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ERROR ANALYSIS OF SOME FINITE ELEMENT METHODS 
FOR THE STOKES PROBLEM 

ROLF STENBERG 

ABSTRACT. We prove the optimal order of convergence for some two-dimen- 
sional finite element methods for the Stokes equations. First we consider meth- 
ods of the Taylor-Hood type: the triangular P3 - P2 element and the Qk - 

Qk-1 I k > 2, family of quadrilateral elements. Then we introduce two new 
low-order methods with piecewise constant approximations for the pressure. 
The analysis is performed using our macroelement technique, which is reviewed 
in a slightly altered form. 

1. INTRODUCTION 

In this paper we will consider some finite element methods for the Stokes 
equations: find the velocity u and the pressure p such that 

-vAu+Vp=f inQ, 
(1.1) divu=O inKQ, 

u=O onO9Q, 

where Q c Rd , d = 2, 3, is a bounded polygonal or polyhedral domain, f is 
the given body force, and v > 0 is the viscosity. 

The usual variational formulation of (1.1) is the following. Find u E H~' (Q)d 
and p E Lo(Q) such that 

(1.2) v(Vu, Vv) - (divv, p) = (f, v), v E H (Q)d, 
(divu, q) = 0, q E Lo(Q), 

where (a,.) denotes the inner product in L 2(Q), L 2(Q)d or L 2(Q)d , and 
Lo(Q) the space 

L2(Q)= {p E L2(Q)If pdx = o0. 

For f E H 1 (Q)d this problem has a unique solution; cf. [11]. 
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The mixed method based on (1.2) reads as follows. Find uh E Vh C Ho (Q)d 

and ch E c L 2(Q) such that 

(1.3) (Vuh, Vv) - (div v,Ph) = (f, v), v E Vh, 
(1.3) (divuh, q) = O, q E Ph. 

It is well known that in order to get a working method, the spaces Vh and Ph 

cannot be chosen arbitrarily. The method can be expected to behave well only 
if the following "inf-sup condition" is satisfied: 

(1.4) inf sup (div vp) > C > 0. 
O:1PEPh O:/VEVh III11I 1I II0- 

The following fundamental result is classical. 

Proposition 1.1 (Babuska [1, 2], Brezzi [6]). Suppose that the finite element 
spaces Vh and Ph satisfy (1.4). Then the system (1.3) has a unique solution 
(uh, Ph) satisfying 

IIu - Uh 11I + IIP - Ph IO < C { inf I|u - v1j I + inf ip - q iio } 
~vEVh qE ~h 

where (u, p) is the solution to (1.2). 

By now, this field of problems is rather well understood; there exist rather 
general techniques for verifying the inf-sup condition [5, 14] and for the con- 
struction of methods satisfying it. As a consequence, the collection of methods 
which are known to be stable (i.e., satisfying (1.4)) is relatively large; cf., e.g., 
the recent book by Girault and Raviart [1 1]. 

The purpose of this paper is to extend the list of stable methods. In ? 3 we 
consider two families of "Taylor-Hood" type methods, and in the last section 
we introduce and analyze two new low-order methods. In the analysis we use 
the macroelement technique, introduced by us in [14], which we recall in ?2 in 
a slightly more practical form. 

The results of this paper are trivially also valid when the same finite element 
spaces are used for the equations of (nearly) incompressible elasticity. 

Some of the results of this paper have also been obtained in [7]. 
Our notation is standard; cf. [8, 1 1]. 

2. THE MACROELEMENT TECHNIQUE 

For further reference we will here present the technique in a quite general 
form for both two- and three-dimensional problems, even if all the methods 
to be analyzed in this paper are two-dimensional. The presentation does not 
cover all possible cases (such as, e.g., a mixing of triangles and quadrilaterals, 
prismatic elements, etc.), but the modifications needed for a method not covered 
are trivial. 

Let Wh be a finite element partitioning of Q into subdomains which are 
all assumed to be either triangles or convex quadrilaterals when Q c R 2, and 
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tetrahedrons or convex hexahedrons when Q c R3. The partitioning is assumed 
to satisfy the standard regularity and compatibility condition [8], but we will 
not assume Wh to be quasi-uniform. Let K denote the reference triangle, 
tetrahedron, square, or cube, respectively, and for K E Fh denote by FK the 
affine, bilinear, or trilinear mapping from K onto K. Further, let V and P 
be two polynomial spaces defined on K. We now assume that Vh and Ph are 
defined as 

(2.1) Vh ={vEH(Q) Iv(x)=i(FA1(X)), vEV, KE h1} 

and 

(2.2a) Ph = {p E Lo(Q) I p(x) = i(FK (X)), p5 EP. KE }, 

or 

(2.2b) Ph = {p E C(Q) n LL(Q) I p(x) = f(FK (X)), p3 E P. if E F}h 

Further, we make the assumption that Vh contains the piecewise linear, isopara- 
metric bilinear, or isoparametric trilinear functions for the triangular and tetra- 
hedral, quadrilateral, or hexahedral case, respectively. With the choice (2.2a), 

Ph is assumed to contain the piecewise constants, whereas for (2.2b) it contains 
the piecewise linear, isoparametric bilinear, or isoparametric trilinear functions. 

A method where the pressure space is defined according to (2.2b) is usually 
referred to as a "Taylor-Hood" method. 

By a macroelement M we define a connected set of elements of which the 
intersection of any two is either empty, a vertex, or one edge or face in R2 
and R3, respectively. Further, two macroelements M and M are said to 
be equivalent if they can be mapped continuously onto each other, or more 
precisely, if one can define a mapping G: M -, M such that: 

(i) G(M) =M. 

(ii) If M = U jLI Kj ,where K1, j = 1, 2, ..., m, are the elements of M, 

then Kj = G(K), 1= 1, 2, ..., m, are the elements of M. 

(iii) G-k = F o F-1, j = 1, 2, ..., m, where FK and FK- are the 
I Ki K 

mappings from the reference element K onto K1 and Kj, respectively. 

For a macroelement M we define the spaces 

(2.3) V, M= {VEHo(M)d Iv(x)=i(F 1 (X)), vV, XEK, KcM} 

and 

(2.4a) PM ={p E L (M) I p(x) =i(FK (X)), Pi EP, xEK, KcM}, 

or 

(2.4b) PM ={p E C(M) I p(x) =i(FK 1 (X)), EP XEK, KcM}, 

depending on which of the possibilities (2.2a,b) is chosen. Further, we denote 

NM ={p E PM I (divvy p)M = O, V E VbmM}. 
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The collection of edges or faces, of the elements of Wh, in the interior of Q is 
denoted by Fh. 

The macroelement technique is given by the following 

Theorem 2.1. Suppose that there is a fixed set of equivalence classes a,, i = 
1, 2, ... , q, of macroelements, a positive integer L, and a macroelement par- 
titioning Ih such that: 

(Ml) For each ME Fi, i = 1, 2, . ..., q, the space NM is one-dimensional, 
consisting offunctions that are constant on M. 

(M2) Each M Ex/h belongs to one of the classes a,, i = 1, 2,. .., q. 
(M3) Each K E Fh is contained in at least one and not more than L macroele- 

ments of .1h 
(M4) Each T E Fh is contained in the interior of at least one and not more 

than L macroelements of 1h. 

Then the stability inequality (1.4) is valid. 
Proof. The proof will consist of a modification of some arguments given in [12, 
14, 16]. 

We will need the following norm defined in Ph: 

IhIII = Z hkIIVpIOIK +E hT fIp]1 ds, 
KEch TErh 

where ([P])IT denotes the jump in p along the interelement boundary T and 
hT stands for the length or area of T. In a macroelement M we similarly 
define 

IpIM= E hkIIVpIIOK +E hTf I1]1Ids, 
KCM TErM 

where FM denotes the interelement boundaries in the interior of M. 
Now, since we assume that 

-there is only a fixed number of different types of macroelements, 
-all the elements in Fh are regular, and 
-the condition (Ml) is satisfied, 

one can prove (see [14, Lemma 3.1]) that there is a constant C independent of 
Ih such that 

(2.5) inf sup (divvp)M _ C O 
OIPEPM O$VEVO M IVl1,MIPIM 

or alternatively stated: For a given p E Ph and M E Ah there is a VM E Vh 5 
with VM = 0 in Q\M, such that 

(2.6) (divvM, P)M M CIpIM 
and 

(2.7) IVMI1 M < IPIM. 
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We now define v E Vh through V = EMEYIh VM . This gives 

(divv,p)= ) (divvM, p)M > C Z IpIM? > CiIPii 
MeY1h MeY1h 

and 

(2.8) 11v111 < CIvI1 < C E IVMI1 M < C E IPIM < CLI1pIlh, 
ME-Zh ME-Zh 

i.e., there is a constant C1 > 0 such that 

(2.9) sup (divv, p) > CI 11P11h 
03LVEVh 11111 

Next, let us use an argument due to Verfurth [16, Proposition 3.3] for show- 
ing that (2.9) implies the corresponding condition with the L -norm for the 
pressure, i.e., the inf-sup condition (1.4). We will show that the argument can 
be used also when Ph consists of discontinuous functions and that the quasi- 
uniformity assumption of [16] can be avoided. 

Now, for every p E Ph there is a w E H~l (Q)d such that 

(2.10) (divw, p) > C2 IPIIO 
and 

(2.11) IIWII1 < 11PII0. 
Further, one can show (cf. [9; 3, Lemma 3; 11, pp. 109-1 1 1]) that there is an 
interpolant w E Vh to w such that 

(2.12) ( h;21w -*11K+ S h1 1f w wI ds)cI l (2.12) ( E K ||-loK + T |W-|d) < C31W~l 
KEth TErh T 

and 

(2.13) 11*111 < C4I1WII 
Using (2.10), (2.12), and (2.11), we now get 

(div*, p) = (div(* - w), p) + (divw, p) 

> (div(* - w), p) + C211PII2 

= E (W - W. VP)K + , f ((* - w) n)([p]) ds + C2I1pII2 
KEth TEI-hT 

1/2 

> - ( 
- 2 

K ||W-W K + E hT |Ih1f W-W 2ds +IPI h+C211PI1o 
KE9'h TEFh 

?>-C3|WIwIj~P h + C2IIPIIl 
> -C3 IIHPIlh + C2IIPIIl 
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which combined with (2.1 1) and (2.13) gives 

(2.14) sup (div v, p) IP1p11 (C5-c6 11lIh) 

On the other hand, (2.9) can be written as 

(2.15) sup (div v, _) C [, ~ = IIPII> C h11h 
03LVEVh 1VIII1P 

1 1 1 lviii III0 
Hence, combining (2.14) and (2.15), we get 

inf sup (div v, p) > min max{Ct C5 - C6t C C1 C5 El 
O$IPEPh O$~VEVh 1II111II10 t>0 c1 + C6. 

Let us close this section by giving some remarks on the difference between the 
formulation of the macroelement technique given in [ 14] and that of this paper. 
In [ 14], the macroelement partitioning -h was chosen so that each K E Wh was 
a subset of exactly one M E Ah . Then the condition (Ml) ensures that we can 
stabilize all pressure components except those which consist of constants on 
each macroelement. To stabilize the piecewise constant pressure components, 
we clearly need velocity degrees of freedom in the interior of the boundaries 
between the macroelements. More precisely, we included the condition that 
for any two neighboring macroelements Ml , M2 of Ah with fMnM ds $4O, 
there is a v E Vh such that 

suppv c Ml UM2 and f v* nds $ 0. 

The disadvantage of this choice is that in order to find a macroelement partition- 
ing of nonoverlapping macroelements with this property, it is often necessary 
to use many different kinds of macroelements or macroelements that are big. In 
these cases one could claim that the asymptotic stability inequality so obtained 
is not valid for most values of the mesh parameter used in practice. In many 
cases it is not even evident how such a macroelement partitioning should be ob- 
tained. A good example showing these problems is the tetrahedral Taylor-Hood 
method. In [15] we analyzed this method with the technique of this paper. The 
present technique also shows more clearly that the condition of the space NM 
to consist of constants is really the only one that has to be verified. 

We now use the above theorem for the analysis of some mixed methods not 
earlier analyzed in the literature. 

3. Two FAMILIES OF METHODS 

Let Q c R 2, and let Fh be a partitioning, the elements of which all are 
assumed to be either triangles or quadrilaterals. For the index k > 2 we define 
the families 

(3.1) Vh = {veH(Q) | VK ERk(K) , K E Fh} 

Ph ={p E Lo(Q) n C(Q) I PIK eRk-(K), KE },J 
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where Rm(K) = Pm(K) when K is a triangle, and Rm(K) = Qm(K) when K 

is a quadrilateral. Pm (K) and Qm (K) are the usual polynomial spaces on K; 

cf. [8]. 
For these families we have the following optimal error estimates. 

Theorem 3.1. For the solution (uh, Ph) of(1.3) with the method (3.1) we have 

LUU-Uh Il I + IIP -Ph Ito < Chk(IUIk+ 1 + IPIk)l 

For a convex domain Q we additionally have 

U-hIlo < Ch 
k 
(IUkk++ + IP1 

For the triangular case, the verification of the above estimates consists merely 

of filling in some gaps; for k > 4 the result is covered by the analysis in [13] 

and for k = 2 the result is well known [4, 16], but under the restrictions that 

no K e h has two edges on the boundary aO and that h is quasi-uniform. 

We will prove stability for the case k = 3. Exactly the same line of reasoning 

applies in the case k = 2, and hence the above-mentioned restrictions on the 

mesh are unnecessary. 

Remark. In [15] we analyzed the corresponding three-dimensional tetrahedral 

method for k = 2. There, the restriction on the mesh was that each tetrahe- 

dron in ih has at least one vertex in the interior of Q. An inspection shows, 

however, that this restriction cannot be dropped. 

Lemma 3.1. Let M be a macroelement consisting of three triangles, and define 

VOM = V E HO (M) IvIK EP3(K)2, KcM}, 

PM = {P E C(M) I PLK E P2(K) , K c M}. 

Then the corresponding nullspace NM is one-dimensional, consisting offunctions 

that are constant on M. 

Proof. Let M = K1 u K2 U K3 be as in Figure 1, and let t129 t23 and n12, n23 

be the tangents and normals, respectively, to the common edges. Let us first 

consider K1 U K2 with the "local numbering" of the vertices as in the figure. 

For P E PM we have VpIK e P1 (KJ)2, j = 1, 2, and the component Vp *t2 

is continuous in the whole of K1 U K2. Hence, we can write 

3 

(VP * tl2)IK = aijAi, ' 5 

where ij , i = 1, 2, 3, are the barycentric coordinates of Kj, j = 1, 2. Since 

Vp-t 2 is continuous in K1 UK2, we have ail = ai2 for i = 1, 2. Now, choose 

UEVO KUK2 (i.e., u=O in K3) suchthat u n12=0 in K1 UK2 and 

(U * tl2)IK = A 212j(3Ajj- 1) =1, 2. 
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22 

FIGURE 1 

Then we have 

(divu, p)M = - (u, Vp)M =- | (U t12)(Vp t12)dx 

2 3 

=- E E aij / 21jA2j(3A1 j - 1 )Aij dx 
j=l i=l WK, 

area(K1) area(K2) 
60 a1 1 60 a412 

- area(K1) +area(K2)a 
= - (~ 60 6+ 126 

and the condition (divu, P)M = 0 implies that aII = a12 = 0 By symmetric 
reasoning we get a21 = a22 = 0. Next we choose u E V0 K = 1, 2, such 
that u * n12 = 0 and 

(U * tl2) IK = 
AI1j)2A3J j = 1= 2. 

If p E NM then we have 

0 = (divu, P)M = (u, Vp)M 

f aarea(K1) 
-a3 1 i1j2ji3j x= - 180 a3, i=1, 2, 

that is, a3j = 0, j = 1, 2. We have thus shown that 

Vp.t12=0 inK1UK2. 

The same reasoning gives that 

Vp.t23=0 inK2UK3, 
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and hence we have 
Vp=O inK2, 

i.e., p is a constant in K2. 
Write next 

3 

(Vp * nl2)IK = SAil 
/= 1 

and take u e VOKUK, such that u 't12=0 and 

(u * n12)IK =AljA2j(3Alj - 1), j=1, 2. 

Now, since VpIK = 0, the condition for NM yields 

0 = (divu, P)M = -(u, VP)K, 
3 

~~~~~~~area(K1)~ 
=- Efpi JK Al1 ll(3A1 I - 1)Ail Ax=_re(I4 

'iJK 
60 i 

i.e., f1? = 0, and analogously we get fl2 =0 -Upon choosing u E VO K such 
that u t12= 0 and (uX n12)IK = I A 21A31 we get 

O = (divu, p)M= (divu, p)K area(KI) fl3 

i.e., fi3 = 0 in K1 . We thus have Vp * n12 =0 in K, and hence p is a 
constant in K1 . Analogously, p E NM has to be a constant in K3 . 

Since p E NM is a constant in Ki, i = 1, 2, 3, and continuous, it is constant 
in the whole of M. 0 

When applying Theorem 2.1, we now use only one class of macroelements, 
and the partitioning -h can be obtained by, e.g., taking one macroelement for 
each element edge in the interior of Q. Then the assumptions of Theorem 
2.1 are valid, and standard approximation theory gives the first estimate of 
Theorem 3.1. The L -estimate for the velocity follows by the standard Aubin- 
Nitsche trick. 

Let us turn to the quadrilateral family. To our knowledge, only the lowest- 
order method in this family has earlier been analyzed [4, 14]. 

Lemma 3.2. Let M be a macroelement consisting of two quadrilaterals, and 
define 

1 2 )2 
VOM ={V E HO(M) VIK EQk(K) K c M}, 

PM={PEC(M) IPIKE Qk-l (K), KcM}. 

Then the corresponding nullspace NM is one-dimensional, consisting offunctions 
that are constant on M. 

Proof. Let M = K1 U K2 and M = K1 U K2 be the macroelement and the ref- 
erence macroelement, respectively, and denote by F =.(Fl, F2) the continuous 
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FM X2_ .)' 

IK2 

FIGURE 2 

piecewise bilinear mapping from M onto M as in Figure 2. For u E V0 M 
and P E NM, we now have 

0= -(divu, p)M = (u, Vp)M 
2 

= E | UX) OF ()VP()J,(i) I di, 

where JF is the Jacobian matrix of F jFT is the transpose of JF1 and 
JJFJ is the determinant of JF . Above, fi(i) and Vfi(i) are considered to be 
column vectors. We now have 

(3.2) |J()IFT(X = ( 02F2 (i) -A, F2 (i) 

Since F1 and F2 are bilinear, this shows that 

[IJF(i)IJFT (i)VV(i)]k E Qk l(K ) i= 1, 2, 

and hence 
[6()T 

_ T i Ij2 
[U(i)TJTF ()V()IJF(i)I] E Q2k-1(Kj), i = 1, 2. 

This means that the integrals 

J (i)TJJT(i)VI3(k)IJF(i)I di, i= 1, 2, 

are exactly evaluated by the composite (k + 1)-point Gauss-Lobatto formula. 
On the other hand, we can for the nodal degrees of freedom of u choose the 

12 values at the (k + 1) Gauss-Lobatto points in Ki, i = 1 ,2. 
Denote by 0 = ao, al, ... , ak = 1 the Gauss-Lobatto points in the unit 

interval, so that the Gauss-Lobatto points in the two squares are given by 
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and 
i2 = (a + 1, aj), ij=0, , ..., k. 

If we now choose u such that its only nonvanishing degree of freedom is suc- 
cessively one of the components at the Gauss-Lobatto points in the interior of 
KR and K2, we get 

JF (XijP(i Xij~ 0 i, j = 1j , 2, ...,k-1,m=1,2. 

Since I JF () :A 0 for all x, this shows that 

(3.3) V13(im) = 0, i, j = 1, 2, ..., k-1, m=1,2. 

Next, by choosing u so that the only nonvanishing degree of freedom is one of 
the components at il= i 2, j = 1, 2, ... , k - 1, we get the condition 

(3.4) J-T 1j)VI3(Kij)IjF(Kj)I + jT2j=1,(2)j 2 j..,k-105 
(3.4) JF (ik ~p~k ~J~kj + 

F (X0 PX Oj lF (X0j =0 
j = 1 , 25, . .. , k - 1. 

Here, the values at the points X, j=1, 2, ..., k - 1, are the limits 

lim JF (X)VP (X)IJF(X)I, 
Xc XkI 

and analogously for 0, j - 1 25 .. , k - I. At the common edge K1 n R2 ' 

02P is continuous, and an inspection shows that this is also the case with 02 Fj 
i = 1, 2. Hence, using (3.2), the condition (3.4) reduces to 

(3.5) ( 02F2 (kj) AI F2(ikj) - F2G(4i)) (OI3GiXk) + OI3Gi~1)) 0 
-02F1 ('kj) 01F1 ('kj) + 01F1 ('Oj) 02fi ('ki) 

Further, at a point x E K1 U K2, the vectors 

(02F2(k), -02F1(i)) and (-01F2(i), 01F1(k)) 

are the normals to (02F1(x), 02F2Gi))T and (01FO(x), 01F2(k))T, respectively. 
Hence, since K1 and K2 are regular, the determinant of the coefficient matrix 
in (3.5) is nonvanishing, and we get 

01fi(i j) + alfi(i~j) = ?, j = 1 5 2,.., k - 1, 

and 

(3-6) 02(ikj) = 0, j = 1, 25 ...,5 k- 1 

Now (3.3) and (3.6) shows that 02P vanishes at the points x1j, i = 1, 2, ..., 

k, j = 1, 2, ..., k - 1, and 2k, i = 0 1, ..., k - 1, j = 1, 2, ..., 

k 1. Since 02 e Qk ,k2(K) , i = 1, 2 (i.e., 02P1K is of the form 
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k-I k-2 A~ 
Ei=O Ej=Z a 4 X = (XY1 X2) ), and the above set of points are unisolvent 
in Qk -,k-2(Ki), i = 1, 2, we conclude that 

(3.7) 02P = 0 in K1 U K2. 

As a consequence, fi3, i = 1, 2, is a polynomial of degree k - 1 in the 
1 -variable alone. This mean that (3.3) also implies 

(3.8) 01P =0 inK UK2. 

Owing to the continuity of 6J, (3.7) and (3.8) imply that 6 is a constant in M. 
The assertion is thus proved. E 

In the macroelement partitioning we now again choose one macroelement 
for each element edge in the interior of Q. Hence, Proposition 1.1 and the 
Aubin-Nitsche trick gives the estimates of Theorem 3.1. 

4. Two LOW-ORDER METHODS 

Let again Q c R 2, and let Wh be a regular finite element partitioning of Q 
into triangles or quadrilaterals. (It will become clear that one also could use a 
mesh with both triangles and quadrilaterals.) The finite element method is now 
defined through 

Ph= {p EL(Q)IpIK EPO(K), KE Fh} 

and 

Vh = {v = (VI, vEH()IvlKER(K), v2KES(K), K E V}2 

where R1 (K) = P1 (K) if K is a triangle, and R1 (K) = Q1 (K) for a quadrilat- 
eral. For triangles we let S(K) = P2(K), and for quadrilaterals we define 

S(K) = { g I g(x) = k(FK (X)), E2 

where FK is the bilinear mapping from the reference square K onto K and 

Q2(K) is the space of "reduced biquadratic polynomials" (i.e., the quadratic 
serendipity element) as defined in, e.g., [8, p. 63]. For a macroelement, we 
analogously define 

V?0M = {v= (v1, v2) e H 2(M) I V ElK e R1(K), V2IK E S(K), K C M} 

and 
PM = {p EL2(M)I PIK E PO(K), K c M}. 

Let us now verify the following 

Lemma 4.1. Let M be a macroelement consisting of elements which all have 
one common vertex in the interior of M. Then NM consists offunctions that 
are constant on M. 
Proof. Let Ki, i = 1, 2, ...K, be the elements of M, anddenote Pi =PIK, 1 
i = 1, 2, ..., K. Further, let x1 and nii, i = 1, 2, ..., K, be the midpoints 
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FIGURE 3 

and normal, respectively, to the edges in M. The common vertex we denote 
by x0, see Figure 3 for the triangular case. 

The natural degrees of freedom for u E V0 M are the values of both com- 
ponents of u at x0 and the values of u2 at x2, i=1,2,...,K. Bytaking 

dition M such that the only nonvanishing degree of freedom is u2 (x1), the con- 
diin(divu, P)M = 0 implies that Pi = p1+1 (with PK+l = PO0) if n1 e2 & 0, 

where e2 = (0, 1). Hence, the space NM can be at most two-dimensional, 
and this happens only if two of the edges are parallel to e2. But in this case 
one chooses u such that the only nonzero degree of freedom is u1 (x0). The 
condition for NM then forces p to be constant on the whole of M. t 

If we now impose the restriction on cs that every K E has at least 
one vertex in the interior of Q. then we can easily construct a macroelement 
partitioning M h satisfying (Ml )-(M4): For each interior vertex of the mesh one 
takes one macroelement consisting of all the elements which have this vertex in 
common. 

Hence we get the following 

Theorem 4.1. Suppose that every K E Wh has at least one vertex in the interior 
of Q. Then we have 

Ilw - Uhllo + IIng Ph 110 ? Ch(1u12 + p11) 
For a convex domain Q we additionally have 

llu - Uh ?1 < Ch2(1U12 + IPI 1) 
Remark. The elements we have presented here are rather similar to two ele- 
ments by Fortin [10]. In Fortin's methods, piecewise constants are used for the 
pressure, whereas the basic velocity spaces of linear/bilinear functions are aug- 
mented with quadratic functions which have as degrees of freedom the normal 
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components of the velocity at the midpoints of the element edges. Hence, our 
methods are simpler to implement. The calculation of the element matrices is 
faster and the resulting linear system is more sparse. This property could be an 
advantage when iterative solution methods are used. 
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