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CONVERGENCE OF THE 
NONCONFORMING WILSON ELEMENT FOR A 

CLASS OF NONLINEAR PARABOLIC PROBLEMS 

S. H. CHOU AND Q. LI 

ABSTRACT. This paper deals with the convergence properties of the noncon- 
forming quadrilateral Wilson element for a class of nonlinear parabolic prob- 
lems in two space dimensions. Optimal H1 and L2 error estimates for the 
continuous time Galerkin approximations are derived. It is also shown for 
rectangular meshes that the gradient of the Wilson element solution possesses 
superconvergence, and that the L., error on the gradient is of order h log( 1/h) . 

1. INTRODUCTION 

The need to reduce the computational work in the use of conforming ele- 
ments for the solution of higher-order elliptic problems has led to the invention 
of nonconforming elements. An issue in the study of nonconforming elements 
is the creation of a proper test that guarantees convergence of the elements. 
Recently, Shi [3] gave a certain condition on mesh subdivisions which ensures 
convergence of the quadrilateral Wilson element applied to a class of elliptic 
problems. The basic error analysis of Galerkin methods applied to parabolic 
equations is studied in [1, 6], where conforming finite elements are considered. 
In this paper we extend the techniques and results in [1, 6] to the nonconform- 
ing quadrilateral Wilson element under the aforementioned condition in [3]. It 
is found that the convergence rates of approximate solutions for the problems 
under consideration have the same order of accuracy as in the comparable el- 
liptic problems. For the nonconforming rectangular Wilson element, the Loo 
error estimate and superconvergence for the gradient are shown as well. The 
paper is organized as follows. Section 2 deals with a general description of 
nonconforming methods for solving nonlinear parabolic problems. Section 3 
contains some lemmas concerning error estimates for an auxiliary variational 
problem. The main results of the paper are established in ?4. Optimal L2 
and H1 error estimates, as well as almost optimal maximum-norm error and 
superconvergence order estimates for the gradient, are obtained. 
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2. NONCONFORMING METHODS FOR SOLVING 

NONLINEAR PARABOLIC PROBLEMS 

Let Q be a polygonal domain in R2 with boundary AQ. Consider the 
following nonlinear parabolic initial-boundary value problem: 

2 

Ut - V * (a(x, u)Vu) = Ebi(x, u)ux + f(x, u) in Q x I, 
(2.1) i= 1 

U = O on AQ x I, 
u(x, 0) = u0(x) in Q, 

where I denotes a finite interval [0, T]. 
We shall assume that a, bi , and f are sufficiently smooth functions on 

Q x R which, together with an appropriate number of derivatives, are bounded 
there, and that the function a satisfies 

(2.2) O < C1 < a(x, U) < C2 for (x, u) E Q x R, 

for some constants cl and c2. The global nature of our assumptions with re- 
spect to u does not constitute any serious restriction. In fact, the approximate 
solutions to be considered will be shown to be uniformly close to the exact solu- 
tion u, and thus depend only on the nature of a, bi, and f in a neighborhood 
of the range of u. 

Let WsP (G), 1 < p < x, Hs(G) = Ws 2(G), and Hs(O G), s E R be the 
usual Sobolev spaces on G and 0G. The associated norms and seminorms are 
denoted as follows: 

11 IIsp, G 1 - IIJWSP(G) 11 aIsG = 11 IIs(G), 
11 I Is0aG = 11 * lIIH'(,9G) 11 || |1Isp = | IIWSP(Q) 0 

11 IlsOG = 11 lI (n) I 11 s11 = 11 I ,2V(Q)' 

llIsGll 1Hs(G) I Isl=l 1Hs(Q)1 1|IlL, =11 IIA 
Let X be a normed vector space with norm 11 I J. For (o: I -* X, define 

ll2L fX)T= X lko(t)llx dt, llUPlL ( = supIo(t)llx. IlIL2 (X) = Jo 011 ' tel 

We now consider the numerical approximation of (2.1) by a nonconform- 
ing finite element method. Let Q = UKEK K be a decomposition of Q into 
elements K with diameters < h. With this subdivision we associate a noncon- 
forming finite element space Sh consisting of certain functions v vanishing at 
the nodes belonging to OQ. In general, the inclusion Sh c Ho (Q) does not 
hold. The norm associated with Sh is 

Al lSh I I, h E 1, K 
K 

In this paper we shall confine ourselves to the nonconforming spaces Sh of 
the Wilson element, i.e., the finite element spaces of all functions whose restric- 
tions to each quadrilateral element K E Kh are the shape functions defined by 
equations (3.1)-(3.3) of [3]. We also assume the subdivisions Kh to satisfy the 
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regularity conditions in [3]. Let hK denote the diameter of the element K and 
h = maxKEK hK. We introduce a further assumption on mesh subdivisions. 
The distance dK between the midpoints of the diagonals of K E Kh is of the 
order O(hk), uniformly for all elements K as h - 0. 

The nonconforming approximation of the solution of (2.1) is the following. 
Find a differentiable map U: I -* Sh such that 

2 

(2.3) (Ut, V) +Ah(U; U, V) = E(bi(U)U,, V)h + (f(U), V), 

(U(O), V) = (U, V) VV E Sh, 
where 

((0I V/) (p | dx, (I, V/) h = p E KfM dx, 

Ah(p; a, I/) = (a(p)V(o, VYI)h = E(a(p)VoI VYI)K 
K 

a(p) = a(x, p), f(U) = f(x, U), U(O) = U(x, O). 
2 

Here, (., .)K denotes the inner product in L2(K) . Without loss of generality 
we shall assume the initial condition in (2.1) to be uo(x) = 0 throughout this 
paper. 

3. LEMMAS 

Let u and U be the solutions of problems (2.1) and (2.3), respectively. In 
order to estimate the error U - u, we introduce an auxiliary variational problem: 

Find a map i: I - Sh such that 

(3.1) A h(U; ",V) =A(u; u, V) VV E Sh, 

where 

A(w, u, V)=- V (a(w)Vu) V dx . 

Note that the initial condition ii(O) = 0 holds, since uo(x) = 0. In the 
sequel, c will be used as a generic constant. It may have different values at 
different places. 

Lemma 3.1. Assume q/ E H1 (Q) and vh E Sh; then 

(3.2) ITr (M>, Vh)I Sf | VhNrdS < ch 2I1I1IVhI2h' 

where n = (NJ, N2) is the unit exterior normal vector along the boundary AK 
of K, and the seminorm HI 12,h is defined by I2,h = EK' 2,K 

Proof. The proof uses ideas contained in [3, Theorem 1]. We decompose the 
trial function vh into the conforming and nonconforming parts, vh = yh + Zh. 

Since hH (Q) 
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Let us decompose T(r) (V/, 
Zh) in the form 

Th (YI Zh) = zf /ZhNrdS 

(3.4) = K RO IROZhNr ds + 
K R0 V/POZhNr ds 

+ZJ POVZhNrds = ,, 
K j~~~~~=1 

where Pov is the piecewise constant approximation of v defined in [3, equation 
(2.6)] and ROv = v - Pov is the associated remainder term. We estimate each 
of the terms Ti, i = 1, 2, 3, on the right-hand side of (3.4). 

(i) By virtue of interpolation theory we have 

IT, I < 1 Ro VIRo ZhNrds 

K (3.5) ~ ? ~(fK(RoN/2ds) 1/(1 Ro ds)1/ 

< chvlfl IZhI1,h 

Combining [3, (3.11)-(3.12); 2, (2.11); and 3, (2.3)] yields 

IZhIl ,K < chKVh2,K 

Consequently, 

(3.6) 1T11 < ch 2 IllVhI2,h 

(ii) Similarly, we have 

(3.7) IPoZhI < chKlVhl2,K 

Thus, 

IT21 < E J O POZhNr ds 
K K 

(3.8) ? >(f2ds 1/2 2 1/2 

< ch |/11IlshI2,h 

(iii) For the term T3, we use the inequalities [3, (3.17)-(3.20) and (3.5)] and 
note that dK = 0(h1) to get 

(3.9) KZhNr ds < cdKhKIvh2K ?ch IVh2, K 

Thus, 

(3.10) 1T31 < !2 ?/ ZhNrds < ch IIY|IlIvhI2,h 
K K 
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Combining relations (3.3), (3.4), (3.6), (3.8), and (3.10), we see that (3.2) fol- 
lows. 5 

Corollary 3.1. For q/ E H1 (Q) and vh E Sh, 

(3.11) |T hIVhII IC IfllVhII, ho r= 1, 2. 

The following three lemmas are contained in [3, 4, and 5], respectively. 

Lemma 3.2. Let u E H 2(Q) for all t E I and fi be the solutions of (2.1) and 
(3.1), respectively. Then for t E I 

(3.12) Ia - ull + hla - UI1 ,h < ch2IU112I2 

Lemma 3.3. Under the hypotheses of Lemma 3.2 and the additional assumption 
that Q is decomposed into rectangular elements, we have that 

u E W2 (Q) Vt E I 

implies 

(3.13) IIU - UIIL < ch2log lIU12 1 oo 

Lemma 3.4. If, in addition to the hypotheses of Lemma 3.3, u E H3 (Q) for 
teI, then for teI 

1/2 

(3.14) { E IV(u-u)(x0) 22 

xoEG 

where G denotes the set of nice stress points and N = O(h-2 ) is the cardinal 
number of G. 

(The nice stress points relative to the given subdivision are the centers of the 
rectangular elements of that subdivision.) 

We now give the following estimates for the error ii - u between solutions 
of (3.1) and (2.1). 

Lemma 3.5. Under the hypotheses of Lemma 3.2, we have for t E I 

(3.15) 2I< -cuI2 OK) 1 hIuII2 

(3.16) (z IIat - UtIK122 OK) < ch/2(2I2+ IIU J12) 

Proof. (i) Let (0K E H1 (K) be the solution of the elliptic problem 

(3.17) a(U)VK Vv E H (K), t E. 
Y SU~~~~ 



514 S. H. CHOU AND Q. LI 

Then YK E H112(OK) may be chosen so that 

f YK 1 dS = 1I 1I'IK_1/2, OK 

and 

II'YKII1/2,OK = 11" 1/2, OK 

where q = u - u. The existence of YK is guaranteed by the Hahn-Banach 

theorem, since H112(OK) is the dual of H 1/2(OK). 
It is well known that if K is convex, then (K E H2(K) and 

(3.18) II(0K1II2,K ? CII2YK II1/2 ,0K _ CI?1II112, 0K 

Setting v = q in (3.17) and summing over K E Kh, we find 

(3.19) jjq16112,A = A(; q, () = A(; , (p-7rf) +Ah(;6 

K 

where the function (0 is defined by q' I K = (K and 7r O E Sh denotes the Sh- 
interpolant of (0. By the continuity of Ah (u;*, *), the interpolation property, 
Lemma 3.2, and (3.18), we get 

IAh(U; I, (0 - r)l < Clqll hk - 711h < ch2IIuI21212 h 

(3.20) 1c/21U1 
( 3.2 0 ) ~~~~< ch | |U1I1|2 -E 1| 1||_I/2, O K) 

For the second term on the right-hand side of (3.19), we have, by (3.1), 

1)A (u =A " rp)-A j 0 
(3.21 h(U; 

' () = Ah(U; U. 
7)-Ah(U; U, 7) 

=A(u; u, 7r(O)-Ah(u; U, 7C(O) = -Dh(U; U Ilr(o) 

where 

Dh(W; U, Vh) = Ah(W; U. Vh) - A(w; U. Vh) 

(3.22) = [a(w)Vu* vh + V * (a(w)Vu)vh] dx 

- EDK(W; U. Vh). 
K 

Using Green's formula, we obtain 

(3.23) DK(w; u, v) IKa(w)auV ds 
It follows from Lemma 3.1 and (3.18) that 

IAh(u; ii, 7r)l < ch2 IIUII21F(012 h < ch2 llUll21(012 h 

(3.24) ? h ~L( Il~/d)1/2 
Inequality (315 owfllwfo (.9)anneuli< ch nIU112 -31/2,4K 

Inequality (3.15) now follows from (3.19) and inequalities (3.20) and (3.24). 
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(ii) The second assertion of the lemma can be proven using the same tech- 
nique as the one leading to (3.15). 

Similarly as (3.19) was derived, one can easily obtain 

(3.25) ll~til1/2, aK = h(U; qt, (p f-7) + Ah (U; qt I 7by) 
K 

where 

(3.26) 11ko112,K < CIIqt11-12 AK' 

Obviously, 

(3.27) IAh(u; It, I (-7rq,)l < ch lIU112 (I 1tII-1/2,aK) 

To estimate the second term on the right-hand side of (3.25), we rewrite the 
representation (3.1) as 

(3.28) Ah(u; C, V) +Dh(u; U, V)=0 VVESh. 

Differentiating (3.28) with respect to t, we see that 
(3.29) 

A(;Qt V) +A A(u; q, V) + D(; t V) + D*(u; U. V) 0 V h h(; tV (UUt hSh, 

where 

(3.30) Ah(w; v, V) = (a(w))tVv *V Vdx, 
K 

(3.31) D*(w; v, V) = t (a(w )av V ds. 
K JK 

Hence, 

(3.32) Ah(u; t, 7r~o) = -Dh(u; u, o) -D*(u; u, 7r(o) -A*(u; , 7r o). 

Applying Lemma 3.1 to the first two terms on the right-hand side of (3.32), we 
conclude that 

(3 33) JDh (U; UtI 7()1 I< ch211Ut11211(P112,h' 

(3.34) |D*(u; u, 7rz)l < ch 1212f1 h 

For the last term of (3.32), we have by Green's formula, 

Ah(u; 1, 7r) = f V. (a(u)tvl7r(o)1dx-Sf (a(u)) t a dx 

= G1 + G2 a 

and consequently, writing 11*1h = II 11 2 + 1 a12h + 1 a12h 

(3.36) 1GI1 ? cIII 117r(P112,h < ch 21U11211(0112O, h 
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(3.37) lG21 
< CE 11 ll/2K %|| 1 / 2 112Kll'll-1/2,aK) 1/2 Il2,h' 

where we have used the trace inequality. Combining the inequalities (3.26), 
(3.33)-(3.37), and (3.15), we see from (3.32) that 

(3.38) lAh(u; q,,ro)I < ch lul112 ( llltlL1/2,OK) 

Finally, substituting (3.27) and (3.38) into (3.25), we arrive at (3.16). o 

Lemma 3.6. Assume that the hypotheses of Lemma 3.2 are satisfied. Moreover, 
assume that ut, utt E H2(Q) for t E I; then, for t e I, 

(3.39) llit - uJl + hlii - UJI,h < ch 2[11U112 + llUJIl2I 

(3.40) Vlitt - UttII + hlftt - Uttl I,h < ch2[11U12 + hIUt 12 + hlUttI 21 

Proof. (i) Let u* E Sh be such that for t E I 

(3.41) Ah(u; u* -ut, V) +Dh(U; Ut, V) = 0 VV E Sh. 
Then by Lemma 3.2, 

(3.42) lu* - UJl1,h < chIlut 12 

Using inequality (2.2) and Corollary 3.1, we deduce from (3.29) and (3.41) with 
V = - u* that 

C tUt U llh <?Ah(U; Ut-U Ut U ) 

=-D*(u; u,f u-u )A*(u; ui- u, iiU 

' c[hll2112 + If'-UII h1If't - 
U*1,h < chl|u1121fut U*11,h 

Combining this inequality with the triangular inequality 

I-t UtI1,h < Ut - U*l 1h + lU* - Utl ,h 

and using (3.42) yield 

(3.43) Ift - Utl ,h < ch[11u12 + llUtll2I 

For the L2-norm we proceed by duality. Note that 

(3.44) 117h=sup l(g, qdl 
gEL2 lllgl 

Let g be an arbitrary function in L2(Q). Let q' e H2(Q) n H'(Q) be the 
solution of 

(3.45) -V * (a(u)V(p) = g in Q2, 
(0 =0 onO02. 

Recall that 

(3.46) II( 112 < chhg19. 
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From (3.29) we have 

(g, rqt) Ahu (p -7rzp) -A* (u; rq, 7rzp) - Dh; , 
-h (U; U.' 1-[ h~u h, (U-( Ut I7(0 

5 

= Eli. 
j=l 

Using arguments similar to those used to derive inequalities (3.27) and (3.38), 
one has 

(3.48) II + I2 + I3 + I4 < ch 11U11211 112 p 

Noting that ut E Ho (Q), we have from (3.45) and (3.22) that 

I5 =-Dh(u; (0, )=-Dh(U; (0, I, 

and 

349) |II51 < ch 211 (P 11 2 1 "t 1 2, h 

The inverse inequality implies 

IUtI2,h < It 
- 

lrIUtl2,h + IIUtI2,h 

< ch1 [it - Uti 1h + Ut - FUtIl ,h] + IUt 
- 

UtI2, h + IUtj2 

< CIIUtl12 

Together with (3.44) and (3.46)-(3.49), this proves the first estimate of the 
lemma. 

(ii) We now prove (3.40). Differentiating (3.29) with respect to- t, we get 

A (u; qtt, V) + 2A (u; qjt, V) + A* (U; q, V) + D V) 

+2D*(u; ut, V)+D**(u; u, V) =O VVESh, 

where 

A**(U; q, V) = | (a (u)) tt'Vq * V Vdx , 
K 

D**(U; U. V) = E (a(u)au Vlds. 
K K 

Define u** E Sh by 

Ah(u ; u Utt , V) +D h(U; Utt , V) = 0 VVESh, tEI. 

Observing 

(3.51) lu - uttl ,h < chIIuttII2, 
and setting V = tt- u** in (3.50), we find 

I -litt U IIh < Ah(U; -tt 
- utt- ) 
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On the other hand, again by (3.45), it follows from (3.50) that 

(g, lqtt) = Ah(u; p, -r() - 2A*(u; qt, 7rZo) -A* (u; tj, ir p) 
(3.53) - Dh(U; Utt, 7f) - 2Dh(u; ut, of () 

- 
** 

( ;u rp -h hA U.Z D(U ; (P I tt) 

Applying the technique used to estimate (3.43), (3.47)-(3.52), and (3.53), in- 
equality (3.40) follows. n 

Corollary 3.2. Assume that u, u E H 2(Q) n W '??(Q) for t E I. Then Vii, 
ft, and Vut are uniformly bounded, i.e., there exists a constant c independent 
of h and t such that 

(3.54) IIVaIIL(L) + 1IIt1IL,,(L00) + II V1itilL(L,,) ) el 

where SUV(IL (L ) = suPtEImaXK IIVIIL0(K) . 

Proof. Using the triangle inequality and the inverse inequality, we have 

IIVaIIL < IIV(iU - F'U)IIL + IIV(F'U - U)L + IIVUIIL 

(3.55) ? ch'[jf~ - uj1 ,h + 1u - Fuj1 h] + IIV(rU - U)IIL + IIVUIIL 

< c[1u|112 + 11VUL ] + 1jV(u - 
7ru)IILW 

We now estimate the last term of (3.55). Since iru E Sh, we can write iru as 
the sum of the conforming part Yh and the nonconforming part Zh, 

(3.56) ru= Yh + Zh. 

Hence, 

11V(u-Fru)1L < 11Vu YhIIL + IIVZ hIL 

< 11V(U -YJI|L + ch- lzhil,h 
(3.57) 'h l +h Ih0 

? 17V(U - Yh)1L + ch'[jru - ullh + 1u Yh11i 

< C[IIVUIIL + 1jul12] 

Together with (3.55), these bounds show our assertions on Vui. In the same 
way, the uniform boundedness of it and VQt can be proved. We omit the 
details. n 

4. ERROR ESTIMATES 

The main objective of this section is to derive error estimates for U - u. 
With fi defined by (3.1), we write the error 

U - u = (U - ii) + (ii - u) =+ q. 

The lemmas in ?3 give estimates on a . It remains to estimate 4. To do this, 
we need an additional assumption on U. Assume that there exists a positive 
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constant c* such that 

(4.1 ) 11Ut IIL,,(L,,) 
< 

Without loss of generality, assume c* > 2e (see (3.54)). 
The following theorem gives the fundamental result on 4. 

Theorem 4.1. Let u, U, and ii be the solutions of problems (2.1), (2.3), and 
(3.1), respectively. Assume that u, Ut E L2(H2 (Q)) n Lo (W" l(Q)) and that 

utt E L2(H2 (Q)) . Then 

2 
(4.2) II1tL,,(L2) + IIIIL,(Sh) + II1tIIL2(Sh) < ch 

Proof. Using (2.1), (2.3), and (3.1), we observe that 

(4t , V) + Ah(U; 4,V) = (qt, V) + ((a(u) -a(U))'Vi, 'VV)h 
2 

(4.3) + E(bi ( U) Ux -bi (U) a,, V)h 
i= 1 

+(f(U)-f(u), V) VVESh. 

Differentiating (4.3) with respect to t yields 

(4tt 5V) +Ah (U; 4tI V) 

-(Ott, V) - ((a(U))tV4, VV)h + ((a(u) - a(U))Vfit, VV)h 

+ ((a(u) - a(U))tVi, VV)h 
(4.4) 2 

+ ((bi (U) Ux -bi (2)2uxI)t ' V)h 

+ ((f (U) -f(U))t, V) V1V E Sh 

We first discuss estimates of (4.3). Setting V = t and using (4.1), we see that 
the left-hand side of (4.3) is 

.d ' 
I 

dt Ah ( ;, )- (ap(U)UtV4, V4)h 

> g|t,12 + 
I d A (U; CC* 1)ccl1l2 

Also, 

(4.6) -(It, Xd < 11?til2 + jj4t 12 

and 

(4.7) (f(U) - f(u), Xt) < C[41 2 + 11112 +jj~t,12] 
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2 2 Applying Corollary 3.2 and the inequality ab < a /4e + eb , we get 

(4.8) ((a(u) - a(U))Vfi, Vt)h < 
C(g,12 + jqI 2) + 12 

2 j"12 ti,h, 
Rewrite the third term on the right-hand side of (4.3) as 

2 2 2 

(4.9) Z(bj(U)x d t)h + E((bi(U) - bi(u))i x, It)h + (bj(u)qx, dt)h. 
i=1 i=1 i=lI 

The first two terms of (4.9) are bounded above by 

(4.10) C[||2 + I1II2 + j~t,12 + I'1IhI 

For the last term of (4.9), we get by Green's formula, 

2 2 

E(bi(u) x,, t)h = - E((bi(u)t)x), ')h 
i=l i=l 

(4.11) 2 

+>E JOK bi(u) qtNids 
i=l K a 

=Q1 + Q2 

Obviously, 

(4.12) 2 + CI 14 2 Q, < 
C1j1I0t12 ,h 

Applying the duality of H112 (OK) and H 1/2 (OK) and the trace inequality, 
we conclude that 

Q2 < C E II'iL1/2 aK +h(I 1/2 , aK 

K 

Combining (4.5)-(4.13) with (4.3), we obtain 

2 i d 
11~tii2 + 2 dt-Ah W; ,) 

(414) < C(C* + 1) [1I,12 + 1412 h + jjXtII2 + jjqI2 + llt12 

+ E II11l/2 K1 + 4I 1t~ih 
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Now we estimate (4.4). Replacing V by Xt in (4.4), the coerciveness of the 
bilinear form Ah(U; *, *) implies that the left-hand side of (4.4) is 

(4.15) > I d I1ti 2+ C1Itl1 h. 

As for the fifth term on the right-hand side of (4.4), we write it in the form 

2 

((bi(U) Ux bi (u)ux, I)t 5 t)h 
i=l 

2 2 

E(bj(U)4x It ' t)h + E((bi(U) - bi(u)) iix, Xt)h 

(4.16) 
~ i=1 i=1 (4.16) i~l2 2 

+ E(bi(u)x, t X Xt)h + E((bi(U))t~x, I t)h 
i=1 i=1 

2 2 

+ ((bi (U) -bi(u)) t fx X dh + E((bi (u)) t x, I Xtdh 
i=1 i=1 

Using an argument similar to one given in (4.3), we can estimate each term 
of (4.16). The remaining terms in (4.4) are bounded as before. Following the 
same analysis that led to (4.14), we obtain 

l d 2 2 
2 Wtilti + C1 I4t 1 h 

< C(C* + 1) [IgII2 + IgI h + 2I4tII + IqII2 

(4.17) L 

+I 112t 1 + IIqttII + E 1I1I-1/2,aK] 
K 

+ I4tll h 

Adding this inequality to (4.14), we see that 

2 dt 
2 

tll+ Ah ( ; ) ] + C1 g~tI2l +Atliti h(U; ~, 
1) 

+ ~Ii,h 

(4.18) ? c(c + 1) [| + I1,h + + 1 2 + 1 2 

+ 11 tt + - Il /2,9 K] 

Integrating (4.18) with respect to t and noticing that 

2 (jt )2 tj 
1I1I2 =t f dx < T 11~tI2ds, 
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we have by the initial conditions, 

1~tII2 + k4Ilh + kltljh ds 

< c(1 + C*) [11 (o)112 + ft (ii6ii2 + IlqII2 + 1 12 

(4.19) 

+ lll- 1/2, OK)d 
K 

+f(II ~tII + K4ilh)ds] 

which, upon using Gronwall's lemma, gives 

11~tll + 1l I h + 
II1tIIL2(Ot;Sh) 

< c(1 + c*) exp(c(l + c*)T) [IINt(0)II + IIIL2(L2) 

(4.20) + llqtlIL2(L2) + 11iqttIIL2(L2) 

X ( II 6 - 1/2, K) 

Setting t = 0 in (4.3), we obtain 

(Ut(O)-Ut(O), V) =O VVESh. 
Hence, 

11~t (0) 11 (4t (0) t(0)) = (qt (0) Xt ()) 
< 11 qt (0) 1 11~t (0) 1 

An application of Lemma 3.2 then yields 
2 

Now Lemmas 3.2-3.6 imply 

(4.21) IItILO(L2) + IIIIL (Sh) 
+ 

iI~tiL2(Sh) < c(1 + c*) exp(c(l + c*)T)h 
To complete our argument, we must show that for h sufficiently small, 

IIUtIIL (L ) < 2c < c*. We use the inverse inequality, (3.54), and (4.21) to 
see that 

IIUIIL.(L.) - IIJtIIL(L.) + IIUIItIL (L ) < C + chI kJlIL(L2) 
< ?+c(l +c*)exp(c(l +c*)T)h. 

Then clearly, if h is taken sufficiently small, 

IIUtIL (Lw) < 2c < c*. 

Hence the constant in (4.21) can be chosen independent of c*. 
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We are now in a position to prove the main results of this paper. First, 
by using Lemmas 3.2 and 3.6 and Theorem 4.1, we obtain immediately the 
following 

Theorem 4.2. Let u and U be the solutions of (2.1) and (2.3), respectively. 
Assume that u, utt E Loo(H2(Q)) n Lo.(W 1' (Q)) and that utt E L2(H2(Q)). 
Then 

(4.22) HU-uHL (L2)?HUt-utHL (L )+h[JHU uK (S )?HUt utHL (s)] < ch 

We now turn to the maximum-norm estimate for the error in the gradient. 

Theorem 4.3. In addition to the hypotheses of Theorem 4.1, assume that the 
domain Q is decomposed into rectangular elements. If u E Loo (W2, 00Q)) 

then 

(4.23) 1 V(U - U) L (L) < ch log(1/h). 
Proof. Applying Theorem 4.1 and the inverse inequality, we deduce that 

(4.24) < ch||1 1kLQQ(Sh) < ch. 

On the other hand, using Lemma 3.3 and the inverse inequality, we have 

ITV IL(L) < HTV( - U)IIL (L,) 
+ V(ru - U)IIL (Lo) 

(4. 2 5 ) < ch [ 1U10L (L ) + 11U - rHU11L (Lo )] 

+ V(Hu-U) I- Loou(LOO) 

< chlog(1/h). 

Inequality (4.23) is now a direct consequence of (4.24)-(4.25). E 

Finally, we derive a superconvergence order estimate for the gradient. 

Theorem 4.4. Under the hypotheses of Theorem 4.1 and Lemma 3.4, 

1/2 

(4.26) 1in V(U 
_ 
U) (X0 12 < ch 2Vt E I. 

xoEG 

Proof. In view of Lemma 3.4, we only need to estimate 4 = U - ii . By Theorem 
4.1 and the inverse inequality, 

iN E V(OIy <C{N EIVIL 0(K)} 
XOE G jK V~() / 

1 1/2~~~~~~~~~~~~~ < c {NE h <I(IL()} || ch 
Nc+h2 V L2 (K) <C14,h~c 
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