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APPROXIMATION BY MEDIANTS 

WIEB BOSMA 

ABSTRACT. The distribution is determined of some sequences that measure how 
well a number is approximated by its mediants (or intermediate continued frac- 
tion convergents). The connection with a theorem of Fatou, as well as a new 
proof of this, is given. 

0. INTRODUCTION 

Let x denote an irrational number. From the expansion of x into a regular 
continued fraction 

(0.1) X = Bo + [BO; Bl, B2' 

o B? 1 = one gets the convergents P,/Qn of x by truncation, 
P 

(0.2) Qn =[BO;BlB2...,B0I, n>0. 

These convergents satisfy the relation 

(0.3) Pn = BnPnI + Pn-2 n > 2, 
Qn BnQn-I + Qn-.2' 

and provide very good approximations to x; for instance, defining {E n(x) }In?= 
by 

(0.4) .x- Pn - = e(x) 
Qn Q 

it is a classical result that E,3(x) < 1 always holds. In [1] it was shown that for 
almost all x the sequence {fE(x)} I'% has a limiting distribution ' F(z), 
where 

0 O. for z < 0O 
Z~~~ for 0 < z ? 1 

(0.5) F(z) 2 
j - z+log(2z), for ' < z < I 

log 2, for 1 < z. 
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Here we will consider a similar question for the mediants (or secondary conver- 
gents, or intermediate convergents) of x; these are defined by 

L(B) BP,1 +Pn-2 (0.6) MnB BQ I + Qn-2- 
MAB BQn- + Qn-2 

for integers B, 0 < B < B (n > 2). In particular, we will derive in ? 1 for 
almost all x the limiting distribution of the sequences {e OB) (X)}ji0 for every 
B, where E)B) (x) is given by 

(0.7) x n = n 

Note that some care is needed because L(B)/M(B) and hence O'B) does not 
exist for every n and B. The values of (9(B) are not bounded by 1 but satisfy n 

(0.8) B e I B) < <B 1; 

thus these values are uniformly bounded for fixed x if and only if the partial 
quotients Bn are bounded. In ?1 we study the distribution of Et B) for fixed 
B. In order to be able to study the distribution of the values of 8(B) for n 
all B simultaneously (in ?2), we will consider sets of the form {EiE < C} 
(for any positive real constant C), with E = QjQx - PI, where P/Q ranges 
over the rationals that are either convergents or mediants of x. Finally, in ?3 
and ?4 we collect some (previously known) results, especially concerning the 
approximation by nearest mediants, that follow from the method employed. In 
particular, we show how to retrieve Fatou's theorem, stating that every rational 
number P/Q for which QlQx - Pl < 1 is either a convergent or a nearest 
mediant of x. 

In the following we will always assume rationals P/Q (and L/M) to be in 
lowest terms, i.e., that gcd(P, Q) = 1 and that Q > 0. Whenever a result is 
stated for almost all x, this is meant to be in the Lebesgue sense. 

1. APPROXIMATION BY MEDIANTS 

The main tool we will use is a variation on a theme that first appeared in [1] 
and was used in several papers thereafter. The theme consists of considering 
the sequence {(Tn (x), /Vn(x))} I ?0 for an irrational number x, where Tn (x) is 
given by 

(1.1) Tn = Tn(x) = [0; Bn+1 5 Bn+2 ... 

and VnJ(x) by 
(1.2) Vn = J/(x) = [0; Bn, Bn1, Bi], 

with Bi as in (0. 1). For every x and every n, the pair (T, (x), Jn (x)) E [0, I ] x 
[0, 1], and for almost all x the sequence {(Tn(x), J/ (x))} '0 is distributed 
over the unit square with density function 

(1.3) i i 
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Basically, this is a consequence of the fact that 

(1.4) (X, ,, ,S) forms an ergodic system; 

here X is the unit square and S acts on X by 

7(x,Y) =(- - KJ Lk+Y) 

q is the collection of Borel subsets of X and ,u is the measure on X with 
density function I 

(1 2 (see [10]). Using ergodicity and the first of the 
basic relations 

(1.5) (= T and 8 - V_=l __ n 1+T7~V n-i 

one gets immediately that 

lim -#jj < n : O(3yX) < ZI = Gl(X?), nWoo n 
where - is the subspace of X consisting of points under the hyperbola 

T 
1+ TV 

The variation we need here is, that instead of using the function On in every 
point of the unit square, we consider Bn - 1 functions, namely Oi(B) with n ~~~~~~~~~n 
0 < B < B . More precisely, let B > 0; then the function O(B) as in (0.7) n ~~~~~~~~~~~~~~~~~~n 
is defined in (Tn Il, J/- 1) e [0, 1] x [0, 1] precisely when the partial quotient 
Bn exceeds B, that is, when Tn~l < Bl I . So e(B) is defined on the rectangle 

(1.6) B)={(T, V): 0 T< 1 7 < V < I 

Instead of (0.6) and (0.7) one would like to have formulas expressing E) B) in 
terms of B, T, and V only. This can be done as follows. Combining (0.4), 
(0.6), and (0.7), one easily gets 

(1.7) On= _B n-1 -B ( Vn- - Tn2 +en n2) 

Then use (1.5) to express e,11 and 3n2 in terms of Tn~- and VJ/l and 
one arrives at 

(1.8) e(B) _ ~(1 - BTn_1)(B + V _1) ( 1.8) On I + 7Tn_ l n_ 

This provides the preliminaries for the proof of the following theorem. 

(1.9) Theorem. Let B > 0 be an integer. 
(i) For every x and for every n > 1 such that 0 < B < Bn, there holds 

BB 
_ < 

eB) (x)<B+l. 
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(ii) For almost all x, the sequence {&E)B) (x)} lo is distributed according to 
the distribution function 

1 (B) z 
log + (z), 

where 

G(B)(z) = 0, for z < B 
0B B+ Izlg( zfrB < -B+ 

= (B)-(+) + I B + I B B+2I 

GIB Z = -1-B + 1 - log ( ~ (B t2z) forB < z < B+1 

1 B(B+2)I"\ B+2 

G(B)(Z) = (zlB + 2 
l forB + < z<B 

B(B + 1) KB+ 1) B+ 2 

1 ( B I B + 2 
G3 ~~~~z +log' 12~ Z for B< Z< B +1, 

B- 1-I (B + ZT- 

G(B) (Z)nlogr forB+e h rz. 

and satisfies 

or, equivalently, 
B2 T1 + z -B 

I - (B + zjTn~ 

So, for given x and fixed B we have to find all pairs (T~ (x) , J/~1(x)) in 
D(B) under the hyperbola 

B2 T + z - B 
V I1-(B +z)T' 

Denote by B)the set of points (T, V) under the hyperbola 

Since W(B) n r(B)(Z) is empty for z < B+1 and W(B) n (B)(Z) =W (B) for 
z > B + 1 , we are done with part (i). For the second part we use the ergodicity 
given in (1.4), which implies that for almost all x: 

lim I 
#{j < n: E(B) (X) } 1 Z ,u(M(B) n0 (B)(z)) 

Therefore, we are left with the computation of ,u(M(B) n0(B) (z)) as a function 
of z, which equals, by (1.3), 

(1.11) 1 [[ 1og 2 J~f(B~ ( I + TV) dVdT. 
log 2 ]](B) n,~(B) (Z) (1 + TV)2 
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For Bl < z < B+I one gets 

B) n f(B)={(TV): B -zT< 1 z- B 

and we find 

log1 [ffj~(y 1 2dVdT 
log 2 J J(B~nZ(B)(1 + TV)2 

B2T+:-B 

1Og+f lVTV]VVB?:)T d 
log 2 J2- L1 + TVJ v=o 

B2 

_ 
B ?1 ( z _ _ _ 

2 ~~d T log 2 12 (( BT)2 I - BT) 

(1-BT) BT 

log 2 [B(1 -BT) + log(1-B T)]B- 
7T 

I B + I - log B-z - 
I 

I 
log 2 B B,1 

For BB+ < z < B 

B+2 2- -2O-< -\~. 'W(B) n '(B) (Z) 

= (T. V):B 2 < T < 
B2 + B ? < V < I - TB + )BT} 

B B+BIz - +Z)1 

u{(T, V) 2 < T< O< ' V } 

and this gives 
1 [f 1 2 dVdT 

log 2 ffJ(B) nj (B)(Z) (1 + TV)2 

= z ( '(1- + logB( B+ ) 

+log2 B( B+ 1 gB2 + B+ z = 1 (2 (B+ 1)2 
+ logT .1 +log2 

log 2 B JJ?I B 2+B +zI 

_ _ __(B+ 12) 

by a computation similar to the above. 
Finally, for B < z < B + I, 

(B) () B 1 -( B B(B+2)- 

nZ (z) ={(T. V): O < T < B2 B , < V < + 1)(B+ z)} 

UF(T, V): B2y fZ < Tr< 
I 

< z0< 
B2Bz +B- --1-B+) 
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and the double integral (1.1 1) equals 

1 (1~z 1 (B +l)z 1 ( B+2 1(B +1)2\ 
+ log -+ log g log 2~~ 

log 2 zB + I 2 ) B + 2 log (2 ) ) 

Iog2 B + 1 + log B + 2 Z 

To find the distribution function G(B), we have to normalize, i.e., we have to 
divide in each of the cases by 

IU(M(B)) I-l1 B +2 
log 2 B + I 

This completes the proof of (1.9). E 

Remark. The special case B = 1 of Theorem (1.9) yields the result that was 
found as Lemma 2.24 in [7]. 

2. APPROXIMATION BY CONVERGENTS AND MEDIANTS 

In this section we look at the approximation of an irrational number x by 
all of its mediants and convergents simultaneously. 

(2.1) Lemma. Let G(B)(z) be as in (1.9). Then for thefunction H(z) defined 
by 

H(z) = ZG(B) (Z) 
B=1 

we have 

[0, for z < 

H(z)= -1 + 2z - log(2z), for < Z 
<1 

lI1 + log-1 2 for 1 < z. 

Proof. Let G(B)(z) be as in (1.9) for i = 0, ..., 4. Suppose first that 2 z 
< I let the positive integer k be determined by k+1 < Z < k+ . Then 

k+1 - 
k+2~ 

0o ah-1 0o 

EG (B)z= E GZ (BG)) + G) (Z) + E G (B) 

B=1 B=1 B=k+I 

=kE ) I g (B+ 2) 

+ ( ++ l) z-logk+ k-) +0 

= (l- o) Zk 2k - + Ik z-log kZ 

= -1 +2z-log2z. 
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For 1 < z we let the integer k be such that k < z < k + 1 . Then 
oo k-1 oo 

LG (z) =LG4 (z) + G3 (z) + L G2 (Z) 
B=1 B=1 B=k+l 

k-i B + ( 1 k + 2 

+ 
0 

(z B(B +2) 
B+ 1 (B(B + 1) +log (B + 1)2) 

k+ 1 1 k+2 
=log ~~+1I- z +log 2z 2 k+1 I (k+1)2 

1 k+ 1 
+ z +lo 

k + 
k+ 1I 9 k+2 

= 1+log1. 

This completes the proof of (2.1). o 
For any irrational x we introduce the following notation for the collection 

of all convergents and mediants of x: 

~~Q~~IL L f L L f B' 
(x) orB) for some n, B. 

n 

For any C > 0 we will denote by _VIC(x) the subset 

_V 
C 
(X) = {- V (X): MIMX - LI < C} 

of V (x). We enumerate the elements of C(x) after ordering them by in- 
creasing denominators; thus every fraction Ln/Mn in C(x) is either a con- 
vergent or a mediant of x, and Mi < MJ if i < j. 

(2.2) Theorem. Let C > 0. for almost all x 

I4. L 
limo n #{Mn 

LJA~ eX )MM - L I <z} lim~~~~~~~~ 

exists and {M IM x - L1I -L G _I (x)} has limiting distribution H(c)(z) 
given by 

1 Z for O < z < C, ifO < C < 1, 

H ) (Z) = +logCZ for O < z <1 ifC 1. 

1 (I +log z), for 1 < z < C, 

Proof. Let C > 0 be arbitrary. For 0 < z < C we have to find all n, B (with 
0 < B < Bn) such that E)(B)(x) < z as well as all n for which 9E(x) < z . Let 
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A(B)(z) c g(B) denote the subset for which E)(B)(x) < z and let A(?)(z) be 
the subset of [0, 1] x [0, 1] for which En(x) < z. By the ergodicity of (1.4) 
and the individual ergodic theorem it follows that for almost all x 

1i #~ )(B) 
1 

A(B) lim - #{jn: 9(x)<z}= ( t(A (z)) 

and 
lim -#j < n: e (x) < z} -=/u(A(z)) noo n 

In (1.9) we saw that 

1 (A(B) (z)) G(B) (Z) log 2G () 

and by (0.5), 

A (-) (z)) = 1 (z) 

Denoting the whole space by AC, these combine to 

,(AC) lim 
I 

# { < n: i E " , (x), MJA~-x - Ljj < z 

- jB) (A(O)(z)) + 1 y E )z 

- 1 2F(z) + 1 2H(z) 

as in (2.1). The distribution function H(C) (z) is now found from the definitions 
of F(z) and H(z) and by scaling: 

(C) F(z)+ H(z) H (z)HF(c)H(c). 

This proves (2.2). n 

3. APPROXIMATION BY NEAREST MEDIANTS 

In this section we look at the approximation of an irrational number x by 
its nearest mediants, that is, by the mediants with B = 1 or with B = Bn - 1. 
Since the case B = 1 is contained in Theorem (1.9), we look here at B = Bn-1. 
Notice that the 'first' mediant (B = 1) and the 'final' mediant (B = Bn - 1) 
coincide in case Bn = 2; if Bn = 1, there are no mediants. The first theorem 
tells us how the final mediants are distributed for a given partial quotient. By 

{E (Bn - ) 1) 
n IBn=D} 

we will denote the sequence consisting of the O's belonging to the final mediants 
for which the partial quotient equals D. 
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(3.1) Theorem. (i) For every x and for every n > 1 such that Bn > 2, there 
holds 

B n -I< E (Bn -1) < 2Bn 

(ii) For almost all x, the sequence {63(Bnll =D} for D > 2 is distributed 

according to the distribution function 

1 (D 2+,}J ( z), 
log DJ(DI2) 

where 

j(D) (z) = o for Z < D-I 

0 -D -l g 

(D) D D~~~D1 
J(D (Z) = -1+D-1Z -log (D- 

forD < Z < D 
D - 

iJ (D) ( Z + log (( D )(D + ) 

J(D) (Z) =for D 2(D= 1 
f Dor( + I< Z < D+ 1 

J(D) = log (D ((D+ 1)2<Z ()=-2D 2D J 

fr2(D -1) <Z<2D 
D+1 I- 

4 )(z) log(D +1)2 fo r 
D 

<Z 
4(Z) D(D +2)' D+2- 

Proof. The proof is an imitation of the proof of Theorem (1.9), the difference 
being that we have to consider pairs (T, V) here in M(D-1) \W(D). We leave 
the details to the reader. E 

Let Yw(x) denote the collection of final mediants: 

Y(X) = { M= D for some n for which Bn > 2}. 

We enumerate the elements of Y(x) again after ordering them by increasing 
denominators; thus every fraction Ln/Mn in Yw is a final mediant of x, and 
M, < MJ if < j. 

(3.2) Theorem. For almost all x 

lim-#< n: MJ c(x)'M IM x-L I< Z 
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exists and {M-IM-x - Lj: Y (x)} has limiting distribution 1 J(Z) 

where 
0, for z < 

1 2 
-1 + 2z - log(2z), for < Z < z< 

2- 3' 
z 32 

J(Z)= 2+log4, for?<z<1, 

1 - +lg(o z) , forl <?z<2 

log2' for2 < z. 

Proof. We have to find all n with e)(Bn i)(X) < z. Let A(Bn l) c (Bn -1) 

denote the subset for which E3nBn 1)(X) < z. By the ergodicity of (1.4) and the 
individual ergodic theorem it follows that for almost all x 

lim !-#{j < n: E)(X) <Z} = 1 (B.I) fl -(B ) 
( 

(n -()) 

From (3.1) we can see that 

(^(Bn-1)(z = 1 J(Bn-1) Z /1wI~~Z)) 
-log 2 

This gives 

nli {j < n: M ~(x) MjIM x - Ljj < Z} 

EB -1=1 u(A^ n 1(z)) =_ 1 J(D)() 

01=1 log((Bn + 1)2/B (B + 2)) -log 

Suppose first that 2 < Z < 2 ; then 
00 00 

Z J(D)(Z) J(2) (Z) + y; (D) J0() 
D=2 D=3 

- 1+ 2z - log(2z) + 0. 
Next, let 2 < z < I; let the positive integer k be determined by k- < z < 3 - - ~~~~~~~k - 

k . Then (just as in the proof of (2.1)) 
00 k-i 00 Z D (Z) =J3() + J2(z) + (k)z) (D) 

D=2 D=3 D=k+1 

98 ) 
- 

_ I (D 1) (D+ 1) I lg8 : ( o (D) 2 J 

+( + k- 1z-logk Z) +0 

-z 3 
2 +logL. 
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For 1 < z < 2 we let the integer k be such that 2(k2) < 2(k- 1) Then 

0o k-2 00 

(D)() E(D + (k-i1) (D) ? - ~4 Z)+J3 ()+EJ2 (Z) 
D=2 D=2 D=k 

k-2og (j jj1)2 +1 k + 1 ____ 

Eog D(D + 2) + (1 2(k - 1) 
z + log 

(2(k - ) 
+0(D (D 1)+ g )(2 )) 

+ 1: D(D - 1) log+ logD1) 

3(k - 1)1 _ k + ( k2 \ 
+og 2k 2(k -1)z lo 

(k -iF)2 

1 k-I 
+ - Iz+log k 

z 3z 
= 12 + og + . 

This completes the proof of (3.2). El 

Next, we look at the sequence of O's coming from convergents and nearest 
mediants of a given x. Let Xf(x) denote the collection of convergents and 
nearest mediants: 

YAS(x)={ L =- or-= , or - L(Bnl for some } 

n n 

enumerated in order of increasing denominators M. 

(3.3) Theorem. For almost all x 

limn {j < n - EA (x), MjIMjx-Lj < z} 

exists and {M-JMjx - Ljj E AV(x)} has limiting distribution K(z), 
where 

O. for z < 0O 

K(z) = 2- z 210gz, for 0 < z <, { 2oz for I1< z<2, 
2 log 2, for 2 < z. 

Proof. We consider convergents and nearest mediants now, so it is clear from 
their definitions that 

(3.4) K(z) = F(z) + G( )(z) + J(z) - C(z) 

if we denote by C(z) the function that gives the distribution of O's in case 
that the first and the final mediants coincide, that is if Bn = 2 (see the remark 
before Theorem (3.1)). To find C(z), we have to evaluate 
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(cf. ( 1.6) and ( 1.10)). For z < 2 this equals 
-3 

(S(1) n-(1)(z)) = G(Z) = J(z). 

For 2 < z < 1 we find that 

{St) 
(2) 

)} n 7,() )(Z) = (T. V): < T < 2 
- z 

? < V < 1T( + z - 

U {(T. V): < T < ? < V < 
{~~~(1) \~~~(2)} -~ 2+ - 1 

and a straightforward calculation of 
1 at1 dVdT 

log 2 Jh(B)r (B)(z) (1 + TV)2 

in this case, as in the proof of (1.9), leads to 

0, for z 2 

-1 + 2z - log(2z), for - < z < 
2 

Qz) ~~~~~~2 
3' 

1 - z +log (9z , for 2 < 1 , 

log 
9 

for I < z. 

If we use this with (0.5), Theorems (1.9) and (3.2) in (3.4) we immediately get 
the function K(z) as in the statement of the theorem. E 

(3.5) Remarks. In [4], Ito proved the part of (3.3) with z < 1. Using this, he 
was able to prove that for 0 <,i < 1: 

urn 1 # {(p, q)I x - - < with gcd(p, q) = 1 and q < n =2 n-10mlooo-gn ~ q q 2 1 

(for almost all x). In fact, this holds for arbitrary A > 0 and is known as 
Erdos' theorem (see [2]). Jager proved all of Theorem (3.3) in [7]; there, he 
also gives an alternative proof for the part of Erdos' theorem with 0 < A < 1, 
using Fatou's theorem (see ?4 below). Notice that K(z) = 2F 7). 

4. THEOREMS OF LEGENDRE AND FATOU 

The linear part in the distribution function F of (0.5) for 0 < z < I reflects 
2 

the fact that the convergents to any x include all rationals P/Q for which 
QIQx - PI < 2; this is known as Legendre's theorem, and it is part (i) of 
Theorem (4.1) below, cf. [5, 2, 4]. Since the distribution function in (3.3) is 
linear up to z = 1, one wonders whether this indicates that for every x all 
rationals satisfying Q Qx - PI < 1 are among the set of convergents and nearest 
mediants to x. This is indeed the case, and it seems that this was first observed 
in [3], where it is stated without proof. The first proof, apparently, appeared 
in a paper by Koksma (see [8 and 9]). Fatou's theorem is part (ii) of Theorem 
(4.1) below. 
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(4.1) Theorem. Let x be an irrational number and P/Q a rational number 
(Q>O and gcd(P, Q)= 1). 

(i) If QIQx-PI<,then 

P - n P(X) Q Q Pnj(x) for some n > O. 

(ii) If QIQx - PI < 1, then 

Q BQnI(x) Pn-2(X) forsome n > 2 and eB{0, , -l}. 

Proof. The proof consists of two parts; first we show (using Koksma's argument) 
that if P is not a convergent or mediant, then necessarily QIQx - PI > 1 . For, 
in this case we can find integers n > 0 and B (O < B < Bn) such that P lies 
between 

p' BPn_I+?P-2 p'1 (B?+)Pn1?+Pn-2 
, = ~~and , Q' BQn- + Qn andQ= (B + 1)Qn-1 + Qn-2* 

If we assume (the other case being similar) that P < x, then 

P' P "1 
- < < < -dw <x. 

This implies 

1 P P P P Pn- Qn-2 -Pn-2Qn- 
< - < K _ - _ 

QQ' - Q Q1 / Q/ 
I Q1 Q11 - 

since Pn-lQn-2 - Pn-2Qn-1 = 1 . So we see that Q > Q". 
But on the other hand, 

1 P" P P 
< - - <x- 

QQSOQ" Q 

so if 
P 1 

x - _< 

we would get 
1 1 

QQII Q2 

and thus Q" > Q, a contradiction. 
In the second part of the proof we therefore consider only convergents and 

mediants of x. By (1.9)(i) we have e(B) > 2 forany n if B > 0; this finishes n 2 
the proof of (4.1)(i). 

It remains to prove that Qg Qx - PI < 1 can only hold for convergents and 
nearest mediants; thus suppose that 

QIQx -PI < 1; 
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and suppose, moreover, that B > 2 in 
p _ BPn_I+Pn-2 

Q BQn- 1 + Qn-2 
We will show that in that case, B = Bn - 1 . 

By (1.8), the inequality QlQx _ P, = O(B) < 1 is equivalent to n 

(1 - BTn_1)(B + J"-,) < 1 + 7-_j 
Then 

7T_ > B+ Tn- 
I 

> B 
- 

B2 +BVn-_ + Vn- B2 

since B+V 1 increases monotonically with V (V > 0). This implies 
B ~ ~ ~ ~ ~ B 

1 _T 
= B-i _ 1 

Bn + Tn fi 2 - B l 

so 

Bn <Bn + Tn <B+ 1 + + 2 n n ~B-1I 
in which the last inequality follows from our assumption that B > 2. Thus we 
see that B > Bn - 2, and since by definition B < Bn , we find that B = Bn - 1. 
This completes the proof of (4.1). 51 
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