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THE GENUS ZETA FUNCTION OF HEREDITARY ORDERS 
IN CENTRAL SIMPLE ALGEBRAS OVER GLOBAL FIELDS 

M. DENERT 

ABSTRACT. Louis Solomon introduced the notion of a zeta function Se(s) of an 
order 89 in a finite-dimensional central simple K-algebra A, with K a number 
field or its completion Kp (P a non-Archimedean prime in K). In several 
papers, C. J. Bushnell and I. Reiner have developed the theory of zeta functions 
and they gave explicit formulae in some special cases. One important property 
of these zeta functions is the Euler product, which implies that in order to 
calculate Ce(s) , it is sufficient to consider the zeta function of local orders (3p . 
However, since these local orders Op are in general not principal ideal domains, 
their zeta function is a finite sum of so-called 'partial zeta functions'. The most 
complicated term is the 'genus zeta function', Z9 (s), which is related to the 
free /p-ideals. I. Reiner and C. J. Bushnell calculated the genus zeta function 
for hereditary orders in quaternion algebras (i.e., [A: K] = 4). The authors 
mention the general case but they remark that the calculations are cumbersome. 
In this paper we derive an explicit method to calculate the genus zeta function 
Z8 (s) of any local hereditary order 9p in a central simple algebra over a 
local field. We obtain Z9 (s) as a finite sum of explicit terms which can be 
calculated with a computer. We make some remarks on the programming of 
the formula and give a short list of examples. The genus zeta function of the 
minimal hereditary orders (corresponding to the partition (I , I. 1) of n) 
seems to have a surprising property. In all examples, the nominator of this zeta 
function is a generating function for the q-Eulerian polynomials. We conclude 
with some remarks on a conjectured identity. 

Louis Solomon introduced, in [12], the notion of a zeta function CE(s) of an 
order E in a finite-dimensional central simple K-algebra A, with K a number 
field or its completion Kp (P a non-Archimedean prime in K). 

In several papers [1-5] C. J. Bushnell and I. Reiner have developed the the- 
ory of zeta functions and they gave explicit formulae in some special cases. 
Although the theory is formulated for number fields K (or their completions 
Kp), it is immediately extended to global function fields K (or their comple- 
tions Kp). 

One important property of these zeta functions is the Euler product, which 
states that for an R-order e) in A, with R a Dedekind ring in K, one has 

Co (s)= H Ce8p (S) 
P prime in R 
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So, in order to calculate C,9(s), it is sufficient to consider the local factors 
Cop (s). However, the local Rp-orders Op are in general not principal ideal 
domains, and their zeta function C.P (s) is a finite sum of h (Ep) 'partial zeta 
functions', with h(E8p) the class number of the local order Op. One term is 
related to the free Op-ideals, the so-called 'genus zeta function' of Op., denoted 
by Ze (s). 

In previous papers [7, 8] we studied the locally free class group of an R-order 
9); therefore, our special interest concerns the genus zeta function of 9: 

Ze(s)= J7 Z9 (s). 
P prime in R 

In [4] the factors Z9 (s) were calculated for hereditary orders in quaternion 
algebras (i.e., [A: K] = 4). (Actually, the authors of [4] determined Ce, (s) in 
this special case; the main difficulty, however, is the calculation of the genus 
zeta function.) The authors mention the general case but they remark that the 
calculations are cumbersome. 

In this paper we derive an explicit method for calculating the local factors 
Z8P (s) of the genus zeta function Z8,(s) for any hereditary R-order e in a 
central simple algebra over a global field. The main idea is to use the description 
of the orbits in 9 under the left action of E9, cf. ?3. This reduces the 
calculation to a counting problem, studied in ?2. The necessary combinatorics 
needed to solve this problem are introduced in ?1. We obtain Z. (s) as a finite 
sum of explicit terms which can be calculated with a computer. We make some 
remarks on the programming of the formula and in the appendix we give a short 
list of examples, including all the partitions of n < 5. 

With similar methods we calculated the partial zeta functions of hereditary 
orders. This allowed us to prove Solomon's second conjecture; cf. [1 ] for hered- 
itary orders and also [10]. 

The examples of the genus zeta function of minimal hereditary orders (corre- 
sponding to the partition (1, 1, ... , 1) of n) reveal a remarkable connection 
with the q-Eulerian polynomials. We conjecture that the nominator of this 
genus zeta function is a generating function for the q-Eulerian polynomials. 

We verified this for n < 20; however, we do not have a proof of this relation 
for arbitrary n. In fact, we did not succeed in relating the inductive definition 
of the q-Eulerian polynomials to the constructive definition of the genus zeta 
function. In ?4 we make some further remarks on this. 

1. THE I-ADMISSIBLE PERMUTATIONS IN Sn 

Let Sn be the permutation group of { 1, ... , n}. We can visualize a E Sn 
by its graph IF = {(i, a(i)) I 1 < i < n}: we indicate the points of F in the 
lattice {l , ... , n} 2, see Figures 1 and 2. 

Since we will use the lattice to visualize the entries of matrices, cf. ?3, the 
point (i, j) is plotted, with i vertical and j horizontal. 
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FIGURE 1. a =In FIGURE 2. a = (1I2346)(5 7) 

Definition 1.1. For I c I1 ~... , ni2 we say that a is a descending line on I 
if and only if for every (i, v(i)), (i' a (i')) (E I n IF., i < i' is equivalent to 

C(i) < U(i'). 

Examples. (1) The identity I n is a descending line on every set I. 
(2) =-( 1 2 3 4 6) (5 7) in Figure 2 is a descending line on I = 2, 3, 5}1 x 

{1, *.., 71. 

We now fix a composition q = (n,, nr ) EE N, with ni 0& and n= 
< < r n , . A composition q will correspond to a partitioning of matrices into 

r2 blocks of size n1 x n2 cf. Theorem 7. 
The kth partial sum (k < r) of q is abbreviated by S q(k) = El,<i<k ni . 

We will frequently use the block-map I * associated with q and defined by 

Deinti1, 1.1. nF I {1, .. n} r w such that S c(i) - 1) < i < S li(n (o)) 

We say that the row i belongs to the block ) *(i). A block-row (resp. block- 

column) is the subset of { Ii, ... , n')2 containing (i, j) with q*(i) (resp. q*(j)) 
constant. We also introduce the notation i -< j (resp. i >- j, i rVj) to indicate 
that q*(i) < q*(j) (resp. C*(i) > C*(j), C*(i) = C*(j)). 

Definition 1.2. A permutation a EE Sn is (q) -admissible if and only if i Vi/ and 
i < i' imply v(i) < a(i') . In other words, a is Inadmissible if and only if a 
is a descending line on every block-row. The set of Inadmissible permutations 
is denoted by S(q) . Observe that S(q) is not a semigroup. 

Example. a = (1124364)6) in Figure 2 is (3, 2, 2) -admissible but not 
(2, 2, 3)-admissible. 

In view of the application to hereditary orders in Theorem 7 we separate the 
lattice { 1, 7 . 2 into two disjoint parts: 

[i nj] x {(i, j) with ( 1 (i) < w0 (j)t 

[i ktj] p s(i, j) with is (i) > a t (bI 
We visualize this separation with a line as in Figure 2 for q = (3, 2, 2) . 
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Definition 1.3. (i) The block numbers of a are 

b, (I , k) = #f (i, a(i)) I q* (i) = I and q* (a(i)) = k} for I < 1, k < r. 

(ii) The upper and lower row indices of a are 

{ ra(l) = #{(i, (i)) j r1*(i) = I <1*(U(i))} for 1 < I < r. 

ra7(l) = #{(i, a(i)) I 5,*(j) = 1 > t*ai) 

(iii) The upper and lower column indices of a are 

{ c+(k) = #{(i, a(i)) I 'f (i) < qJ*(a(i)) = k} for 1 <jk Kr 

c C(k) = #{(i, a(i)) I q*(i) > q*(a(i)) = k} 

We directly obtain the following 

Properties. (1) For 1 < k < I < r we have 

I <(l)= E b(l, j), r (I)= , bj(l, j) r+(l) + r (l) =n; 
I<j<r I<?<l 

|CFJ (k) = , b(i, k), c, (k) =,b,,(i, k), c+ (k) + c, (k) = nk 

1<i<k k<i<r 

(2) For 1 < I < r we have 

Eal =ca (j)- a()=Er i-C (j) > 0. 

l <J<I 2<i<1 1<i<r l<j<r 

Proof. The first property is trivial, and for the second property we note that 

U, (1) = E 1: b, (i, j) > ?. O 

I<i~r 1<j<l 

Lemma 1. Consider a set of natural numbers A = {r(l), c(k) I 1 < k < I < r} 
with 0 < r(l) < n1 and 0 < c(k) ? nk for 1 < k < I < r, and denote 

SA={aeS(1) IrZ (1) = r(l), c,(k)=c(k)for1 <k<I<r}. 

Then 
(i) the set SA is nonempty if and only iffor 1 < I < r 

Z c(j) - E r(i) = E r(i) - E c(j) > 0; 
I <j<I 2<i<I I<_<r _ <j<r 

(ii) in this case there exists a unique ad e SA that satisfies the additional 
condition that ad is a descending line on [i ? j], on [i >- j], and on every 
block-column. 

Proof. (i) It is clear that the conditions on r(l) and c(k) are necessary and 
sufficient conditions to obtain that SA is nonempty. 
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I , 

I ~ I _ _ _ _ _ _ _ _ _ 

t ~ ~~I . 
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FIGURE 3. The graph of ad 

(ii) We now construct the unique ad E SA. Since this ad is a descending 
line on block-rows and block-columns, and also on [i < j] and [i >- j], the 
graph of ad has the form shown in Figure 3. 

It is now clear that this graph is uniquely determined by the set A. Namely, 
r(l) (resp. c(k)) is the number of points (i, v(i)) in [i >- j] that belong to the 
block-row q*(i) - I (resp. block-column q*(j) = k), for 1 < k < I < r. 

Observe also that the conditions on r(l) and c(k) are necessary and sufficient 
conditions for being able to construct a graph as in Figure 3. o 

Definition 1.4. For SA = E S(T) I rj (l) = r(l), Ce (k) = c(k) for 1 < k < 
/ < r} the unique ad defined by Lemma 1 (ii) is called a descending permutation, 
abbreviated as desc. perm. 

The reason for calling ad a descending permutation is clear from its graph, 
cf. Figure 3. We introduce some further notation: 

Notation. For ad a desc. perm. corresponding to SA as in Lemma 1, we denote 

(i) C =S a E S q) I r7 (1) = r(l) and cj (k) = c(k) for 1 < k < 
/ K r} . 

(ii) (ad) a E C a is a descending line on [i j J] and on [i - j]} . '7d 
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(iii) For co e (d): C 0 ={rC IF n[i-<j]i=r n[i-<j]}. 
0 

0 
1ad 

a 
- U0 

(iv) For a1 C? = r, n [i >( = {i n [i >e ] 

Lemma 2. The set =Ua~(a)Uacc0 is a disjoint union. 

Proof. Let xE Cad and denote by i I < < im the rows for which (i, a(i)) E 

[i -< j]. We consider the permutation r e Sm such that 

U(i 7r(l)) < U(i7r(2)) < ... < 
U(i71(M)) 

and define the unique ul for which 

| a(ik) = U(1,(k)) for 1 < k <m 

L, i) = c(i) otherwise. 

Then ul e C such that U e C', and I is a descending line on [i < j]. 
Using similar arguments on cx and [i >- j], we construct a unique uo E C7 

such that c1 e C0 and uo is a descending line on [i >- j]. But uo is also a 
U 
10 

descending line on [i < j], since it coincides with ol; we therefore conclude 
that uo c (ud) * ? 

2. A COUNTING PROBLEM 

For the calculation of the genus zeta function of local hereditary orders, 
we need to consider the following counting problem; cf. the remark following 
Lemma 10. 

For u E S(l) we consider two disjoint subsets a 1 and u2 of the lattice 
nj2 {1, ..., n}: 

J IJ = {(i,5 j) I j > (J(i) and (J-1(j) > i} 

u 2 = {(i, j) I j > (J(i) and (J-1(j) < i} . 

For q c N we need to count how many matrices (x, J) z M (N) satisfy the 
properties 

(P1) xl a(l) = 1 (uniquely determined), 

(P2) x, , = 0 if j < u(i) (uniquely determined), 

(P) (3 1 I . . , q if (i, j) cz [i <j] n 1 (q possibilities) 
I ' J 

15 ... ., q2 if (i, j) E [i <j] n u2 (q possibilities), 

(P4) x - I1 if (i, j) z [i >- j] n 1 (uniquely determined), 
( J = 1, ... ., q if (i, j) [i >- j] n u2 (q possibilities). 

Remark. Denote N+ = #([i -< j] n 2) and Na = #([i >- j] n 1); then the 
number of matrices satisfying properties (P) is qN(a), where 

N(() - n(n ) + - 2 
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Lemma 3. Let ad be a desc. perm. with lower row and column indices ra (1) 

and c (k), I < k < I < r. For every a E (ad), there holds 

Na+-N- = , ra (I)(r (I) +l) 
N - N,2 

2<1<r 

Proof. For 1 < io < n, denote 

{ J$= {J161 (j) < io < i and j > a(io)}, 

|J- = jj I C- (j) > io - j and j > a(io)}. 

Then N.+ -a __< o<n(#_J1 ji-) 

We remark first that io -< U(io) implies J,+ = Ji = 0: 

(a) If j E Jl , then io >- j > a(io) implies io >- a(io). 
'0 

(b) If j E J+, then j > a(io) - io > a (j) implies j - al(j), and since 
10 

a is a desc. line on [i < j], we obtain that io > a I(j) implies a(i0) > j, 
10~~~~~~~~~ contradicting j E J1+ . 

We now fix io >- a(io) and calculate Ji, J,+ 
10 

(a) Let j c JP+; then j >- io >- a(io), and the last condition can be omitted: 
'0 

Moreover, i0 a 1(j) and j E J,+ imply io >- a(io) > j, a contradiction; 
'0 

thus, 
J. ={ 1i I r (j)-<io-<j}. 

Using Property (2) of ? 1, we conclude: if io >- a(io), then 

# J,+ = E E bg (I, k) = U, (q (io)) - 
'0 

t1 (iO)<k<r 1<1<q1 (10) 

(b) Let j E J.; then j -< io < a6(j) implies a (j) >- j. Since a is 

a descending line on [i >- j], we conclude that io < a I(j) is equivalent to 

a(io) < j, and again the last condition can be omitted. We rewrite Ji as 

'0~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
JlO I {jr- (j) > io F- j I 

={jI1 (>io > j0 fJ}\{Ia (j) io >- j and -l(j) < i0}. 
We now calculate the cardinality of the last set, 

Sub= {j I a (j) io >- j anda a-(j) < io}. 

Since io > a (j) io implies a(io) > j, which in turn implies io >- j, we 
can omit the second condition; thus, Sub = {j = a(i) I io i and io > i}. 

Therefore, #Sub = io - St(q *(io)), and as in (a) we find 

#J, = UJ(7 t(iN)) - io- S(1 (i0))I = # J,+ - [io -SW uo - 
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So, finally, 

N -N = E J- = >1 - Sj(,1 (io))] 
1<10<n 1<io<n 

10 >- a (io) 

E E - _ra (I)(r (I) + 1) 

2 
2<1<r <s<r7 (1) 2<1<r 

This completes the proof of Lemma 3. C1 

Definition 2.1. For 0 < I < m, define the Gaussian polynomials 

[m] [m] (ql_ I (q - 1) [] m] 

Lemma 4. We have 

[ qj [ 1-1j if I > O. 

Proof. For I = 1 , the identity is evident, and for I > 1 it can easily be proved 
by induction on 1. C 

Lemma 5. For I = {i < < < ... < im} and g0o Sn with uo(il) < *-- < 

UO(i), consider 

C in) 9= E { Sn I a(i) = ao(i) if i 0 I and {(i)) < .< ) 

Then 
Z qN(Ur) N(ro)[ 

aEC(O In) 

Proof. We prove this by induction on 1. 
(a) / = 0: C(?r'n) = {o} , so the statement follows. 
(b) Assume that the statement holds for 1' < 1. As illustrated in Figures 4(a) 

and 4(b), for 0 < j < m - / we consider u(i), the unique a E C(" m) for which a90 

1- 1 

Or(i +) < ... < U(il1J+) < U(11) < or(i2) < ... 
< U(id) < U('I+j+2) < ..< a (Wm 

J m-1-I 

It is clear that C(1' in) - IC~'1 m-j- 1) (a disjoint union); indeed, 

(1-1,in-j-1)= { E C(' i) I o(il) = UW(i 

Moreover, it follows from Figures 4(a) and 4(b) that N(a(J)) = N(ao) + Ij. 
From the induction hypothesis we obtain 

E qN(a) E E qN(a) 
a I) (O?<J 

aC -- 
C (OCO 
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FIGURE 4(a). u0 FIGURE 4(b). u(J) 

We thus conclude 

Z qN(a) qN(e7) qJ [m J 1 N] [m] 

54C( ) O<j<tn-I 

Theorem 6. For a desc. perm. ad corresponding to rj(l) and c-7(k), 1 < k < 

/ < r, we have 

(i) ZqN) =qN~o or[2~j for everyaO E (ad); 
rrEC c 2<1<r [ 

10 

k"i) Z q =q IIN() [ U qN(\+ r+\ for every a, CZ . 
U for 

a E C" ~ 2K/Kr '7a~ r+1) 

Proof. (i) Recall that Co = {C C I r n [i <j] = F n [i <j]}. Denote 

'2 = {iI1*(i) > 2 > q*(u(i))} = {'l < < i and observe that {fl < 

* < i -(2)} {i E '2 *(i) = 2}. Since a0(ij) < ... < aq(i ), we can apply 
Lemma 5 to obtain 

, qN(a) qN(o).[ra (2)] 

where C(k) - C(/?(k) LJ(k)) for 2 < k < r. To continue this procedure, we CO, a 
renumber the rows and consider I3 = {i q*(i) > 3 > < = {i < K K 

iu, (3) with {i, < .< iKr-(3) = {i E I3 *(i) = 3}1. For every a1 E C(2) we 
find a1 (11) < K < ji6r (3)), so we can apply Lemma 5 and find 

aEC N(a) = N(,) [r (3)] 
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Similar calculations can be made for 2 E Cal ,.r 1ECaand we note 

that 

60 %? U U U {aril} 
alC(2v) E Ca3 a3 l E Cr) 

is a disjoint union. We finally obtain 

SqN(a) =N (rn) 2<k (kr 

aE C0 2<k<r [a 

(ii) Recall that C1 = {v E C I IF n [i >- j] = IF n [i >- j]}. Denote 

J'2 ={il| *(i) ?< 2 < q*(a(i))} = {il < < iU (2)+r+(2)} Since ar(i1) < < 

OlI(iU (2)+r+(2)) we can apply Lemma 5 to obtain 

Sq N(a) = qN(cai) (2) ] 

arED~2 + 

where D(k) - C(K(k) L!a(k)?r4(k)) for 1 K k < r. We continue the proof as in 

(i), and the assertion easily follows. a 

3. THE GENUS ZETA FUNCTION OF A LOCAL HEREDITARY ORDER 

Let R be a discrete valuation ring in a local field K with prime ideal P. We 

will consider hereditary R-orders in a central simple K-algebra A = M0(D). 

The valuation v has a unique extension VD in the skew field D. We denote 

by A the unique maximal R-order in D and by /z = A-\r the unique two-sided 

prime ideal in A. Then #(A/,/7) = q with q finite; we refer to [11] for a more 

detailed description. 

A maximal R-order in A is isomorphic to M0(A). For the hereditary R- 

orders in A we have 

Theorem 7. A hereditary R-order in A is defined up to isomorphism by its local 
type r and local invariants q = (n , . ... , n,4, n, 7 0, with S 1 (r) = n, namely 

E) = W3 = {X E M"(5) I Xl, J E /& if W1(i > q* (M)} 

where il* is the block map associated with the r-tuple ij. 

Proof. Cf. [ll,p. 358]. n1 

Remark. The local invariants j are determined up to a cyclic permutation. 

Definition 3.1. The genus zeta function of a local R-order 0) is 

Z8(s) = L(E: A)S i e(s) > 1, 

where the sum ranges over the free ideals 2 = Ox, x E A* (the units of A), 

which are integral (i.e., Y c 8) and (8: 2) = #(E/2Y). 

Remark. One has (0: Ox) = [xl I, where [xI is the module of x, cf. [1]. 



THE GENUS ZETA FUNCTION OF HEREDITARY ORDERS 459 

Theorem 8. For a maximal R-order A in A we have 

ZA(s)= CA(S) = j (1 qj)ns 

O<j<n-1 

Proof. We sketch the main steps of the proof; details can be found in [ 1, Chapter 
3.3]. 

Note first that h(A) = 1 , where h(A) is the class number of a local maximal 
order A, so the zeta function of A coincides with its genus zeta function. 
Furthermore, CA(s) = j' JxlS, where x ranges over a full set of representatives 
of A*\A n A* . We can assume that A = Mn (A); then every class in A*\A n A* 
has a unique representative in "Hermite-normal form", i.e., x = (a, j) with 

a,,, = 7i' 5 Al E N.5 

a l= 0 if Jo<in5 
I~~~jN 

a CZ A/JfAJA if j>i. 

Observe that these "Hermite-normal forms" are upper triangular. The number 
of "Hermite-normal forms" with fixed values of A = (AlK ... , An) is 

qOR A1+?IA2+?+(n-)An =H q0 - )i 

l<j<n 

For these x, we have IxI = q (Al?n)fl .We conclude that 

Ai, 

CA(S)= E (171 qJl1-nsjn)I- ( 
AEN" I1<j<n O<j<n 

This completes the proof. f1 

We recall a result of C. J. Bushnell and I. Reiner on the genus zeta function 
of local R-orders in central simple algebras: 

Theorem 9. If 9 c A are R-orders in A with A maximal, then 

ZE(S) = CA(W) f)(q s) with fE)(q s) E Z[qs]. 

Proof. Cf. [1, Theorem 1]. n 

Our aim is to determine the polynomial fE, for hereditary R-orders in A. 

Lemma 10. Let 9 = E)" be the standard hereditary order with local invariants 
r, cf Theorem 7; then every class in e* \ n A* can be uniquely represented by 
a "&J-normalform" x. Here, x = (a, J) cz9 is a " 9-normal form" belonging 

to a E S(') and A E N'1 if and only if 

(n 1)a a(l) = 

(n2) a1, = 0 ifj < a(i), 

(n3) a, A/,/- ' if(i, j) E a1, 
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Proof. Cf. [9, p. 35] for a detailed proof. Using the same techniques as for 
the reduction to "Hermite-normal forms", we get these "9-normal forms" if 
we consider that the elementary transformations corresponding to left multi- 
plication with matrices c are 'allowed' if and only if c c E* . For c = PFj, 
the permutation of the ith and the jth row, we have c c 9* if and only if 
*(i) = *(j) . For c = Tij (y), replacing the ith row by the ith row +y times 

the jth row, we have c z 9* precisely if i < j or - 
I y . o 

Remark. If = =An = 1 , then the "91-normal forms" corresponding 
to a E S(q) are bijectively in correspondence with the matrices in (P) of ?2. 
If a = In the identity, then the "90-normal forms" corresponding to a are 
the "Hermite-normal forms". Moreover, if x c 9' is a " e-normal form" 
corresponding to a E S(q) and A E N , then clearly Ao(%) > 0 if i a(i). 
We conclude that the number of " en-normal forms" corresponding to a E S(q) 
and A (E n, with A > 0 if i >- a(i), is 

N+ -N, J 1A N+ -Na j-)A 

Theorem 11. The genus zeta function of a hereditary R-order 9 9 is 

ZE(S) = CA (S) .f (q -ns) 

where fE)() = a a des. perm. C(a) * qpow(a) . yk(a) with Y q -ns and 

c(a) = < 1<r[UT(li [ug(')+() I AJar [Cnk)1 

pow( Ia) = 
I 

{E r- (1)2 + E c (k )2 + : S (k- 1) Cc ;(k), 
2<1<r <k<r 1<k<r 

k(a) =#Ia with I, = {j I a- I 
( >- il 

Proof. As in Theorem 8, we can assume that 9 = e , and we find Z9(s) = 

Z' IxV , where x runs over the "9W-normal forms", so 

ZE9(S) = E qNN E 17 (qJi-1ls) 
aeS('q) AENn 1?<jn 

Ai >O if jEIC 

Fix a0 z (ad) with ad a descending permutation. Note that for a E U IEC, C1 
we have Ia = I0 . Using Theorem 6, we calculate 

aEC,' aEC,', 

qo a-N. N+ 

=~ ~~~<< -~oNo.U [a Za+ 
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From Lemma 3 we recall N+ - N- = E2-Q<r (')( (1) + 1) for every 

co E (ad); thus B(ao) = B(ad) . Using Lemma 2, we find 

Z8 (S) BL L > 171 (qlj--fS)J 
ad a desc. perm. aoE(ad) AENn lj<<n 

A,>0 if jEIU 

Observe that for I c {, ... , n} we have 

E f(s) = E f(s) - E E f(s) + * + (-')#I P fs) - 
AENn AENn jEI AENn AENn 

A1>0 if JEI A=0 A=0 if JEI 

We apply this to f(s) = Hll<j<n(q' 1- )i and I = It,. This yields 

E f(s) = HJ (I - 
qJ-f1-ns)- .f qj-1-ns 

eNI I1?<j<n iEIa 
A>0 if jEIC 

Substituting this in the expression for Ze,(s), we find 

48(S) =A(S) Z B(ad) ( S J qJ-l yk(U) 

ad a desc. perm. kTaE(ad) jE I 

Now we calculate 

(1) 5 flq'J- 
aE(ad) ]EId 

Let an E (cd) be uniquely determined by 

Ia = {S,(k - 1) + j Il < k < r and 1 < j < C (k)}. 

Then the exact power of q dividing (1) corresponds to the contribution of Urn 

and is given by 

jI c(k)(CT(k) - 1) 
qN fJ q withN= 5 C (k) S,(k-1) + C 

JEInI I1<k<r 

To calculate (1), we use the same techniques as in the proof of Theorem 6: 
Denote Jk = {il < ... < n = *(5n(i)) 

= k} and note that {il < < 

ic(k) = { *(d(i)) = k > i} Let C(k) - Cca (k), nA) be defined as in Lem- 
ma 5: 

C, a E (6rd) I a(') = j in((i) if Jk and { (i1) < ( a(y) } 
ant1 ) a(i?+k+) < < U(in) 

Since the powers of q in (1) are exactly the same as the powers of q in Lemma 
5, we can extend the result: 

s 
J-1 JJ 

N 
cN[C(k)] 

jECk jEIqf 
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Writing (ad) as a disjoint union over C ,k), we conclude that 

1<k<r[ ] 

and the theorem follows. n 
Remarks. (1) The result is technically complicated but it can be used to calculate 
the genus zeta function explicitly. Namely, generate all sets {b,(l, k) I 1 < k < 
I < r} for which the following conditions are satisfied: 

( (i)ZEbU(l,j)? < n and b,(i, k) < nk for 1 <k<l<r; 
<; 1 <J<l k<i<r 

(ii) bg (I, k) :& 0bg b(I + I1, j) = 0 for all j < k . 

These conditions imply that there exists a unique descending permutation a 
with these block numbers. Then we calculate k(a), C(a), and pow(a) using 
Theorem 11. This computation can be done by a computer. 

(2) We have a check, to detect errors in the program, since 

f( 1)- 
= fHi<i<n [i1 

rTL1<i<r rI1<i<nP[i 

This follows from the idele description for Z9,(s) and the functional equation, 
see [1, 3, 9]. We find that 

Vf(1) = Z9(0) u *(AE) 
~A(O) *(A*) 

which can be calculated for hereditary orders, see [13, 9]. 
In the appendix we give some examples calculated with the Siemens main- 

frame computer (BS2000 Operating System). 

4. THE GENUS ZETA FUNCTION OF MINIMAL HEREDITARY ORDERS 

AND q-EULERIAN POLYNOMIALS 

L. Carlitz introduced the notion of q-Eulerian polynomials An k (q) for 0 < 
k < n, with the property that, evaluated at q = 1, one obtains the Eulerian 
numbers, cf. [6]. These polynomials are defined by the recursion formula 

An (q) =[n 1-k] An-k-l (q) + [k] *A (q)n 

Denote by Bn (q) , < k < n, the coefficient of yk in f9(Y), with E = -1 

the minimal hereditary order, i.e., q = (1, ... , 1). The referee informed us of 
a quite unexpected relationship between the Bn k (q) and the An k(q). 

After we calculated examples up to n = 20, we conjecture that the exact 
relation is 

An, n-k (q) = Bn,k (q). 

We are not able to match the-definition of Bn k (q) with the known interpreta- 
tions for An k (q), cf. [6]. So we think the only way to prove the relation is to 
show that Bn k (q) satisfies the recursion formula. From Theorem 11 we now 
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deduce the expression (C) below for Bn k(q) which only involves combinato- 
rial calculations. 

For q = (1, ..., 1) we find S) = Sn (namely q*(i) = i for every i), so 
Theorem 11 yields 

B nak(q) 
z C(o) .qPOW(U) 

aESn a desc. perm. with # 10=k 

For a E S, letIU={jl< <jk} with < Jm =(im) <i_ <n and 
k = #I,. Restricting to a desc. perm. a yields i1 < < ik and such a a is 
completely determined by the k couples (im, jm) . 

We calculate now C(a) and pow(a) in terms of (im jm) pow(a) = j, + 
+ jk~ .Moreover, U,(l) = #{i (i) < I < i} = #{m jm < / < im} We 

introduce the notation I J (1) = m I im <* 

and r+ (in) = 0 for 1 < m < k, and r- (1) = 0 and r+(l) = 1 otherwise, we 
find i , i) (l1) = Ua(l ) + ra (l) 

With n, = 1 we obtain C(a) = H1??<<n'[1m,j,n) (1)] and thus 

(C) Bf k(q) = qJI+ Jk J ['(iJ7)) 
(lin I Jin) 1<I<n 

We remark that the recursion formula has no natural interpretation. Using 
the expression (C), we could prove the recursion for k < 2, but we were not 
able to prove it in the general case. The conjecture (C) is proven by D. Foata 
and D. Zeilberger, in Denert's permutation statistic is indeed Euler-Mahonian, 
preprint. Moreover, the "problem" only occurs for minimal hereditary orders. 
So, maybe a generalization of q-Eulerian polynomials is needed to understand 
the matter completely. 

APPENDIX. EXAMPLES FOR fl(Y) -- fgq(Y) WITH Y = q 

1. f(lfl)(y) = 1 +[qn' + +q +q]Y. 
2. f(l" 3) (Y) = 1 + [q3 + q' + q]Y. 
3. f2) (Y) = 1 + [q 3 + 2q 2 + q]Y + [q +]y2 q 
4. f( 1 2)(y) = I + [2q3 + 3q2 + 2q]Y + [q + 2q4 + q3]Y 
5. f 1, 1 1) (Y) = 1 + [3q + 5q2 + 3q]Y + [3q + 5q4 + 3q 3]y2 + [q 6]y3 
6. f( 4)(Y) = 1 +[q +q +q +q]Y. 
7. f(2 3)(y) = 1 + [q4 + 2q3 + 2q + q]Y + [q + q +q 4]y2 
8. f( )(Y) 1+[2q 4+3q 3+3q 2+2q]Y+[q 7+2q 6+3q 5+2q 4 3 2 

9. f 2 2) (Y) 1+[2q4 +4q3 +4q2 +2q]Y+[q +4q +5q +4q + 
q3]y2 + [q8 + q7]y3 

10. f .1 2)( =Y) 1 + [3q4 + 6q3 + 6q2 + 3q]Y + [3q7 + 8q6 + lq + 8q4 + 

3q ]Y + [q + 3q + 3q +q]Y 2 7 63. 
11. f II 1" 1( 1)(Y) = 1 + [4q4 + 9q3 + 9q2 + 4q]Y + [6q7 + 16q6 + 22q + 

16q + 6q3]y2 + [4q9 + 9qs + 9q7 + 4q6]y3 + [ql ]y4 
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12. f(2 
2 222)(y)= 1+[3q7+9q6+15q5+18q4+15q +9q +3q]Y+[3q + 

17q12 + 41q 1 + 77q 1 + 104q9 + 119q + 104q7 + 77q6 + 41q + 17q4 + 
3q]y2 [ 18 + 12q17 + 39q16 + 86q 5 +145q14 +194q13 + 214q + 

194q + 145q ? + 86q9 + 39q8 +12q7+ q6]y3 + [3q21 + 17q20 + 41 19+ 

77q + 104q17+ 119q16+ 104q5 +77q4 +41q13+ 17q 12 Y3 l4 
23 22 21 20 19 18 17 5 24 6 

[3q + 9q + 15q + 18q + 15q + 9q + 3q ]y + [q Y 
13. (l 2 2 

2)(Y) = 1 + [3q6 + 8q5 + 12q4 + 12q3 + 8q2 + 3q]Y + [3q + 
14q +30q9 + 48q + 54q7 + 48q6 + 30q +14q4 + 3q 3]y2 + [q ? 9q 14+ 

13 12 110 9 8 7 6] 3 17 24q + 44q + 58q 1 + 58q'? + 44q9 + 24q + 9q + q]Y +[2q + 
16 15 14 13 12 1 1 4 18 17 5 

8q + 14q + 17q + 14q + 8q + 2q ]y + [q + q 7y 
14. f(l2,3,4)( =Y) 1 + [3q9 + 8q8+ 14q7+ 19q6+ 21q5 + 19q4 + 14q3 + 

8q2 +3q]Y+[3q 17 + 14q 16 +36q 15 + 73q 14 + 118q 13 + 166q 12 +200q + 
215q 1+200q9+ 166q8 +118q7+73q 6+36q5 +14q4+3q3]Y2 +[q 24+ 

9q23 +30q 22 + 77q21 + 154q20 + 264q'9 + 392q 8 +516q17 + 605q + 
639q 1+605q 4+516q3 +392q2 +264q 1 + 154q0 +77q +30q + 
9q7 +q y +[2q 29 + Oq28 + 33q27 + 80q26 ++158q25 + 268q24 + 395q + 
518q +606q2 +64q20 +606q 9+518q 8+395q 7+268q 16+158q 15+ 
80q +33q + lOq +2q ]Y +[q +5q + 17q +39q +75q + 
119q + 164q27 + 197q26 +21 25 + 197q24 +164q23 +119q 22 +75q 21+ 
39q + 17q + 5q + q ]Y + [q + 3q + 7q +12q +16q + 

30 29 28 27 26 25 6 
18q + 16q + 12q + 7q + 3q + q * 9y 

15. f(ll l l l l)(y)= I+[5q5+14q4+19q3+14q2+5q]Y+[lOq9+35q 8+ 

66q + 80q + 66q + 35q4 +1Oq3]y2 + [1Oq12 + 35q +66qo +8q9 + 
66q 8+35q 7+ 1Oq 6]y3 +[5q14 +14q13+ 19q12+ 14q I +5q 0]y +[q Iy 

16. ft(l11""'2'22)'(Y)= 1+[6q9+23q8 +52q7+82q6+95q5+82q +52q3+ 
23q 2 6q]Y + [15q17 + 82q 6 + 257q 1 + 518q14 +1033q13 +1519q + 
1894q I +2037q ?+ 1894q9+ 1519q8 +1033q7+518q6+257q5+82q4 + 
15q 3]y2 + [20q24 + 135q23 + 492q22 + 1295q21 + 271 lq'o + 4757q + 
7206q 18+9597q 17+ 1 1355q 16+ 12003q 15+ 11355q 14+ 9597q 3+7206q 12+ 

711 271ql+1295q9+492q8 +135q7+20q 63+[ 15q +124q 9+ 
509q28 + 1469q27 +3344q26 +6373q25 + 10495q24 15233q23 +19730q22 + 

22978q 2+ 24165q2 + 22978q09 + 19730q 8 +152338 
17 

10 16 

6373q 
15 + 3344q14 + 1469q13 + 509q12 +124q1 + 15q ]Y4 + [6q35 + 

65q34 + 304q33 + 946q32 + 2264q31 + 4463q30 + 7524q29 + 1099q 
28 

+ 
29 27 17025q26 + 17939q25 + 17025q24 + 14529q23 + 221099q + 

7524q + 4463q + 2264q19 + 946q 8 + 304q17 + 65q16 + 6q l]Y5 + 
39 18 38 + 102q37 + 342q36 + 837q35 +1628q34 +264 33 + 3672q + 

449 3 + 4739q30 + 4449q29 + 3672q28 +2649 27 +1628q 6+ 837q25 + 

342 24 + 102q23 + 18q22 + q21 y6+ [2q41 + 17q 40 + 62q 8+145q + 

250q37 +34lq36 + 377q35 + 341q34 + 250q33 +145q32 + 62q31 + 17q30 + 
29 7 42 41 40 39 38 8 

2q ]Y + [q + 4q + 6q + 4q + q ]Y 
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