 1 then 
begin 

k = 2i 
while k < L do 
begin 

(b)_ 
Xk 
k = 2k 

end 
end 

end. 
The second step of the HPR method is to search the output sequence {(b) L1 

of Invert for a pattern which repeats at least once. Pattern Recognizer inputs a 
sequence {%n~nL of O's and l's and outputs the smallest period m < 2 such 

that {%(b)}%1 repeats; otherwise a 0 is returned. 

Algorithm. Pattern Recognizer 

for m= 1 to L do 2 
begin 

n =m+ 1 
while n < L and xn - =nx, do 

n = n + I 
if n >L then return( m) 

end 
return(O). 

Putting these two algorithms together gives the HPR method, which in brief 
is: 

{(a),L fX(b) L |m, r, , rJ 
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Note that this algorithm gives the smallest possible modulus m. 

Example 1. Consider the reciprocation of (1, 5, 6)6, with L = 24. Table 1 
lists the values of X(b) for 1 < n < 24, as each 1/(1 - Xat) is expanded into a 
product by Invert. HPR then recognizes the repeated pattern { 11 0 1 1 1 1 1 0 
1 1 O} in the last row. This suggests that 

(0,I +)6 (1, 2, 4, 5, 6, 7, 8, 10, 11)12, 

which will be verified in Example 3 of the next section. 

TABLE 1 

a, 

1 11010 00100 00000 10000 0000 
5 11011 00101 00000 10001 0000 
6 11011 10101 01000 10001 0001 
7 11011 11101 01010 10001 0001 

11 11 0 11 1 110 1 11 010 10001 0 1 01 
12 1 10 11 1 110 1 10010 10001 0 10 1 
13 1 10 11 1 110 1 10 110 1000 1 0 10 1 
17 1 10 11 1 110 1 10 110 11 00 1 0 10 1 
18 1 10 11 1 110 1 10 110 11 1 01 0 10 1 
19 1 10 11 1 110 1 10 110 11 1 11 0 10 1 
23 1 10 11 1 110 1 10 110 11 1 11 0 11 1 
24 1 1011 1 1101 10 110 11 1 11 0 11 0 

Remark. To express the reciprocal of a series 1 + EnZ=1 an X as a product 

nj?= I ( I - xbJ), use the following 

Algorithm. Series Invert 

L n We use the intermediate array ,8(x) = Z fi /nx 
j =0 

/A(x)= 1 
for n= 1 to L do 

if an fi /n then 
begin 

j= j +1 
b= n 

/1(x) = J(x)/(1 - Xn), using [2, equation (5)] 
end. 

3. THE DOUBLING METHOD 

The following proposition gives two (mod 2) rules used in the doubling 
method and elsewhere in this work. 
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Proposition 2. We have 

(6) [doubling rule] (a, , * , ar)n2 (2a1 2a,). 

(7) [extension rule] (al, ..., ar)n =(al, ,ar, al + n, ,r + n)2n 

Proof. Equation (6) follows from the congruence 

00 00 

J( Xkn+r)2 J( 1X2kn+2r 

k=1 k=I 

Equation (7) is clear. 5 

Briefly, this method consists of multiplying the top and bottom of 

1(al, I... , ad)n by (a1, ... , ad)n, then using (6) on the square on the bottom 
and (7) on the top, canceling as many bottom factors into the top as possi- 
ble. If some factors remain on the bottom, repeat the process again and again 
until either all the denominator factors have been canceled into the top or it 
becomes clear that some factors will never cancel and the process will continue 
indefinitely. 

Example 2. This is essentially a "new notation" proof of [2, (18); 3, Table 1]: 

1 (1, 4, 5)5 _ (1, 4, 5, 6, 9, 10)10 (1, 4, 5, 6, 9)10(2, 8)10 

(1, 4, 5)5 (1, 4, 5 )2 (2, 8, 10)10 (2, 8)2l 

(1, 2, 5, 8, 9)10(4, 6, 14, 16)20 - (?1 ?2, 5)1(?6)20 
(4, 16)20 =(1 2 )o+)o 

Example 3. The unembellished doubling method often goes into an infinite loop, 
as the following example shows: 

1 (1, 5, 6)6 - (1, 5)6(6, 12)12 - (1, 5)6(6)12(2, 10)12 _ 

(1, 5, 6)6 (1, 5, 6)62 (2, 10, 12)12 - (4, 20)24 

Here the odd integers (1, 5)6 have been separated out, because they play 
no further part in canceling the even factors in the bottom. Furthermore, it 
is clear that continuing the procedure will never create any number from (6)12 
that will cancel numbers on the bottom. The failure of the doubling method 
to end and produce the reciprocal is a weakness of the method. In this case 
the reciprocal actually exists, and Example 1 suggests that the reciprocal is 
(1, 2, 4, 5, 6, 7, 8, 10, 11)12. The following proof, in which the top and bot- 
tom of the original fraction are first multiplied by (2, 4, 8, 10)12(6)6 and then 
(6) and (7) are applied, verifies this: 

1 (2, 4, 8, 10)12(6)6 

(1, 5, 6)6 (1, 5, 7, 101)2(2, 4, 8, 1 0)~2 (6 )2 

(2, 4, 8, 10, 14, 16, 20, 22)24(6, 12)12 
- (1, 2, 4, 5, 7, 8, 10, 11)12(12)12 

(1, 2, 4, 5, 6, 7, 8, 10, 11)12. 
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4. THE EULER RECIPROCATION METHOD 

An alternative method of reciprocating is based on the following identity of 
Euler: 

00 

(1 +xn)( -x2n = 1 

n=1 

In our notation this equation implies that 

(8) ( 1)2 (2)_1. 

This identity always allows us to cancel the denominator in a reciprocal product 
after substituting (1)2 (2)2 in an appropriate form for the 1 in the numerator. 
(We should point out that since the form of (1) does not include multiple factors, 
we are making a restricted study here that is comparable to one in elementary 
number theory in which only square-free integers are allowed in the final answer. 
If this restriction were removed, this paper would immediately reduce to a very 
simple and short one, since then from (8) any MP product would have an MP 
reciprocal with at worst squares on some of its factors.) 

Example 4. This method succeeds in producing the reciprocal for the product 
in Example 3, where the straightforward doubling method had failed: 

1 _ (1,3,5)(2, 4, 6)6 = (3)6(1, 2, 4, 5)6 

-(6)12(1, 2, 4, 5)6 = (+1, +2, +4, +5, 6)12 

The following proposition provides a direct way to carry out the first step of 
the Euler reciprocation. The proof follows easily from (8). We use the brief 
notation (X)m for the expression (xl, ... , xn)m, where X = {xl, ... n, 
and, in later sections, cX + d for the set {cxl + d, ..., cx,7 + d} . 

Proposition 3. For S C Z+, let E(S) and O(S) be the sets of even and odd inte- 
gers in S, respectively. Let m be a positive, even integer and M = { 1, ... , m}. 
Then for A C M, 

1 _2 

(9) (A) = (O(M - A)) M(0(A) U E(M - A)). 

Note. To reciprocate a product by this method when m is odd, expand the 
set of residues by (7) and then use the modulus 2m, so that the parity of the 
class determines the parity of the exponent. 

The second step of this method is to use (6) on (O(M - A)) 2, producing, 
say, (2a, ...2, 2a),n, and (7) on any terms in (E(M - A))m, which, when 
expanded, will give a term equal to some 2ai . Any expanded term in (E(M - 

A))m that is not equal to some 2ai is combined with those in (O(A))m to 
form an "inertial" set, i.e., a collection of integers that play no further part in 
the process. Congruence (6) is then used on the new set of squares and the 
process is repeated until either no squares are produced and the process ends, 
or the process seems to continue indefinitely because squares keep appearing. 
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To illustrate this method, consider: 

Example 5. 

(?1, ?10, ?11, 12, 24)24 (?3,5 ? ,?9)24(?1, ,?4, , ,?11)24 

3- ', 5, 7, 9, 15, 17, 19, 21)24(1, 11, 13, 23, 2, 4, 6, 8, 16, 18, 20, 22)24 

(1,2,4, 8, 11, 13, 16, 20, 22, 23)24 

x (6, 10, 14, 18, 30, 34, 38, 42)48(6, 18, 30, 42)48 

= (- - -)24( 10, 14, 34, 38)48(6, 18, 30, 42)28 

-(- --) 4(---)45(12, 36, 60, 84)96 

= -(- -)24(10, 14, 34, 38)48(12, 36)48 
= (1, 2, 4, 8, 11, 13, 16, 20, 22, 23)24(10, 12, 14)24 
=(?1, ?2, ?4, ?8, ?10, 11, 12)24. 

Note the interesting reduction in the modulus from 96 to the final 24. 

Example 6. In this example, the infinite loop at the end suggests the wrong 
conclusion. 

(?1, ?7, +8, 9, 18)18 1(?3?5)18(?1,? 7, 9 ?2 ?4 -6)18 

(10) - (+1, ?2, ?4, ?7, 9)18(+6, ?10)36(?6, +12)36 

= (?1, +2, +4, +7, 9)18(+10)36(?6)26(?12)36. 

The "squaring" process will continue indefinitely, without finding the reciprocal. 
The HPR method suggests, however, that the reciprocal is 

(?1, ?7, ?8, 9, 18)8 (?1, ?2, ?4, ?7, 9)18(?10)36 

Comparing this result with the right-hand side of (10) shows the HPR reciprocal 
agrees exactly with the first factors there. We are thus led to the surprising 
conclusion that the product of the other factors, (?6)26(+12)36, which keeps 
regenerating squares and forces the process to continue indefinitely, must be 
congruent to 1. To see that this is true, we note first that (8) implies 

(k)2k(2k )2k - 1 

k when x is replaced by x . It then follows that 

(1, 562(2, 4= ( 3, 5)6(2, 4, 6)6 - (l)2(2)2 - 

~~6~' ~i6 
(3)6(6 )6 (3)6 (6 )6- 

Replacing x by X6 in the above gives (?6) 26(12)36 1. Therefore, in (10) 
we can replace (?6)26(+12)36 by 1, the process comes to an end, and the HPR 
reciprocal is correct. 
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Example 7. This example shows a more complete algorithm is certainly needed: 

(1, 9, 10)10 (3, 5, 7)2o(1, 9, 2, 4, 6, 8)10 
(1, 9)1o(6, 10, 14)20(2,4, 6, 8, 12, 14, 16, 18)20 

(1, 9)o(2, 10, 18)2(6, 14)20(4, 8, 12, 16)20. 

Again the process will continue indefinitely, raising the question whether an 
MP reciprocal exists and the infinite loop is caused by "unity contamination" as 
in Example 6, or whether an MP reciprocal actually fails to exist. The heuristic 
method suggests the latter is true by failing to find a modular pattern in the 
sequence of exponents up to degree L = 1000. This will be established in 
the discussion of the examples preceding Theorem 18. Also see the discussion 
following Theorem 9. 

Remark. We note in passing that Example 4 has essentially been done by I. 
Schur [5, pp. 49-50]. Namely, Schur finds that 

1 3n00-2 

(1, 5) - i(1 +x )(1 +x )-(1, 2)3. 

Hence by Euler's identity, (1 1 (1, 2)3(6)12. 
1,5,6)6 3 1 

Andrews has generalized Schur's argument to what he calls "Euler pairs": two 
sets of positive integers S and T such that 

17 12xI = JJ(1 +Xn). 
nET nES 

The main result [1, Theorem 1] is that this identity holds if and only if 2S C S 
(i.e., doubles of elements of S are in S) and T = S - 2S. 

5. AN ANALYSIS OF THE EULER RECIPROCATION METHOD 

The results of this section rest on a careful analysis of the Euler reciprocation 
method. The starting point of this analysis is the product (,V) 2m which 
comes from canceling the denominator in the Euler method (cf. (9)), that is 

(1 1) (- - 
-vmgs 

Let M = {I, ..., m}, m > 2. Then v and W are disjoint subsets of 
M. Although the Euler reciprocation process also implies that v will contain 
only odd integers and that m is even, we will not assume these conditions 
here, because they are not specifically needed in the development that follows. 
However, we will assume that v $& 0 and 9 $& 0, since this product is 
already an MP product when v = 0 or will become one after a single use of 
(6), when 9 = 0. 

Definition. For each a c M, let 

(12) [a] = {xM x _ 2 a (mod m), e >1}. 
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Note that e = 0 is not part of this definition. Moreover, a c [a]m if and 
only if v2(a) > v2(m), where v2(x) denotes the highest power of 2 dividing 
x. Also note when m is even that [m + k]m = [k]m, 1 < k < m. 

Proposition 4. Suppose AO and Bo are disjoint, nonempty subsets of M. For 
each a c AO, define the rank of a, p(a), to be 

(13) ( ) minee > I1: 2 ea mod m ? Bold if [alm 54 Bo, (13) p(a) = {-fa~~o 
oo, otherwise. 

Also, for each e? 1, let 

(14) Ae = {2ea: a c A and p(a) = e}, 

(15) Ae = {2ea: a c o and p(a) > e}, 

and 

(16) Be = BeI U (Be1 +2e 'm)UAe -A e 

Then for e > 0, 

(17) (Ae )2eme)2em (Ao)2(B 

Proof. We begin by establishing the following three results for e > 1: 

(a) 2Ae l=Ae U Ae, where Ae n Ae = 0e 

/ ~~~~~e-1 
(b) A nB' =0, where Be =Bei U(Be +2 iM), e ee e 1 e 1 

(c) A C B. 

The above results show that 2Aei , which is the set obtained from A>2 1 (mod 
2), splits into the disjoint sets Ae and Ae where the elements of Ae do not 
match any element in B' and so do not create a square at the next step, while e 
each of the elements of Ae definitely matches an element in Be and so produces 
a square at the next step. 

(a) The definitions of Ae and Ae in (14) and (15) imply that 

2Ae = {2ea: acA and p(a) > e -1} e-1 
0~~~~~~~~~~~~~~ 

= {2ea: a c A0 and p(a) = e} U {2 ea: a c A0 and p(a) > e} 

= Ae U Ae, where clearly Ae n Ae = 0 by definition. 

(b) Let 2ea c Ae. Since p(a) = e by (14), then by (13), 2ea 5& b + qm for 
any bE B and q > 0. Thus, 2ea will not match any number in Be , which is 
to say, 2ea ? Be , unless that number in B' was a descendant of some ancestor e ~~~~~~~~~e 
2da/ E Adl < d < e- - ((16) shows such an ancestor can only have entered 
Bd through Ad ) In this case we would have for some t > 0 that 2ea = 

2da + (2 m)t, so 2 e-da a' (mod m). Since 1 < e - d < e = p(a), then 
2eda _ b' (mod m) for some b' c B. But then a' _ b' (mod m), which 
contradicts A n B = 0. Thus, the exception never happens, so Ae n B= 0. 
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(c) Let 2ea c Ae. Then by (15) there exists a b c B0 such that 2ea _ b 
(mod m), i.e., 2ea = b+qm, where 0 < q < 2e . The form of b+qm indicates 
it is an element of B>) so 2ea will match some element in B', unless that 
element is absent because one of its ancestors already matched some element of 
Ad at a previous level d and was deleted from the set to make a square, i.e., 
there was a 2 da c Ad, 1 <d< e - 1, so that at level e, 2ea = 2d a + (2d m)t, 

or 2e-da _ a' (mod m). But since p(a) > e by (15) and 1 < e - d < p(a), 
then there exists b' c B0 such that 2e-da b' (mod m). Thus, a' b' 
(mod m), which contradicts AO n Bo = 0. Hence, there is always a match in 
B' for each element in A i.e., A C B' . e; e' 5 e - 

Having proved (a)-(c), we now find for e > 1 that 

(A e-)2 (B )2em (2A 1 )2em(B)2em 

= (Ae U Ae)2em [(B - Ae)2em(Ae)2em] 

= (Ae)2em(Be UAe - Ae)2em 

= (A)2em(B)2em 

Repeated use of this relationship as a reduction step establishes (17). n 

We next split each of the sets v and 9 in (11) into two parts whose 
properties make them central to settling the questions of this investigation. Let 

A={acV: [a]m C }, 
A =v -A, 

(18) B= U[am, 
aEA 

B = 9 - B. 

Note that A is also the set of elements in v with infinite rank. Since A nA' = 

0 and B n B' = 0, we can immediately write ( 11) as 

(19) (X)2n (q)m = (A' ) (B')m (A)2 (B)m . 

We now consider the two pairs of factors on the right-hand side of (19). The 
nature of the primed pair is readily settled by the next proposition. 

Proposition 5. (A') 2(B')m is an MP product (mod 2). 

Proof. We use Proposition 4 with AO = A' and Bo = B'. Clearly, p(a) < oo 

for each a E A'. Let d = maxaeA, p(a). Then by (17), (A )2(B')m =(B 2dM , 

since Ad = 0 . 

Note that A = B = 0 whenever m is odd, so (V)2m(G)m is always MP in 
this case. 

We next introduce some notation which formalizes the doubling and reduc- 
tion (mod m ) that appears throughout this work. 
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Definition. The map dm: M - - M is the "doubling, reduction modulo m" 
operator, defined by 

Jimx = 2x mod m, for each x E M. 

Observe that the sets A and B in (18) have the basic property that the 
doubles modulo m of the elements in A and in B again lie in B, which, 
using im, is simply expressed as 6mA C B and 8MB C B. 

We include the next three propositions to complete the study of the set Boo 
of exponents that occurs in the expansion of the product (A)2 (B)m _ 
ILEB (1 - Xn), regardless of whether Boo is an MP set or not. 

C*~~~~~~~~~~0 
Proposition 6. Let A and B be disjoint, nonempty subsets of M and assume 
6mA C B and 3MB C B. Define {Be} recursively for e > 1 by 

(20) Be =Be U (Be_ + 2e m)-2eA, where B = B. 

Then (A) 2(B), n-r (I - Xn), where Boo = Uk1 neokBe 

Proof. We use Proposition 4 with AO = A and Bo B. Since p(a) = oo 

e for each a E A , the sets in (I14) and (I15) become Ate 2 2A and Ae = 0 for 
e > 1 , so (16) reduces to (20). Let L be any positive integer and choose k large 
enough so that 2k > L. Then forall e > k, Benf{1, ., L = Bkn{1, I , L}. 
By (17), 

(A)M(B (2 ,n(Bk)2 kmn ]7 ( (mod x 2). 
nEB.0 

The proof is completed by letting L -* oo. 5 

Definition. If X C M, then let 

{X}jn = {x + km : x c X, k > 0} 

and 
(X)m={2e(x+km): xEX, k>0, e>0}. 

We say that a set S C Z+ is an "MP set" if there exists a modulus n and a set 
X of residues modulo n such that S = {X}L . 

Proposition 7. Let A and B be disjoint, nonempty subsets of M and assume 
6mA C B and 6mB C B. Define {Be} by (20) and put C = B U (B + m) - 2A - 
2B. Then 

00 00 

u n Be = {B}m - (A)m = (C)2in 
k=1 e=k 

Proof. Let B=B U (B + m) and Boo = Uk 00 nook B. 
(i) Boo c {B},n - (A)m . 
Clearly, Boo C {B}, m, since each B_ C {B}_. It remains to show that b E Boo 

implies b ? (A)m . We show the contrapositive: b c (A)m implies b ? Bo . 
Assume b = 2e(ai + mt) = bo + 2mt, where bo = 2al. By (20), bo 0 Be. 
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This implies b0, bo+2em Be+1 ; bo+2emv 0 B for v = 0, 1, 2, 3; etc. 
Thus, bo + 2emt 0 B,+k for all k > log2t, so b 0 B. . 

(ii) {B}m - (A)m c (C)2m* 
Let b c {B}m - (A)m. Then b =_ b + em (mod 2m) for some b1 E B, and 

some e = 0 or 1. Let b1 = b1 + em. Suppose b1 _ 2b11 (mod 2m) for some 

bjc E B. Since 1 < b1 and 2bi, < 2m, this congruence implies the equation 

bi = 2b1,, and so we have b = 2b1, + 2mt for some nonnegative integer t. 

Write t = 2t' +', ' = 0 or 1, and set b1 = b1, + c m. Then b., c B and 

b = 2b', where b' = bj, + 2mt'. Now b' c {B}m, since b' _ b1 (mod m). It 
is easy to see that b' 0 (A)m; for otherwise, we would have b = 2b' c (A)m 5 
a contradiction. Thus, b' E {B}m - (A)m. If bjf _ 2b1,1 (mod 2m), then we 

repeat the construction to obtain b" E {B}m - (A)m such that b' = 2b", where 
b= b.1 + 2mt", with b.11 E B. Now b = 2b' = 4b"= = = cannot 

continue indefinitely, so this process stops, say, after the eth stage. Hence, for 
some b(e) E {B}m - (A)m, we have 

(21) b = 2eb(e) = 2e(bj(e) + 2mt(e)), 

where t(e) is some integer at the eth step and bJ(e) E B ,but bj(e) 0 2bk for 

any bk E B. Using (21), it follows immediately that b E (C)2m if we can 

show that bj(e) E C = B - 2A - 2B. We already have that bi(e) E B. Also, 

bi(e) 0 2B, for otherwise, there exists a k, 1 < k < s, such that bi(e)- 2bk 

(mod 2m). Finally, the assumption bi(e) E 2A leads to b6(e) = 2a for some 

a E A, which implies bJ(e) + 2mt(e) E (A)m, a contradiction. So bJ(e) 0 2A. 

Thus, bJ(e) E C, which completes the proof of (ii). 

(iii) (C)2m C Boo . 

This follows easily from 

(22) {C}2m C 
Bco 

and 

(23) b eBoo => 2b (Boo 

since (C)2m is the "smallest" set which contains {C}2m and is closed with 
respect to doubling. 

Suppose that (22) is false. Then there exists c E C and an integer t > 0 
such that c + 2mt 0 Boo. Since c + 2mt E {B0}m (recall Bo = B), there is a 

least positive integer k for which c + 2mt E {Bk }2k-Im - {Bk}2km * By (20), 

c+2mt = 2ka+2kmu for some a E A, u > 0. If k > 2, then, since [a]m C B. 

we have 2k1 a = b + mv for some b. E B and v > 0. Consequently, 

c + 2mt = 2(b1 + (2k-Iu + v)m), which implies c 2bj (mod 2m). Since 

both c and 2b1 are in the interval [1, 2m], this congruence implies c = 2b1, 
contradicting the definition of C. If e = 1, then a similar argument gives the 
contradiction c = 2a. This establishes (22). 
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To prove (23), assume b E Boo but 2b 0 Boo. Since 6mB C B, 2b E 

{Bo}, . So there exists k > 0 such that 2b E {Bk}2km but 2b 0 {Bk+l}2k+lm . 

By (20) this means 2b = 2k+la + 2k+lmt for some a E A and t > 0. Hence 
b=2ka+2kmt. If k=0 ,then b-=a (modm),contradicting AnB=0. If 
k > 1, then b 0 Be for all e > k, contradicting b E Boo . LI 

The next result follows directly from Propositions 6 and 7. 

Proposition 8. Let A and B be disjoint, nonempty subsets of M and assume 
(5mA C B and 6mB C B. Then 

(A)2 (B)m- 17 (1-xn), 

nE (C) 2sn 

where C=BU(B+m)-2A-2B. 

Remark. No duplication occurs in (C)2m in Proposition 8, that is, one can show 

that 2e(C + 2kt) = 2e (Cl + 2k't) if and only if e = e', c=c',and k = k'. 
Thus, Proposition 8 gives an efficient method for computing the exponent set 
B00 of the product (A)2(B)n Hfl. (1 -Xn) up to any fixed limit L. 

Theorem 9. Let A and B be disjoint, nonempty subsets of M and assume 
(5mA CB and (mBCB. Then (A)2 (B)m _ I if and only if JAI = BI . 

First proof. Write A = {al, ...,ar} and B = {b, ...,b} and let C=B- 
2A - 2B as in Proposition 7. Since 2A and 2B are disjoint subsets of B. 

ICl = 2lBI - AI - BI = s - r. Thus, (A)m(B)m = 
HnE 

(1 xn) 1 

(C)2m = 0 C = 0 ,- = r. o 

Second proof. We use the fact that f(x) f(x2) is a necessary and suffi- 
cient condition for a product f(x) to be congruent to 1. Suppose f(x) = 

(A)2 (B)m 1. Then f (x) f(x2) , which implies (A)2(B)m -(2A)2m (2B)2m, 
or (2A)2m(B U (B + m))2m -(2A)m(2B)2m* Canceling equal factors gives 
(C)2, _ 1, where C = B U (B + m) - 2A - 2B. But this is impossible unless 
C = 0, since C has no multiple factors. But then we get IA = IBI. Con- 
versely, if IA = IB , then C = 0, so (C)2m 1, and we simply reverse the 

steps to get f(x) f(x2) or f (x) 1. o 

We remark that this second proof could as well have been given before Propo- 
sition 6. 

In Example 5, Ao = {3, 5, 7, 9, 15, 17, 19, 21}, Bo = {1, 2, 4, 6, 8, 11, 
13, 16, 18, 20, 22, 23}, and m=24. We then find that every element of Ao 
has finite rank, so in (18), A = B = 0, and Proposition 5 implies that 
(")Q24(w24 is an MP product, as we found before. In Example 6, Ao= 
{3,5, 13, 15}, B0 = {1,2, 4, 6, 7,9, 11, 12, 14, 16, 17}, and m = 18. 
Then A = {3, 15} and B = {6, 12} by (18). Since JAI = JBI = 2, The- 
orem 9 implies that (A)28(B)18 = 1, so the original product is an MP prod- 
uct. In Example 7, Ao = {3, 5, 7}, B0= {1, 2,4,6,8, 9}, and m= 10. 
Then A = {3, 7} and B = {2, 4, 6, 8}, so Theorem 9 does not apply. Also, 
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C = B-2A-2B = {2, 4, 6, 8, 12, 14, 16, 18}-{6, 14}-{4, 8, 12, 16} = 
{2, 18}. Then Proposition 8 implies that (A)2 (B)m Hfl_(C) -lxn). In 
?7, we will show that this latter product is not an MP product. We do this 
by proving in general (Proposition 13) that (A)2 (B)m is not an MP product, 
unless JAI = JBI, in which case (A) 2(B)m 1. 

6. THE DOUBLING GRAPH GM 

We present a graph-theoretical interpretation of doubling modulo m. We 
begin with a graph theory lemma. 

Lemma 10. Let G be a connected graph which contains exactly one cycle, and 
suppose the degree of each vertex is < 3. Let T be the number of terminal ver- 
tices of G (i.e., the vertices of degree 1) and let N be the number of nonterminal 
vertices of G (i.e., N = V - T, where V is the number of vertices). Then 
T = N if and only if there is no vertex of degree 2. 
Proof. Consider the single cycle {vl, ... , v,"} in the graph, n > 1. Each 
vertex v, in the cycle is the root of a single tree (possibly just the vertex vi 
itself) emanating from that vertex. Thus, G is clearly planar with F = 2 faces, 
one face lying inside the cycle and the other consisting of the rest of the plane. 
From Euler's formula: V - E + F = 2, we have that V = E,, the number of 
edges of G. Let N2 = the number of (nonterminal) vertices of degree 2 and 
N3 = the number of (nonterminal) vertices of degree 3. Then 

T+2N2+3N3= E degv=2E=2V=2(T+N2+N3), 
all 

which implies T = N3. Since N3 = N - N2, it easily follows that T = N if 
and only if N2 = 0. E 

For the rest of this section we will assume that our fixed modulus m is even. 
In what follows it will be useful to utilize the complete doubling graph GM 
obtained by applying 6m to each element of M. Its structure is as follows. 
(Note that the cycles at the top of Gm are determined first by the algorithm, 
while the odd vertices at the bottom are gotten last.) 

Write m = 2 kM1, where k > 0 and ml is odd. Partition {l, ..., ml} 
into disjoint orbits under the operation 5m . The set {cl, ... , c,} is an orbit 
if and only if (i) each ciE{1, .. , ml}, (ii) 6M ci = c+l (mod ml) <i< 
t - 1, and (iii) 5n Ctc =C1 (mod mi ). For each orbit, the top or first row of the 

associated doubling graph Gn contains the vertices 

2kc _2kC2 2kc 21 -2c2-...--21 
Below each vertex b in the top row is the unique vertex a E M such that 
2a _ b (mod m), but a is not in the top row. Starting with this second row, 
each even vertex b branches downward to exactly two vertices al and a2 in 
the third row, which satisfy the linear congruence 2x b (mod m) . (Note that 
al = - and a2 - 2n .) This procedure continues downward until we reach the 
bottom row where all the vertices are odd. The doubling graphs Glo, G18, and 
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G24 are shown in Figures 1, 2, and 3 below. (The circles drawn around some 
of the vertices will be referred to later.) 

4 - 8-4 ~ 

?) 7 ? 3 5 
FIGURE 1. G10 

C 2 - 4 -(5)-16-14 C 6-l2 (1) 

0(11)13 Q 3 5 3 15 
FIGURE 2. G18 

t8 ~~16) (24) 

4 20 2) 

/ \ / \I \ 
2 (1) ( 22 6 18 

(i)(g) 7 19 5 17 (g)() fl 3 15 9 21 

FIGURE 3. G24 

Definition. The notation x - y means 2 X _ 2fy (mod m) for some 
m 

e, f > O. 

Clearly, - is an equivalence relation on M. m 
Let H be a maximal connected subgraph (or component) of Gm. The ver- 

tices of H form an equivalence class of the relation - . The top row of H is 
the only cycle of H. For each element v in the top row of H, the subgraph 
of H branching downward from v is a binary rooted tree. Now suppose we 
have two disjoint, nonempty subsets A and B of M, where B = UaEA[a]m. 
Then 6mA C B. 6mB C B. and for each b E B there is an a E A such that 
b _ 2ea (mod m), e > 1 . To simplify the discussion of how the elements of 
A and B lie on the graph Gm, we will assume that A C H. (More generally, 
the elements of A are distributed over several components of Gm *) It follows 
that B C H. For any a E A, the chain [a]m consists of all the vertices of H 
directly above a, together with the top row of H. The set A U B and the edges 
joining any two vertices in A U B form a connected subgraph Hi of H. No 
downward path in H, terminates in a b E B, since, as observed above, every 
element of B is _ 2ea (mod m ), e > 1, for some a E A. Thus, the set of 
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terminal vertices at the bottom of Hi is exactly the set A, and the set of non- 
terminal vertices is exactly the set B. Using Lemma 10, this graph-theoretic 
interpretation gives us an alternative criterion for the cardinality condition in 
Theorem 9. 

Proposition 11. Let A and B be disjoint, nonempty subsets of M, where B - 

UaEA[a]n -Then IAI = IBI if and only if degb = 3 for every b E B if and only 
iffor each b E B, the two solutions x E M of 2x _ b (mod m) lie in A u B 

Proof. Let b E B. Since b cannot be a terminal point, we have that deg b - 

2 or 3. By Lemma 10, IAI = IBI if and only if deg b = 3 for every b E B if 
and only if each of the two elements xl, x2 in M such that 2xi _ b (mod m) 
isin AuB. o 

7. NECESSARY AND SUFFICIENT CONDITIONS FOR EULER RECIPROCATION 

We complete our analysis of the Euler reciprocation method by developing a 
method for proving the nonexistence of an MP reciprocal. 

Lemma 12. Let the decompositon (,S)2m(Dm = (A')2 (B')m (A)2 (B)m be given, 

where the sets A, B, A', and B' are defined by (18). Write (A)2 (B)m - 

HlnEs(l -xn) and (A') 2(B'),n HlXs'(1 xn). Then the exponent sets S and 
SI are disjoint. 
Proof. By contradiction. Assume n E S n S'. By Proposition 7, S C {B}m, so 

(24) n = b + mt 

for some b E B and t > 0. By the proof of Proposition 4, S' C {B'}m U 

{2P(a')(a' + mt'): a' E A', t' > 0}. (Here, p is the rank for the initial sets A' 
and B', i.e., p(a') = min {e > 1: 2ea' mod m 0 B'}.) Now {B}mn{B'}m - 

0 since B nB = 0. Thus, n 0 {B'}m, which implies 

(25) n = 2P(a')(a' + mt') 

for some a' E A' and t' > 0. Reducing modulo m, (24) and (25) yield 

(26) 2p(a' )a' mod m = b. 

By the definition of rank of a', 

(27) 2ka mod m EB'C 

for 1 < k < p(a') - 1 . Moreover, since b E UaEA[a],n , we have from (26) that 

(28) 2ka/ mod m EB C 

for k > p(a'). Relations (26)-(28) prove that [a']m C M. By the decomposi- 

ton in (18), a' E A, contradicting A nA' = 0. I 

Proposition 13. Let A C M and B C Even(M) be nonempty, disjoint sub- 
sets. Assume 5MA C B, 6mB C B, and for each b E B there exists an 
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a E A such that a - b. We cannot have (A)m(B)m- (D), for any modulus 
n >l1 and any set of residues 0 D C { 1, ...,n}. 
Proof. The hypotheses imply that m must be even. For if m is odd, then for 
any a E A, 2"a _ a (mod m), where v = the order of 2 mod m, giving the 
contradiction a E A n B. 

Case 1. n = m. 
Assume 

(29) (A)2(B)m (D)im 

for some set 0 :$ D C M. Note that D C B since (A)2 (B)m C (B)m . Let 

A = {xEM: 6mxE B. X 0 B}. 

Note that (i) A C A, (ii) B = Uae [a]m (because B C Even(M)), and (iii) 

for all x E M and all b E b, 5mx = b implies x E A U B. By Proposition 
11, AI = IBI . Let C = A - A . Then C is nonempty, for otherwise A = A, 

JAI= BI, and hence (A) 2(B)m- 1 by Theorem 9, contradicting (29). Multiply 
both sides of (29) by (C)2 to get 

(Cm(A m(B)m-( m(D)m 

or 
(A)2m(B)m - (C)2m(D)m 

or 
(C)2(D)m =- 1, 

using Theorem 9 and the fact that IAI = B I . Apply the decomposition (18) to 

(C) m (D)in, i.e., define 

C ={C E C: [c]m C D}, C =C-C , 

D 
it U [Clm n D = iDDt 

cEC / 

Write (C') 2 (D')In , 1nES'( 
_ Xn ) and (C")% (D" )it H ( -Xnv). Since 

S' and S" are disjoint by Lemma 12, we must have S' = 0. By the proof of 
Proposition 5, S' is a nonempty MP set unless C' = 0 and D' = 0. This 
means that C" = C and D = D. Thus, D = Ugc[c],. Also, C n D = 0, 

since C C A, D C B, and A n B = 0. By Theorem 9, ICI = IDI. By 
Proposition 11, 

(30) Vx E M and dED, 5,nx = d =- x E C u D. 

We derive a contradiction from (30). Pick any d E D. Since d E B, by 
hypothesis there exists an a E A such that a - d, say, 2ea _ 2fd (mod mi), 

where we can require that e, f > 1. Let d' = 2fd mod mi. Then d' E D 
since D is closed with respect to 6in . Write [a],m = {b1, b2, ... } and let k 
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be the minimum positive index such that bk E D ( k is well defined since 
d' E [a]m ). If k > l, then 6mbk-l = bk , and so by (30), bk-l E CUD. Thisis 

a contradiction, for bkl1 0 C, since bkl1 E B and B is disjoint from A D C, 
and bkl 0 D by the minimality of k. If k = 1, then a =_ b1, and by (30) 
we have a E C U D, another contradiction: For a 0 C since A n C = 0, and 
a 0 D since D C B and A n B = 0. 

Case 2. n is any positive integer. 
Let L = LCM[m, n], and define the sets 

A= {a+mt: aEA _ 

B= {b+mt: bEB, O<t<--l}, 

and 

D= {d+nt: dED, O<t -l}. 

We first verify that the hypothesis of Proposition 13 holds for the modulus L 
and the sets A, B, and D. It is straightforward to show that (i) 0 54 A C 

{1, 5... ., L}, (ii) 0 54 B C Even(f 1, . .. ., L}), (iii) A n B = 0 , (iv) 6 LA C B. 
and (v) 3LB C B. It remains to verifty that 

(31) vb E B 3a E A such that a - b. 
L 

Take any b E B. Then b _ b (mod m) for some b E B. By hypothesis, 
b - a for some a E A. By the definition of - , 2eb _ 2fa (mod m) for some 

m 

integers e, f > 0. Write 2eb = 2fa + 2mt. For any g > 0 and x (to be 
chosen later), we have the equivalence 

(32) 2e+gb 2f+g (a + mx) (mod L) 

if and only if 

(33) 2 x _ 2gt (modk) 

Write L = 2 k, k odd. Putting g = v, congruence (33) holds modulo 2" in 
for any x, while modulo k, (33) has the solution x = 2 ft (mod k). Thus, 
(33) has a solution mod L and, moreover, we can specify that 0 < x < m - 1. 
Congruence (32), which must hold for these values of g amd x, implies that 
b - a + mx . Setting Ca = a + mx establishes (31). 

L 

It is easy to show that (A)L = (A),,n 5(B)L = (B) n 5 (D)L = (D)n 5 and hence 

(A)L(B)L = (A)in(B),n = (D)n = (D)L 

Thus we can reduce to Case 1 with the common modulus L. O 
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Theorem 14. Let 5 and W be disjoint, nonempty subsets of M. Define 
A, A', B, B' by (18). Then (,W)2 (W)m is an MP product (mod2) if and only 
if JAI = JBI. 
Proof. (I) If IAI = IB , then (A)2(B)m 1_ by Theorem 9. Hence 

(5 )2n(~ = (A' )2 (B) )m 
which is an MP product by Proposition 5. 

(=a) Suppose (V)2(_q)m is an MP product. If m is odd, then A = 0 
and therefore B = 0, so we are done. Assume that m is even. It is clear from 
(18) that B C Even(M). Write (A)2(B)m Hne(l -xn) and (A') 2(B')m- 

HnES'(1 -_x). Since S and S' are disjoint by Lemma 12, and S' is an MP set 
by Proposition 5, it follows that (A)2m (B)m is an MP product. This is impossible 
by Proposition 13, unless (A) 2(B)m _ I . By Theorem 9, JAI = JBI. 

Proving Theorem 14 completes the analysis of the Euler method and allows 
us to formulate the following complete, 4-step algorithm for this method. 
The Euler reciprocation algorithm. Given a modulus m and a set of residues 
U C M = {1,..., m}. Determine whether (I) isMP modulo 2. If it is, then 

find the modulus n and set of residues D C {1, .. , n} such that () (D)n 

Step 1. Extend by (7) to the even modulus 2m if m is odd. (We will continue 
to write " m " for both cases.) 
Step 2. Write 1 = (Q1)2Oq~)m' where v = Odd(M - U) and _ - 

Odd(U) U Even(M - U). 
Step 3. Use (18) to define A, B, A', B' in the decomposition 

(5) 
2 

(_)m= (A)2 (B)m (A' ) (B')m 
Step 4. Does JAI = I ? 

If no, then stop: I is not MP. (Proposition 8 may be used to compute 
the exponent set Bo of the reciprocal product (U) flneB (I-Xn).) 

If yes, then: 
Put A0 = A, B0 = B' in Proposition 4. 
Let d = maxaeA' p(a), where p(a) is defined in (13). 
Use (14)-(16) to compute Bd. 
Then u) Bd )2d. 

Reduce to a smaller modulus if possible. (Use inspection if 2dm is 
small or else use algorithm Pattern Recognizer, described in ?2, on the set Bd ) 
Definition. The set A C M is called symmetric with respect to the modulus m 
if m - a E A for every a E A - {m}. 

Alternatively, A is symmetric if and only if for every a E A there exists 
an a E A such that a + a' -- 0 (mod m). Note that a' :$ a unless a = m 
or a = 'n , m even. Observe that for a fixed modulus m, symmetry is closed 
with respect to set-theoretic unions, intersections, differences, and complements 
(M - A). 
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Lemma 15. Let A C M be symmetric and suppose for some modulus n and set 
of residues A' C {1, ..., n} that (A)m (A')n. Then A' is symmetric with 
respect to n. 

Proof. Let r = LCM[m, n] and let the set of residues (mod r) be A". Then 
clearly A" is symmetric. Dropping to the set A' by reducing to modulus n 
preserves the symmetry. u 

Thus we can say that an MP product (A)m is symmetric if A is symmetric 
with respect to m. By Lemma 15, this definition is independent of the choice 
of the modulus and set of residues A . 

Theorem 16. Assume (D)m is symmetric and has an MP reciprocal (mod 2). 
Then (D) is symmetric. 

Proof. By using (7), if necessary, we may assume that m is even. It is clear that 
the sets M - D, Odd(D), and Even(M - D) are symmetric. Hence, by (9) in 
Proposition 3, we may write (D),(V)m where v and q are sym- 
metric. In the decomposition in (18), the sets A and B are symmetric, since 
the negatives mod m of [a]m = {2a, 22a, ... } C W must lie in the symmetric 
set Xq. It follows that the complement sets A' and B' are symmetric, By 
Theorem 14, ( (A')2 (B'),n . By Proposition 5, (A') 2 (B )m (Bd)2dM , for 
some set Bd defined in (16). It is easily checked by induction that the sequence 
of sets {Ae}f {A'}, and {Be} in (14), (15), and (16) are symmetric whenever 
the initial sets AO = A and Bo = B are. Hence, Bd is symmetric. o 

8. THE DECISION ALGORITHM 

The previous section gives a method for determining whether a given prod- 
uct (A),n has an MP reciprocal and for finding it when it does. The method is 
somewhat lengthy in that we must first apply Proposition 3 to express the recip- 
rocal (Al as a product (A0)2 (Bo)n modulo 2 and then carry out a sequence 
of detailed set calculations. If the cardinality of A is small in comparison to 
m-which is often the case-then the set AO will at least contain all of the odd 
integers in M - A, a large set to work with. In this section we present a sec- 
ond algorithm which decides directly whether (A),n has an MP reciprocal, but 
does not concern itself with finding the MP reciprocal when it exists. The outer 
loop of this algorithm runs through the elements in A, so it is highly efficient 
when JAI is small. Like the method of the previous section, all arithmetic is 
performed modulo m. 

We are now in a position to derive a necessary and sufficient graph-theoretic 
condition for an MP product not to have an MP reciprocal. 

Theorem 17. Suppose we are given a positive, even integer m and a set A C M. 
Put Ac = M - A. Then (A),n has an MP reciprocal (mod 2) if and only if 
there does not exist an a E A and a number b E Odd(Ac) satisfying the three 
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conditions: 

(i) [a], C AC, 

(34) (ii) [b]m C AC, 

(iii) [a]m n [b]m $4 0. 

Proof. (By contradiction.) Let 

o = {x E Odd(Ac): [X]m C Even(AC)}, 

0 = Odd(AC) - 0 

E= U VXmI 

and XCO 

E = (Even(AC) - E) U Odd(A). 

By Proposition 3, 

(A)m (?)m(E)m m (E) . 

('<=) Assume that (A)m has an MP reciprocal and suppose there exists an a E A 
and a number b E Odd(Ac) satisfying (34). Since a 0 E U 0, we show that 
this leads to a contradiction of Theorem 14 and Proposition 11 by exhibiting 
an element c E E such that 2a -c (mod m). Condition (iii) says that a 
and b are vertices in the same component of Gm. Condition (ii) says that 
b E 0 and that all vertices of Gm which branch upward starting from b, lie 
in E. Let [aim = {a, , a2, ... , au, ... }, where u is the least positive integer 
such that au E [blmw (This holds for some u by condition (iii).) We know 
that au E E, so Theorem 14 and Proposition 11 guarantee that auI1 E EU 0. 
The case au-I EQ is clearly impossible, since au-1 is even. Thus, au-1 E E. 
Continuing, we get that au-1, ..., al E E. Letting c = al, we arrive at the 
promised contradiction, since 2a a, (mod m), a, E E, but a 0 E U 0. 
( =} ) Assume that (A)m has no MP reciprocal. By Theorem 14 and Proposition 
11, there exist c E E and x E M-(EU0) such that 2x _ c (mod m) . Now the 
very fact that c E E means that c- 2eb (mod m) for some b E 0 and e > 1. 
By the definition of 0, [b]m C E c Ac. Since M = 00E00'JE'JEven(A), 1 

the condition x 0 E U 0 implies x E O or x E Even(A) or x E E'. The first 
case, x E O', implies 2x _ c _ 2b (mod m), which leads to the contradiction 
[X]m = [b]m C E. If x E Even(A), then a = x and b satisfy (34), so 
we are done. This leaves the case x E E' = (Even(Ac) - E) U Odd(A). If 
x E Odd(A), then we are done by taking a - x E A. So, finally, assume 
x E Even(Ac) - E. Then keep halving x until a value a is reached which 
is either not in Ac or else is odd. If a 0 Ac, then we are done, since a 
and b satisfy (34). If a is odd, then we claim a E A. For if a E Ac, then 
[a]m = {2a mod mi, 4a mod m, ..., x} U [x]m C Ac, which implies a E 0, 
which in turn implies the contradiction x E E. So a E A. LI 

iHere U denotes disjoint union. 
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Algorithm. InvertTest (m, A = {al, ... , arl) . 

{Determine whether (a1, ... , ad)m has an MP reciprocal (mod 2). The mod- 
ulus m must be even and ai E M must be distinct. Let Ac = M - A. The 
function InvertTest will return a 1 if (A1) is an MP set, 0 otherwise.} 

Denote by v2(a) the highest power of 2 which divides a. 
Function UpSearch (a) 
{Search Gm for a path entirely in Ac from a up to the top level. If such a 

path exists, return the element at the top; otherwise return 0 (= false).} 
begin 

while v2 (a) < V2 (m) do 
begin 

a = ,1(a) 
if a E A then return(O) 

end 
return(a) 

end. 
Function TopSearch (top) 
{Search the top level of Gm for an orbit lying entirely in Ac. Return 1 (= 

true) if such an orbit exists.} 
begin 

a = top 
repeat 

a = 6m(a) 
if a E A then return(O) 

until a = top 
return( 1) 

end. 
Function Branch (a) 
{ A recursive function which determines whether there exists a path in Ac, 

starting with a, down to the bottom of Gm .} 
begin 

if a E R then return(O) 
else if a is odd then return(1) 

else if Branch( a/2 ) then return( 1) 
else return(Branch( a + m 

end. 
Function DownSearch (top) 
{Search Gm for a path entirely in Ac from top to the bottom.} 
begin 

first = top 
repeat 

preytop = top 
top = am (top) 
second = top/2 
if second = preytop then second = second + m 

if Branch(second) then return(l) 
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until top = first 
return(0) 

end. 
begin {InvertTest} 

for i = 1 to r do 
begin 

top = UpSearch(ad) 
if top > 0 then 

if TopSearch( top) then 
if DownSearch( top) then return (0) 

end 
return( 1) 

end. 

To show that (A)m does not have an MP reciprocal, the algorithm searches 
for a counterexample satisfying (34). For each a E A, UpSearch looks for an 
upward path C [aim, lying entirely in the complementary set Ac = M - A 
and terminating in the element top in the top row of Gm. TopSearch then 
checks that no element of A lies in the top row. If this is so, then DownSearch 
attempts to find a path in Ac, from some element in the top row down to an 
odd member of Ac in the bottom row of Gm. If successful, the pair a, b 
provides the counterexample required by Theorem 17. If unsuccessful for all 
a E A, then (A)m has an MP reciprocal. 

To illustrate this method, consider Examples 5, 6, and 7 again. In Example 
5, wehave m = 24 and A = {1, 10, 11, 12, 13, 14, 23, 24}. The A vertices 
in G24 have been circled in Figure 3. Beginning with vertex a, = 1 , InvertTest 
will call function UpSearch to find the path 2 - 4 - 8 entirely in Ac up to 
top = 8. Next, function TopSearch will discover that the top row cycle 8 - 16 
lies entirely in Ac . DownSearch, however, will be unable to find a path, starting 
at any member of this top row, lying entirely in Ac, which branches down to 
one of the odd vertices 7, 19, 5, or 17 of Ac in the bottom row. Observe 
that each downward path is successfully blocked by 1, 13, 14, 10, 11, or 23. 
InvertTest will similarly be unsuccessful beginning at any of the other 5 circled 
vertices in the left component of G24 . When InvertTest begins with a = 12 or 
24 in the right component, it will be unable to find a path in Ac to the top row, 
since the only element in the top row, 24, is in A. Thus, InvertTest will return 
1 (= true), indicating that an MP reciprocal exists. 

In Example 6, we have circled the vertices in G18 for A = {1, 7, 8, 9, 10, 
11, 1 7, 1 8} in Figure 2. Since each of the two components of G18 with circled 
vertices contains an element of A in the top row, InvertTest will fail to find a 
counterexample and will report that -i- is an MP product. (The second (A) 18 
component is not involved because no element of A lies in it.) 

In Example 7, where the vertices in G10 for A = {1, 9, 10} are circled in 
Figure 1, the program (with a, = 1 ) immediately finds that top = 2. The top 
row, 2 - 4- 8 - 6, lies in Ac, and 4- 7 is a downward path to Odd(Ac). 
Thus, a = 1, b = 7 provides a counterexample by Theorem 17, and so (A)Io 
has no MP reciprocal. 
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An immediate application of Theorem 17 is the following result, which com- 
pletely settles the reciprocation question for odd moduli. 

Theorem 18. Let m be odd and A C M. Then (A)m has an MP reciprocal 
(mod 2). 
Proof. Let A = {al, ..., at} . We must expand (al, ..., at) by (7) to obtain 

(al, ..., at, a, + m, ... , at + m)2m, which has an even modulus. Each com- 
ponent of G2m has 2 rows. For each i, the integers al and ai + m lie in one 
component, since 2. al 2(a, + m) (mod 2m), with one of the pair ai, ai + m 
always being even, and hence lying in the top row. Thus, condition (i) in (34) 
can never happen for a = ai or a = ai + m . Letting i range from 1 to m, we 
find that (A1) is MP. u 

9. APPLICATIONS TO SPECIAL PRODUCTS 

In this section we will investigate when the following two well-known MP 
products have MP reciprocals. These are: 
Jacobi's Triple Product [4, equation (9)]: For 0 < Ill < k, 

0.0 2 

(35) (0, ?(k - 1))2k = (-l )n Xkn +In 

-00 

and the 
Quintuple Product [4, equation (20)]: For 0 < 2k < m, 

(36) (?k , ?(m -2k) , ?(m -k) , m , 2m )2rn Zx~3 ?2 (x3k -x 3k 
-00 

First consider the single-variable Jacobi triple product 
0.0 

1(1 - x+k)(l -X(j+l)tn-k)(I -_ (j+l)) 1 < k < 2 
2' 

j=O 

which in our notation is (?k, m)m . Without loss of generality, we may assume 
that (mi, k) = 1 , for if not, then the product can be written as a product in a 
power of x with a smaller value of m . 

Theorem 19. Let m > 3, 1 < k < m2 , and (m, k) = 1. The Jacobi triple 2 
product (?k, m),n has an MP reciprocal (mod 2) if and only if (i) m is odd, 
(ii) m = 2ee > 2, or (iii) m = 6. 
Proof. The case when m is odd was settled in Theorem 18, so assume that m 
is even. Let us begin with the specified value k = 1, so A = {1, im - 1, i} . 

Case 1. m = 2e , e > 2. 
The doubling graph Gin consists of a single component with only the vertex 

m at the top. Hence, no path [x]m lies entirely in Ac, i.e., conditions (i) and 
(ii) of (34) are never satisified, so (A1) is an MP product. 

Case 2. m = 6. 
Example 4 verifies that (1 1 is MP. 

15,6)6 
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Case 3. m = 2k, k > 5, k 2e. 
Here, 1 and m - 1, being odd, lie in the bottom row of Gm. Also, 1 and 

m are in different components, for otherwise, 1 - m implies 2e* 1 = 2f m = 0 m 
(mod m), which is a contradiction, since m cannot divide a power of 2. Now 
consider the component H of Gm which contains 1. Then H contains an 
equal number of odd and even vertices. Since 2, 4, and 8 are three distinct, 
even vertices of H, and A contains only two odd vertices, there exists an odd 
vertex b E H n Ac. The vertices a = 1 and b satisfy (34). Hence (Al) is not 

MP. 
Now consider the case k > 1. Observe that the map ak: M -+ M, given 

by uk(X) = kx mod mi, is a permutation, since (m, k) = 1. When applied to 
Gm~ Sk takes vertices to vertices and preserves adjacency. Hence, Sk is a graph 

automorphism. Let A' = ak(A) = {k, m-k, m} and (AC)' = ak(AC) = M-A'. 
Then for any pair (a, b) with a E A and b E Odd(AC) satisfying (34), the 

elements a' = Sk(a) and b' = ak(b) satisfy a' E A', b' E Odd((AC)'), and 

conditions (34). Thus, (A')m has an MP reciprocal if and only if (A)m does. E 

Theorem 20. The quintuple product (?k, +(m - 2k), ?(m - k), m, 2m)2m, 
where 0 < 2k < m, (k, 2m) = I, and m > 4, has an MP reciprocal (mod 2) if 
and only if (i) m is odd, (ii) m is 2 * odd, (iii) m = 2e, e > 2, or (iv) m = 12. 
Proof. As in the proof of Theorem 19, we can reduce the proof to considering 

the case when k = I, i.e., we take A = {1, m -2, mi- 1, m, m+ 1, m+2, 
2m- 1, 2m}. 

Case 1. m odd. 
Here, G2m contains the component 

m3l 2-4 ... 

The vertex m + 1 is in the top row, since i + 1 is even, and it precedes 2 

since 2(m + 1) _ 2 (mod 2m). Thus, condition (i) in (34) fails for the three 

integers 1, m + 1, m + 2. A similar argument works for 2m - 1, m - 1, and 

m - 2. Clearly, the vertices a = m and a = 2m can easily be ruled out as well. 

Hence, I is MP. 
(A)2111 

Case 2. m=2*odd. 

Here, Gm contains the component 

43 4-8 ... 

@1 
2 

Since 41 m + 2, then m + 2 lies at the top level, which prevents the three vertices 

1, im + 1, and m + 2 in this component from satisfying condition (i) in (34). 
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A similar argument holds for m - 1, m - 2, 2m - 1 and also m, 2m. Thus, 
1 is MP. 

(A)2,,, 

Case 3. m = 2e, e > 2. 
Same argument as in Case 2 in the proof of Theorem 19, since 2m is the 

only vertex at the top of G2m . 

Case 4. m = 12. 
Verified in Example 15. 

Case 5. 41m, m 54 12, m 2e. 
Here 812m. The location in G2m of the 8 residues in A (these are circled) 

is: 

8 2m-8 

4 2m-4 / \ 

2 m-2 2m-2 

The two subgraphs on the left may or may not be connected, but each is 
certainly disjoint from the component on the right, since m :$ 2e Moreover, 
since 81m, both 8 and 2m - 8 are in the fourth row from the bottom, which 
may or may not be the top level. If 8 is not in the top level, then there must 
be a path in Ac leading down from 8 to an odd element in Ac. In this case, 
MP reciprocation is impossible by Theorem 17. If 8 is in the top level, then 
the length of the orbit of 8 is at least two, since m $ 2e . The entry 2 . 8 mod 
2m will branch down to an odd b E Ac unless 2.8 * 2m - 8 (mod 2m), or 
equivalently, unless 2m124, which has been ruled out in this case. o 

Reciprocation of the Jacobi triple product or quintuple product can be used 
to give infinitely many parity results for the partition functions generated by 
the reciprocal of certain MP products. Suppose, for instance, that S = { n E 
Z+: n-r, ... , rt (mod m)} and p(S; n) is the partition function generated 
by 

00 

(37) r1 A = Ep(S; n 
nES > n=O 

In some cases we can compute p(S; n) (mod 2) from (37) by reciprocating the 
product on the left modulo 2. Whenever this reciprocal turns out to be a prod- 
uct whose expansion we know, such as the Jacobi triple product or quintuple 
product, we can expand this product and equate coefficients in the power series 
modulo 2. (Although we could work out some general classes of parity results, 
we will not do this here.) For example, suppose A = {?I, +2, +4, +5, 6}, 
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m = 12, S = {A}m and (A) = EZ=Op(S; n)xn. We know from Example 4 

that (12,6), (A)12, so the Jacobi triple product gives 

00 

1X 
00 3k2+ 00 

-)+X(k2 
ZP(S; n)x = (A) (1, 5, 6)6 ZX3k2?2k = 1 +Z(xk(3k 2) +xk(3k?2)) 
n=0(A) 12 -00 k=i 

It follows then that p(S; n) is odd if and only if n = k(3k + 2), k > 0. 
In addition to the parity result above for the case m = 6 in Theorem 20, 

we have comparable results when m = 2e e > 2, and when m is odd. In 
particular, when m = 5 and S ={n: n +(1,2, 5,6, 8, 9) (mod 20)}, we 
learn from Example 2 and (35) that the parity of p(S; n) is odd if and only if 
n = k(5k?3) k > 0. (See [2, pp. 746-747].) 

Example 5 provides another parity result, this time using the quintuple prod- 
uct formula. In this case, let A = {+1, +2, +4, +8, +10, +11, 12} and 
m = 24. Then by the results in Example 5 and (36) we have 

00 

Ip(S; n~n = (A) -(1, 10, 11, 12, 13, 14, 23, 24)24 
n=O A2 

00 

Z 6(3k +k) (X -3k x3k+ 1) 
-00 

_ 
(X 18k2+3k + 18k2 +9k+1 + +(x 18k -3k + 18k2-9k+1 

k=O k=l 

Thus, p(S; n) is odd for n > 0 if and only if n = 0, 1, 18k + 3k or 
18k + 9k + 1 for k > 1 . 

TABLE 2 
S p(S; n) is odd exactly when Reference 

2 2 1. n 0,? (2, 12, 14), 16 (mod 32) n = k or 2k , k> 0 [3,Th. l(a)] 

2. n 0,? (4, 6, 10), 16 (mod 32) n = k2 _ 1 or 2k2- 1, k > 1 [3,Th. 1(b)] 

3. n 0,? ?5 (mod 12) n = k2 or 3k2, k> 0 [3,Th. 3(a)] 
4. n 0,? 1 (mod 12) n = k2 _ I or 3k2 - 1, k > 1 [3,Th. 3(b)] 
5. n $ O, ?(3, 4, 8, 9) (mod 24) n = 2k(k + 1) [4, (26)] 

or 6k(k + 1) + 1, k > 0 
2 2 6. n (1, 2, 8, 9), 10 (mod 20) n = k or 5k , k > 0 [4, (32)] 

7. n-?(3, 4, 6, 7), 10 (mod 20) n = k2 _ I or 5k2 _ 1, k > 1 [4, (33)] 
8. n _( +(, 3, 7, 9), 10 (mod 20) n = k(k + 1) [4, (41)] 

or5k(k+ 1)+ 1, k >0 
2 

9. n ?(1,2,5),6(mod 12) n=0, 1, or(3k?1) , k> 1 [4,p.312] 
10. n-?8, 16(mod32) n=(2k- 1)2 , k> 1 [4,p. 313] 

11. n ?(3, 6, 12, 15), 18 (mod 36) n = 0 or (3k ? 1) - 1, k > 1 [4, p. 314] 

In Table 2 we give other parity results for the partition functions derived 
from the eleven expansions proved in [3] and [4]. These results differ from those 
using (35) or (36). (Cf. (2).) Note that the classes in S above were obtained by 
Euler reciprocation of the products appearing in the referenced equations. (The 
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reciprocation for 1. and 2. has already appeared in [3, Theorems 2(a),(b)].) To 
prove 6., for example, observe that identity (32) in [4] gives the congruence 

(0, +1)10(+12)4 (+4)20 1 + Z(x +x 5). 
n=1 

Applying Euler reciprocation to the left-hand side, we obtain 

1 

(0, +1)10(+12)40(+4)20 

(+1)10(+3, +5, +7, +13, +15, ?17)20(+2, +6, +8, +14, +18)40 

= (+1)1o(+3, ?5, ?7)20 (2, +6, +8, +14, +18)40 
-(1) (+6, +10, +14)40(+2, +6, +8, +14, ?18)40 

= (+1))10(2, 10)2o(+8)4 (+6)2o 

(+1) 10)(2, 10)20(+8)40(+1 2)40 

=(1, +2, +8, +9, 10)20. 

(We made a few short cuts, by halving the modulus of the square terms, when 
possible. The strict Euler reciprocation algorithm terminates at modulus 160 
and then reduces to the final modulus 20.) 

10. SOME PROBABILISTIC CONSIDERATIONS 

In Theorem 18 we proved that MP products with an odd modulus always 
have an MP reciprocal. In the case of even moduli, it is not true that all MP 
products have MP reciprocals. For example, it is easily checked that (1 )2n has 
no MP reciprocal for n > 2. It is of interest, then, to get some idea of how 
often MP products with even moduli do not lead to parity results because the 
reciprocation in (3) fails. Alternatively, we give in Table 3 below the number 
of "successes", i.e., the number and percentage of the 2m subsets A of M for 

TABLE 3 
Symmetric 

m Successes % Symmetric Successes % 
2 4 100.0 4 4 100.0 
4 14 87.5 8 8 100.0 
6 56 87.5 16 16 100.0 
8 218 85.2 32 30 93.8 

10 968 94.5 64 56 87.5 
12 3052 74.5 128 112 87.5 
14 13456 82.1 256 232 90.6 
16 57074 87.1 512 474 92.6 
18 225904 86.2 1024 928 90.6 
20 868924 82.9 2048 1744 85.2 
22 4190216 99.9 4096 3976 97.1 
24 12442132 74.2 8192 6540 79.8 
26 67092488 99.9 16384 16136 98.5 
28 192697400 71.8 32768 29680 90.6 
30 793659328 73.9 65536 54208 82.7 
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which (Al) is an MP product for m = 2, 4, 6, ... , 30. The table also lists the 
number and percentage of successes when A is symmetric. (For completeness, 
we assume the empty product and its reciprocal are MP.) The data in Table 3, 
which was initially computed by exhaustive search, can also be obtained from 
a probabilistic, graph-theoretic argument as follows. First, let T, be the full 
binary rooted tree with 2" - 1 vertices, where the length from the root to each 
terminal vertex is exactly n - 1 . 

T, T2 T3 

* 
0/10A 

Now two-color the vertices of T ,say, using red and green. Let Zn count 
the number of colorings of Tn so that no path exists from the root to a terminal 
vertex lying entirely in red vertices. Greg Manning has shown 

Proposition 21 [Manning]. The number zn satisfies the recursion 
2 2n -2 

(38) Z 2 =z_+ 2 z0=0. 
2n-2 

Proof. If the root of Tn is green, then there are 2 - ways to color the re- 
maining 2n - 2 vertices. Now suppose the root is red. Remove the root from 

Tn obtaining T a forest of two trees isomorphic to Tn_ -I. By independence 
of the two trees, the number of ways to color Tn so that no red path extends 
from either root to a terminal vertex is Zn1. 

2 

From Proposition 21 we readily obtain the initial values: z1 = 1, Z2 = 5, 
z3 = 89, and z4 = 24305. 

We return to the problem of computing the probability that algorithm 
InvertTest will succeed for any arbitrary subset A C M for a given mod- 
ulus m. We take advantage of the fact that the probabilities of success for the 
components of Gm are independent and therefore can be multiplied together 
to give the probability of success for the entire graph. Note that the probability 
calculation for each component H of Gm depends only on the number of 2's 
that divide m and the length of the orbit in the top row of H. Let n = the 
number of rows in H and k = the number of elements in the top row. The 
parameters n and k uniquely determine the probability of success, i.e., the 
probability that a subset A of H, chosen at random, has the property that 
no pair a E A, b E Odd(AC) satisfies (34). Let S(n, k) count the number 
of successes and F(n, k) count the number of failures. Then the probability 

P(n, k) of success is S(n, k)/2 
We calculate F(n, k), the number of ways we can choose a subset A of 

the vertices of H so that there exists a counterexample a c A, b c Odd(AC) 
satisfying (34). Let the vertices in A be green, say, and those in Ac be red. 
To construct a counterexample, we are forced to color the entire top row of H 
red, i.e., the top row must lie in Ac. If this top row of H is removed, then 
the remaining forest H' will have k trees, each isomorphic to Tn7i . There 
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are 2(2 -l)k ways to color the vertices of H'. Conditions (i) and (iii) of (34) 
are automatically satisfied, provided A 54 0, since, given any coloring, we can 
work our way down H', remaining in red vertices (in Ac), until we eventually 
come to some green vertex a E A. We need only count the number of ways to 
satisfy condition (ii) of (34), which requires that a red path exists from a root 
of one of the trees T l down to a terminal vertex. By the independence of 
the k trees and Proposition 21, the number of ways that such a red path fails 
to exist is zk. Thus, n-1 ' 

(2nl 1-1 )knk 

(We subtract 1 to exclude the case where all vertices are red.) It follows that 

2n 2 n-I-'k k (40) S(n, k)=22k _ 2 + Z +1 

Using (40) and (38), it is easy to verify the following formula for the probability 
P(n, k): 

k 

(41) P(n, k) = 1 - - + k + 2n-lk 

where 

(42) nu = (un2 + 1)/2, u = 0. 

By independence, the total number of successes for a modulus m is the 
product of S(n, k) for each component H of Gm. For example, one finds 
that G28 has three components, whose top rows have orbit lengths of size 3, 3, 
and 1. By (40), S(3, 3) = 2 2 - 29 + 53 + 1 = 3710 and S(3, 1) = 14. Thus, 
the probability of success for G28 is 

2 (3710) 14 192697400 
228 268435456 = 71.8%, 

in agreement with Table 3. 
As another example, the graph G22 consists of two components, one with 

the ten elements 2, 4, 8, 16, 10, 20, 18, 14, 6, 12, forming a cycle in the 
top row, and the other with only 22 in the top row. For the first component, 
S(2, 10) = 220 - 210 + 2 = 1047554, while S(2, 1) = 4. By Theorem 17 and 
the independence of the events for the two components, the number of subsets 
of M which have MP reciprocals is S(2, 1 0)S(2, 1) = 4190216, the value 
given in the the second column of Table 3. The percentage of successes is thus 
4190216 = 99.9%. Such a high percentage will always occur when m = 2p, where 4194304- 

p is a prime having 2 as a primitive root. Then G2p also has a two component 
graph with two lines, where the ratio of successes to the total number is 

S(2, p- 1)S(2, 1) 2 -2P++ 1 1 
22p - 22p - . ' 2P-1+ 22p-3 

The data in Table 3 were computed using Algorithm InvertTest on an IBM- 
compatible AT personal computer. In every case, the numbers agree with the 
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values obtained using (40). This provides an excellent check on the program. 
Finally, we mention that a similar theoretical analysis could be made to verify 
the number of symmetric successes given in Table 3. 
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