
MATHEMATICS OF COMPUTATION 
VOLUME 54, NUMBER 190 
APRIL 1990, PAGES 525-543 

SYMMETRIZABLE FINITE DIFFERENCE OPERATORS 

BRUCE A. WADE 

ABSTRACT. We introduce the notion of a symmetrizable finite difference oper- 
ator and prove that such operators are stable. We then present some sufficient 
conditions for symmetrizability. One of these extends H.-O. Kreiss' theorem on 
dissipative difference schemes for hyperbolic equations to a more general case 
with full (x, t)-variable coefficients. 

1. INTRODUCTION 

The problem of finding useful sufficient conditions for the stability of linear, 
variable-coefficient finite difference operators (for hyperbolic problems) has not 
yet been satisfactorily resolved since existing results make significant limiting 
assumptions on the symbol of the operator. In this work we extend and unify the 
various sufficient conditions for stability, e.g., those of Kreiss [4] (also Parlett 
[9]), Lax and Nirenberg [6], Michelson [7, Theorem 1.2], Shintani and Tomoeda 
[1 1], and Strikwerda and Wade [12]. In the process, we simplify the proof of 
stability for variable-coefficient operators. We consider multistep systems of 
finite difference equations with (x, t)-variable coefficients and only minimal 
assumptions on the symbol. 

Primarily, the results of this paper center around the works of Kreiss [4] and 
Michelson [7, ?6]. In [4], stability is proved under some very restrictive assump- 
tions, namely, that there is no t-dependence in the operator and that both the 
differential and difference operators have Hermitian coefficients. We eliminate 
these restrictions, and so address the conjecture in [4, p. 337], in which it is 
stated that properties of the eigenvalues could possibly replace the special as- 
sumptions made there. Michelson's theorem for the pure Cauchy problem [7, 
Theorem 1.2], concerning finite difference equations for strictly hyperbolic par- 
tial differential equations, is a special case of our theory; however, we simplify 
the proof of stability by using only the weak Garding inequality, in which the 
symbol is positive definite, instead of the sharp Garding inequality. Since the 
weak Garding inequality is much easier to prove, we thus obtain a more general 
result with less machinery. 
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Strikwerda and Wade [12] have recently introduced a condition in the Kreiss 
Matrix Theorem, called a symmetrizer condition, and have shown that the sym- 
metrizer condition ([N] in [12]) implies stability for variable-coefficient prob- 
lems in a certain norm involving the Laplace transform in the t-variable. The 
symmetrizer condition of [12] is a direct extension of the Lax-Nirenberg non- 
negative real part condition arising in [6, Corollary 1.2], where the symmetrizer 
matrix happens to be the identity. 

In [12] it is proven that conditions [H] and [N] in the Kreiss Matrix The- 
orem are equivalent, and that the matrix N can always be taken equal to the 
matrix H. However, the converse is not true; in ?4 we give an example of a 
family of matrices which satisfies condition [N] with the identity as N, even 
though the matrix H cannot be taken to be the identity. To conclude [H] 
from [N], one would have to go completely around the circle of conditions in 
the Kreiss Matrix Theorem. For variable-coefficient problems this creates a dif- 
ficulty because the construction of the matrix H in the Kreiss Matrix Theorem 
(which we would like to use as a model), cf. [10], does not produce a smooth 
H as a function of the elements of the family of matrices, and smoothness is 
essential for our pseudodifference operator machinery to go through. There- 
fore, condition [H] seems to be somehow stronger than [N]. For this reason 
we adopt here a variation of Kreiss' condition [H] in [4] for our definition 
of a symmetrizable finite difference operator, rather than the condition [N], 
which was called a symmetrizer condition in [12]. Through the weak Garding 
inequality (and condition [H] as a model) we are able to now prove the same 
results as those which came out of the sharp Garding inequality and condition 
[N] in [12]. The difference arises only in the variable-coefficient case. 

Some work is still needed to answer the natural question of whether the 
stability estimate resulting from condition [N] in [ 12] is equivalent to that from 
this paper (Theorem 3. 1). So far, we can only assert that there is equivalence in 
the constant-coefficient case, and that the result from [12] may be weaker than 
that in this work. 

The novelty of our method for proving stability consists in the notion of a 
symmetrizable finite difference operator (one which parallels the already estab- 
lished theory for pseudodifferential operators, cf. [2 or 14]), in our method of 
proving stability, and also in our method of constructing the symmetrizer. The 
symmetrizer property given in ?3 is basically the same as Kreiss' condition [H] 
in [4], but differs in specific details relating to the pseudodifference operator 
symbol class. Our method of proving stability does not rely on the operator 
H as simply a means of changing the norm to obtain a family of contractions, 
which does not help in the t-dependent case because the same norm, (H., *), 
cannot work for all time levels; rather, we utilize the operator H in the spirit 
of a Lyapunov function to allow an energy method to go through for the full 
(x, t)-variable coefficient case. We separate out the question of proving sta- 
bility and the actual construction of the symmetrizer; this approach allows a 
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unification of the various existing conditions for stability as special cases of our 
theory. 

We have organized this work as follows. Section 2 contains a brief description 
of the pseudodifference operator theory. Section 3 contains the first mention 
of the type of finite difference operators to be considered, a definition of sym- 
metrizability, and a proof that symmetrizable operators are stable. Section 4 
is devoted to the question of constructing a symmetrizer for various classes of 
finite difference operators, which is the most difficult part. We present two the- 
orems on the existence of a symmetrizer, one of which is related to the Kreiss 
condition of dissipation and accuracy in [4]. Each of these has hypotheses which 
are useful in practice. 

2. PSEUDODIFFERENCE OPERATORS 

We now briefly discuss the theory of pseudodifference operators, but we omit 
proofs since we consider only a careful description of the symbol class and 
the relevant results to be necessary. The reader should consult [1 or 7, ?4] for 
rigorous details. 

We take M to be the collection of complex-valued, m x m matrices with 
norm induced by (x, y) y * x for x, y E Cm. If a E Nd is a multi- 
index, we let lalI := ZE a We assume given a grid parameter h E (O, ho), 

for some fixed ho > 0, and we have a quasi-uniform grid R d defined to be 
{X EIRd: xj.E hit}, where the hi satisfy c1h<h.< ch for 1 <j < d and 

all h E (O, ho) with c > 1 fixed. If co E Rd, (h will denote the element of 
Rd with components w h1. We define 

F :=f~){ e dI: hjIwjI < 7r} 

and 

Ah(wO) =(1 + h 211 -e X Xhi 1 /2 

Our discrete function spaces are built around 

L2 
i p d em d E 

I (x <? 

Xh 

The discrete Fourier transform is 

((w) (2) d/2hd e- P(X) E Fh 

XRd XEh 

and the inversion formula is 
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cf. [7, 15, or 16]. We shall utilize the following discrete Sobolev spaces: 

Hh,8 := {: Rd -h CM: IIA'IlL2(h) < X}. 

For pseudodifference operators we follow [7, ?4], except that we do not have 
a particular variable singled out via a Laplace transform. (One simply takes the 
real part of the Laplace transform dual variable to be zero.) For each /I E JR 
and h E (0, ho) we define the symbol class of pseudodifference operators with 
order ,u E JR to be Sh', taken to be the collection of Ph E C'(Rd x h' M) 
which satisfy 

11(i + IXI) Ax(Ph(X5 j) -P(005 0))|| < Ca y Vx E R 
d 

5 OEF rh 

where Ph(oo, *) E C'(Fh, M), and also 

(2.1) ||(1 + IxI) Ax(ph (x, c)II 
< Caf A yA fl (w) VXEJU{X}, E ER h 

where yEN, a, E E Nd, and all constants are independent of h. (Note that 
we require Ph(OO, w) to also satisfy (2.1).) 

We shall also need a special subclass of pseudodifference operator symbols 
with a slightly different property relative to the parameter h. Essentially, this 
class arises from symbols which are bounded functions of 4 = wh, whereby 
differentiating with respect to co yields successively higher powers of h instead 
of lower powers of Ah (). For instance, a cutoff function in the 4 variable 
satisfies the conditions of this special class of symbols. 

For each ku E JR and h E (O, ho) we define the symbol class Sh' to be the 
collection of Ph E Sh' satisfying 

(2.2) I1(1 + IXI) O<aPh(x, w)I I 
< ?c yh Ah(@) VX E dU0{X}, W EJ'h. 

For Ph E ShA we define the corresponding pseudodifference operator Ph: 
Hh Hh o by 

Ph(p(x) := (2) 1d/2 Ph(X, w)e lx0(w)dw, 

and we let a (Ph) := Ph be the symbol of Ph . We take OPSh' to be the collection 
of such operators. (That Ph: Hh , -4 Hh o is actually proved in [7, Theorem 
4.1].) 

We now state the relevant results on pseudodifference operators, without giv- 
ing proofs. We assume that the reader is familiar with [7, ?4]. 

Proposition 2.1. For each Ph E OPSh' and v E R there is c > 0, independent 
of h, such that 

IIPh(PIIh,v < CIk(pIIh, +v VF E Hh, /+V. 

We denote by Ph* the Hh 0-adjoint and by P(*) the operator whose symbol 
is o(Ph)* (the matrix adjoint). 
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Proposition 2.2. Let Ph E OPSh' and Qh E OPSh', and let Rh be the pseudo- 
difference operator whose symbol is a (Ph) a (Qh) . Then 

(i) h ?Qh' Rh E PSh+v 
(ii) Ph ? QhRh E OPSh1+v 

(iii) Ph - Ph E E hh 

Proposition 2.3. Let Ph E OPSh' and Qh E OPShv, and let Rh be the operator 
whose symbol is a(Ph)U(Qh). Then there are Ah E OpShu+v and Bh E OPShu 
such that Ph ? Qh RhhAh and P h h 

Proposition 2.3 is the same as [7, Theorem 4.2a, 4.3a or 6, Lemma 1.1]. 
Comments on how to easily modify the standard proof of Proposition 2.2 to 
the case with symbols in Sh' are contained in [7, p. 32]. Intuitively, the only 
difference between Propositions 2.2 and 2.3 is that OPSh' provides a different 
meaning to the phrase 'lower-order terms'. 

Next, we give a special case of the weak Garding inequality involving oper- 
ators in the restricted class OPSh . This version is all that we will need in the 
next section. 

Proposition 2.4. Suppose Ph E OPS50 and there is co > 0 such that Re a(Ph)(.) 
> cOI; then there is c, > 0, independent of h, such that 

Re(Ph? p > )h ,v? (Ic . 

We note that the conclusion of Proposition 2.4 is essentially the same as that 
of [6, Theorem 1.1], except that our assumption Ph E OPSh? greatly simplifies 

the proof because the standard derivation of the weak Garding inequality, cf. 
[7], goes through. 

3. SYMMETRIZABILITY AND STABILITY 

In this section we introduce our class of finite difference equations, define 
the concept of a symmetrizable finite difference operator, and prove that such 
operators are stable. 

We consider finite difference equations of the following general type: 

xRd (3.1) q(t,5 h , xTx 5 Tt)Vh(t, 5x) = fh(t, 5x) V(t, 5x) E Nk X h' 

Vh(ak, x) = gh,,(x) 0 < a < co-1, 

where 
'J0 

q(th , x, Tx Tt)"- qh(t, x, Tx)Tt 
a=O 

We have used Tx and Tt to indicate the forward translation operators, k = Ah 
for some fixed A > 0 and Nk := kN. The following assumptions are made: 

kqo(t, h ,x Tx)I E OPS5 , {qa(t c)}'JO CC(I+RO Sh) for some > 0O 
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and {qj1(t, .)q (t *)}a_ C C1(IR+, S0), where qj 1(t, -) denotes the symbol 
of the inverse of q0(t, h, x, Tx). 

These assumptions are certainly not very restrictive-they include as special 
cases any of the finite difference equations of [4; 6; 7, Theorem 1.2; 9; or 11]. 
We require only that fn and {gh }i0-31 be grid functions, and we have no 
differential equation in sight. The conditions on the inverse of the operator 

q0(t, h, x, Tx) are somewhat troublesome because they are not easy to check, 
unless one has a constant-coefficient operator. However, we need the invert- 
ibility of q0(t, h, x, T ) even to know that there exists a solution to (3.1), 
but we do not desire here to deal with the problem of finding conditions on 
the symbol of q0(t, h, x, e ih) which guarantee the invertibility of the opera- 
tor. Also, these assumptions implicitly force a relationship between k and the 

q,(.), which is the natural one for hyperbolic problems. 
We now fix our definition of stability, which is the usual one. 

Definition 3.1. The finite difference operator q(t, h, x, Tx , Tt) in (3.1) is said 
to be stable if for every T > 0 there exist ho, c > 0 such that any solution 
satisfies 

(3.2) Ivh(t)II ?< C S gh11 + k 2 
Ilfh(r)IIho) 

a=O TE[O, t]fnNk 

for tE[0, T]nNk and he(O, ho). 

For our stability proof to go through, we need to reduce the multistep oper- 
ator in (3.1) to a single-step canonical form-called the reduced operator-by 
employing the standard method, cf. [10, Chapter 7]. We go over to capital 
letters. Let Vh be the vector of size mao, defined in terms of c0 blocks of 
length m, as follows: 

[VhJI := Tt ?vh 1<j aC, 

where the square brackets indicate an m-block. Similarly, let 

[Ghlj := gh, uaO-j < j < Co 

and 
f k q0(t, h, x, Tx)[-fh, j1; 

[h]j : 0, else. 

Finally, we define a block matrix of operators consisting of a 0 x a0 matrix of 
m x m blocks as follows: 

{ q0(t, h, x, TX) Iqj(t, h, x, Tx), i = 1; 

[Q]ii:= I, i> ,j=i-; 

0 ?, else, 

for 1 < i, j < coa. Our assumptions from (3.1) imply that Q E OPSh and that 

IIFh I|ho ?< CIIfh 1h, I A 
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The resulting reduced equation, equivalent to (3.1), is 

(3.3) 
(T. - Q(t, h, x, Tx)) Vh(t, x) = kFh(t, x), d 

Vh(O, X) = Gh(X) V(t, x)Ek XRh. 

Stability for the reduced equation becomes: for every T > 0 there are h 
c > 0 such that any solution satisfies 

(3.4) IIVh(t)IIs,0 < c (IG + k 1 S 2 
h- Ih h,O + k Ih(r)IIhO0 

TE[O, t]nNk 

for te[0, T]fnNk and he(0, ho). 
We now introduce the notion of a symmetrizable finite difference operator, 

one which parallels that for pseudodifferential operators, cf. [14]. 

Definition 3.2. The reduced finite difference operator is said to be symmetrizable 
if for every T > 0 there are ho, 50, c > 0 and a family of Hermitian matrices 
H(t, *) E C ([0, T], SO) satisfying c ?I < H(.) < cI, OtH(t, *) < cI, and 

(3.5) Q* (t,5 h, 5x, eih )H(t, h, x, o)Q(t. h. X eioh) < e1?k H(t5 h, x, w) 

for h E (0, ho) and (t, x, w) E [0, T] x IRh X 

The difference between this definition and Kreiss' condition [4, Theorem 1, 
#4] is the requirement of smoothness and that H(t, *) must be in the special 
class of pseudodifference operator symbols Sh?. We postpone the question of 
actually constructing the symmetrizer until the next section. 

We shall need a convenient form of the Gronwall lemma. Suppose (, 

q/: Nk -' + satisfy 6_ (t) - c(t) < V(t), for t E Nk, where 5_ := k- '(I - 

Tt7 ) . Then there is ho > 0 such that 

(3.6) (P(t) < eCt ((P(0) + 2k -, 
C 

ecTY(r)), 
TE(0, tjnNk 

for he(0, ho) and tE Nk 

To prove (3.6), we introduce the summation factor I(T) := (1 - ck)Tk 
1 

where ho is chosen small enough to insure that ck < 1 . Since &_ (I(T) (T)) = 

I(T - k)6 (p (T) - cI(T - k)( (T), we see that 5_(I(T) (T)) < I(T - k),(T) . 
Summation and the telescoping property yield 

I (t P()I (0) (p (0) < k , I (T -k) V/ (T),5 
TE(O, tjnNk 

which gives (3.6) after a simple computation. 

Theorem 3.1. If the reduced finite difference operator is symmetrizable, then it is 
stable. 
Proof. Given the symbol H(.) , let Hh denote the corresponding pseudodiffer- 
ence operator. We will compute 6_ (Hh (t) Jh (t) J"h (t))h 0, dropping the sub- 
scripts for convenience. 
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But first we change variables by letting Vh(t) := e Vh(t), where I > 0 is 
to be fixed later. The reduced equation, (3.3), then goes over to 

(Tt - e qk Q(t, h, x, Tx, Tt))J/h(t, x) = kFh(t, x), 

Vh(O, x) = Gh(X). 

However, we now drop the tildes (for simplicity), keeping in mind that the new 
reduced operator is actually e-"k Q(t, h, x, Tx). 

Our first step consists in adding and subtracting 

k I(H(t - k)V(t), V(t)) 

to obtain 

6_ (H(t) V(t), V(t)) = k1(H(t - k) V(t), V(t)) 

- k ' (H(t - k)V(t - k), V(t - k)) 

+ ((6_ H(t)) V (t),5 V (t)). 

Now we use the reduced equation, above, to find that this equals 

k le2ik(H(t - k)Q(t - k)V(t - k), Q(t - k)V(t - k)) 

- k1 (H(t - k)V(t - k), V(t - k)) 

+ (H(t - k)F(t - k), V(t)) + e Qk(H(t - k)Q(t - k)V(t - k), F(t - k)) 

+ ((6_ H(t)) V (t),5 V (t)) 

Using the Cauchy-Schwarz inequality and the fact that H(.), 5 6_H(.), Q(.) E 
OPSh?, we arrive at the upper bound 

k I((e 
- 

Qk Q (t - k)H(t - k)Q(t - k) - H(t - k)) V(t - k),5 V(t - k)) 

+ c(II V(t - k)II2 + 11 V(t)II2 + IIF(t - k)II2) 

where c > 0 is independent of the parameters. 
The symmetrizer property, (3.5), H(.) E OPSh?, and Proposition 2.3 yield 

5_((H(t)V(t) , V(t)) < c(k l(e 2(qo)k - 1) + 1)IIV(t - k)2 

+ cli V(t)II1 + cIIF(t - k)II2 

where q0 comes from Definition 3.2. Choosing q large enough to make 
e 2(q-qo)k _1 < 0 and using the property C 'I < H(.) < CI, we find that 

6_ (H(t) V(t), V(t)) < c(H(t - k) V(t - k), V(t - k)) 

+ c(H(t) V(t), V(t)) + clIF(t - k)II 

The discrete Gronwall inequality (3.6) applied to 

(p (t) : = (H (t) V (t) . V (0) 5. (t) := IlF~t - k) 112. 
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then gives 

(H(t)V(t), V(t)) < ec ((H(O)V(O), V(O)) + 2k S ecI IF(r) 112) 
TE[0, t~nNk 

where now V(t) represents the original solution, and the q-dependence is im- 
plicit in the constant c. 

By choosing ho sufficiently small and applying the weak Garding inequality, 
we find that 

lc0I IV(t) 112 ( 'c - c h) 11 V(t)112 < (H(t) V(t) , V(t)) 
2~~~~~~~~~~~~~ 

< ceCt (IIV(0)112 +k Z IIF(T)112) 
TE[0, t~nNk 

for some fixed c > 0 (depending on T), where c0 and c1 come from Propo- 
sition 2.4. This completes the proof. oi 

4. CONSTRUCTION OF A SYMMETRIZER 

There remains the problem of actually constructing the symmetrizer, which is 
nontrivial. In this section we present two theorems on the constructibility of a 
symmetrizer matrix, each based on 'easily verifiable' sufficient conditions. Then 
we finish up with a few comments about remaining difficulties in this theory. 

Our method utilizes eigenprojection and total projection operators derived 
from integrating the resolvent over certain specially chosen contours in the 
complex plane. This method, which is based on [8], relies on the resolvent 
condition of the Kreiss Matrix Theorem and a certain uniformity property of 
the eigenvalues. No differential equation appears at first. 

Our second result extends the Kreiss theory of [4] concerning accurate and 
dissipative difference schemes. This well-known theory requires the orders of 
accuracy and dissipation to match, and applies only to an unnaturally restricted 
class of finite difference schemes, mainly because of the method of proof. We 
prove in this section that one can eliminate the restriction in [4] to the case 
of Hermitian coefficients without t-dependence. For simplicity we consider in 
Theorem 4.2 only explicit, single-step schemes, but the method obviously gener- 
alizes in the same way as in Widlund's work [17] to the multistep case, provided 
extra assumptions are added to control the spurious eigenvalues arising from the 
multistep nature. Michelson's theorem [7, Theorem 1.2] concerning dissipative 
difference schemes for strictly hyperbolic partial differential equations is also a 
special case of our first theorem of this section. 

In the constant-coefficient case there would be no trouble constructing a sym- 
metrizer, by condition [H] in the Kreiss Matrix Theorem, because one would 
not need the pseudodifference operator theory, hence no smoothness properties, 
and Theorem 3.1 would go through directly. In the variable-coefficient case this 
method breaks down because all known proofs of theKreiss Matrix Theorem 
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utilize the eigenvalues explicitly, and these could be at most continuous func- 
tions of the parameters; therefore, the pseudodifference operator results would 
not apply. Essentially, the problem at hand is to construct the symmetrizer to 
satisfy (3.5) while still being in S . 

We are given the operator symbol Q(t, h, x, e iZ), which we denote by 
A(t, h, x, 4), 5 := wh, for notational convenience. We need to construct a 
symmetrizer H(t, h, x, 4) to be a symbol of order zero; in particular, it must 
be CI in t, C? in (x, 4),and its derivatives must have the right behavior to 
be in Sh . For convenience of notation we let X I+ x (O, ho) x IRd x [-U 7(1 

the resolvent of A is Rz(A) := (zI - A)1, and we take B,(XO) to mean the 
e-ball about X0 intersected with X. 

From the Kreiss Matrix Theorem, cf. [10], we recall the resolvent condition 
for this situation: there is c > 0 such that for I z > 1 and X E X 

(4.1) IIRz(A(X))II < c(zI -1) 

Although it is not necessarily easy to check in practice, we assume until the 
completion of Theorem 4.1 that the resolvent condition holds. This amounts 
to a pointwise condition on the symbol. It is easy to see that the resolvent 
condition implies that all eigenvalues of A(.) have modulus less than or equal 
to one, and those on the unit circle are simple poles of Rz(A). Difficulties 
in constructing the symmetrizer arise because the resolvent condition does not 
necessarily restrict the eigenvalues near the unit circle to be smooth. 

Following [3, Chapter 1], we consider the eigenprojections as follows. Let 
A(.) E a(A(.)), the spectrum of A(.), and let F be any unit-index, rectifiable 
contour in C containing at least A out of the spectrum and not intersecting it. 
The corresponding eigenprojection operator is 

Pr := (27i)U | Rz (A) d z. 

Consulting [3], we see that P2= and Pr, P =0 if F, and F, contain no 

common element of the spectrum. We say that A is simple if dim(Pr Acm) = 

1 whenever IF contains only A out of the spectrum, and we say that A is 
semisimple if (A - RI Pr, = 0. 

We now present an estimate on the resolvent, along certain contours, which 
will be useful in the proofs of Theorems 4.1 and 4.2. Miller's method from 
[8] is basically the means for the following estimate. Suppose A E c(A) with 
[JA < 1 and let F be any unit-index contour in C containing at least A out 
of the spectrum, not intersecting the spectrum, and contained inside the circle 
centered at A with radius 1 - JAI. Set i := (2 - JAI)A, i.e., the reflection over 
the unit circle U, and let F be obtained in the same manner. 

Consider the matrix polynomial of degree at most m - 1 (A is m x m) 

q(z) := Rz(A) H (z-u). 
/IEa(A) 
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This yields 
m-1 

q(z) =E (z - A)i(27i)-1 | _-(j+l) dC, 
j=O 

which is straightforward to verify, and therefore 

(4.2) Rz (A) = (2ri)Y ji(4C, z)RJ(A) d;, 

where 

-I)( ) _ ( Z- Z) 

From (4.2), for z E F, 

IIRz(A)II < clrF sup{qf (S, z)I(IC4I - ) 1, 

where FIl is the length of F and c depends only on the resolvent constant. 
Therefore, for z E F, 

IIRz(A)II < clFldist(F, U) -sup{fI(C', Z)I}. 

The following inequalities can easily be verified for z E IF, E F, and ,u E 
v (A) 

<-2 ldist (r,A) 
1 

IZ - RI; - AlR- < 3 dist(IF, A) (1 - )A, 

14u- I Iz - l < dist(F, u) 1(4(1 - 1j) + dist(F, u)). 

We therefore obtain 

sup IIRz(A)II < clrl dist(r, U) (1 - IAI)M1 
(4.3) zEF 

x dist(rF, A) (1 + (1 - JAI)dist(r, o(A))l)m, 
where c depends on m and the resolvent constant. 

In (4.3) we have a delicate balance between the various expressions which 
depend on F and a((A); we will utilize this estimate in our next theorems. 

Our symmetrizer matrix must be in S0, and we will need some additional 
assumptions on the family {A(.)}x to be able to construct such an object. 
For our first theorem we simply assume a certain uniformity property on the 
eigenvalues, which we now describe. 

Fix X0 E X; let A denote the set of unit-modulus eigenvalues of A(Z0) 
and let G := a(A(X0))\A. Let p := (1 + max{1Jul: ,u E G})/2 and a = 
min{ Lu - vI, 1 - p}/2, taken over ,u, v E A . By continuity, there is c(x0) > 0 
so that on Bj(0) all eigenvalues of A(.) remain strictly inside, and never on, 
one of the {F,},A or F0, where Fo is the positively oriented circle with 
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radius p centered at the origin and F. is the positively oriented circle centered 
at A E A with radius 65. We call the set of eigenvalues {!U(.)}B (X) which satisfy 
,u - AI < ( on B,(x0) the A-group. 

Now we get more specialized. Suppose that we could find a finite number of 
points {Xi} EJ C X such that the above ej have the property that Uj B.: (xj) = 

X and for each A E Aj (unit-modulus eigenvalues of A(X1)) the A-group is 
semisimple; then we say that the family {A(.)}x is uniformly semisimple at the 
unit circle. This situation would occur for instance (by a continuity argument) 
if A(t, h, x, 4) were independent of h and constant in (t, x) outside some 
large ball, a common situation. 

To fix notation, then, we have a finite set J and CX IEJ c X such that 
Uj B.: (X1) = X, and a collection of unit-modulus eigenvalues Aj for each 
j E J. Further, for each A E Aj we have a contour Ij of radius 65 , and 
also we have pj E (0, 1) and a contour FJ of radius p1. These expressions 
are utilized in the proof of our next theorem. 

Theorem 4.1. Suppose the resolvent condition holds and the family {A(.)}x is 
uniformly semisimple at the unit circle. Then there exists a symmetrizer. 
Proof. We shall construct the symmetrizer locally, and then use a partition of 
unity subordinate to the finite cover { B-E (Xi)} jEJ . For each j E J and A E Aj, 
let 

Aj~): (27ri) | zRz(A( )) dz, 

and 

P, j(.) :=(27ri)| Rz(A(.)) dz, 

defined on B., (x1). The symmetrizer can be constructed as 

H(.) : pj(-)Hj(-), 
jEJ 

where the fj are cutoff functions and the H1(.) are defined next. The functions 

f depend on ( = oh rather than wo, and this is crucial to H(.) being in S-. 
We define 

00 

(4.4) Hj(.) := I + Z(A>*(.))n(A (.))n + P 
n=1 AEAJ 

where 
A n = (27ri) Zj znRz(A)dz 

Clearly, H(.) > I and H(.) is Hermitian. It is easy to verify that IIA>n(W)I < 

pfn+l sup1 IIRz( )Il < cpn+l , with c independent of all parameters (depend- 
ing only on the resolvent constant). Therefore, the infinite series in (4.4) is 
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uniformly and absolutely convergent on B. (xj), and likewise, so is each ap- 
propriate derivative. 

Next, we consider any particular j E J and A E Aj, and we want to estimate 
the smooth function Pi j(.), on B, (xj), and also its derivatives. To do this, 
we shall need to classify the A-group eigenvalues into clusters, in the same 
manner as in [8]. For each ,u E A-group with LuI = 1 we define the cluster 
Cie := l{,} Of the remaining elements of the A-group, choose any one with 
largest modulus, say v (IvJ < 1). We define the cluster Cv successively by 
the following procedure. First, put into Cv the eigenvalues v and any ,u E A- 
group with LuI < 1 and Lu - vi < (1 - IvI)/2m. Next, put into Cv any 
remaining A-group eigenvalues q with JqJ < 1 and Iq - iuI < (1 - IvI)/2m for 
any ,u already in C>, and continue. Eventually, we would exhaust the A-group 
with a collection of clusters {Ci}lE, each built around some ui E A-group with 
LuiI < 1 and {Ck}kEK, each built around the singleton {a'k} with "'kl = 1. 
(This introduces the index sets I and K, which are disjoint.) This detailed 
classification of the A-group allows us to apply the estimate (4.3). 

As a reminder, at this point we have a fixed j E J and A E Aj, and the 
above clusters depend on these j implicitly. We define the contours {Yk}keK 

to be any positively oriented circles centered at ttk and containing only ttk 

out of the spectrum. Next, it is clear that we can find unit-index contours, 
{ Yi2E}I , each surrounding only Ci out of the spectrum, respectively, and such 
that dist(yi, a(A)) > (1- 1,uil)/4m, dist(yi, ui) = (1- Iuil)/4m, IJyI < 1- -ilA 
and dist(yi, U) > (1 - l1il)/2, where U is the unit circle. 

The operator Pi j(.) is smooth on Be (xJ) since it is defined over a fixed 
contour Fr l. However, on Be (xy), this contour integral can be written in the 

form P. j( ) = ZiEIUK Qi(.) I where Qi(.) (27i)[ fby Rz(A(.)) dz. We will 
estimate the Qi(.) separately. 

First, if i E K, then the fact that R z(A) has a simple pole at jui yields 

IIQiI = IIlimq0+ qR(+ q)/,1 (A)II < c, where c is the resolvent constant. For 
i E I we utilize (4.3) and a straightforward computation to conclude that 

I11 < ? yil SUPZEYp IIRz (A) II < c, where c depends on m, ej, and the resolvent 
constant. Thus P. j(.) is uniformly bounded on B., (xj) . Clearly, appropriate 
derivatives of P j (.) can also be estimated by the same method. One would 
only have to differentiate under the integral over the fixed contour F. j and 
then split the integral over the separate contours {yi}iEIUK. 

We have therefore shown that there is c > 0 such that I < H(.) < cI, 

OtH(t, *) < cI, and also that H(t, *) E -0? 
It only remains to prove (3.5). We shall prove that H(.) satisfies (3.5) by 

proving that each Hj(.) from (4.4) does. On B., (xj) we can represent A(.) by 

A(.) = Aj(o) + E APA jo) 
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because of the semisimplicity at the unit circle. This last property is crucial to 
our proof. Thus, on B. (xj), 

A*HA A* + E zPw) H (A+ EHP A) 

AEAJ AEAJ 
00 

= (Aj) j) + E 12*1Pi j 
n=1 AEAJ 

00 

< z+E(X*)n( )n + E p* jp 
n=1 AEAJ 

The proof is now complete. El 

The preceding construction of the symmetrizer could be applied in cases 
where there is no differential equation in sight. However, in most situations 
we are interested in finite difference approximations for well-posed partial dif- 
ferential equations, in particular hyperbolic equations. The work of Kreiss [4] 
shows that stability follows from a match between the orders of accuracy and 
dissipation, under restrictions on the types of equations. 

Michelson, in [7, Theorem 1.2], then showed that no match is needed be- 
tween the accuracy and dissipation if the differential equation is strictly hyper- 
bolic, i.e., possesses uniformly distinct (hence simple) eigenvalues. The result of 
Michelson is already a special case of Theorem 4.1. This is easy to see because 
the strict hyperbolicity forces the eigenvalues to be distinct near the unit circle. 

If one would trace through the proof of Theorem 1.2 in [7], one would find 
techniques which are quite similar to ours, though definitely not the same. How- 
ever, we have replaced the sharp Garding inequality with the weak version and 
have also framed the whole result in such a way as to include much more general 
types of hyperbolic equations. 

We now prove that Kreiss' condition can be utilized to construct the pseu- 
dodifference operator symmetrizer, even in our more general setting, thereby 
extending the original result to the full (x, t)-variable coefficient case and al- 
lowing (general) hyperbolic partial differential equations instead of only sym- 
metric hyperbolic ones. Our method relies on properties of the eigenvalues of 
the amplification matrix and so could be extended to the multistep case simply 
by adding assumptions on the spurious eigenvalues in the same manner as in 
[17]. We prefer now to simplify the form of the finite difference operator in 
order to allow our proof to be more comprehensible to the reader. The con- 
struction of the symmetrizer given next differs from that in [4], although it is 
conjectured in [4, p. 337] that one could possibly attack the problem this way. 

We now consider the following partial differential equation: 

(4.5) (at-p(t, x, Ox))u(t, x) = f(t, x) V(t, x) E R+ x R 
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where Ax:= (0xl aXd ) and p(t, x, AX) := Z1<Ndpa(t ,x)a. We 

assume that the symbol p(t, *) E C1 (R+I, S1 ), where S represents the symbol 
class of pseudodifferential operators, say, from [14, Chapter 2]. However, we 
shall need to have the behavior as lxi -x oo of symbols in S to be consistent 
with that of our symbols Sl (no specific asymptotic behavior is assumed in 
[14]). We let the reader fill in this small detail, and we shall not dwell on this 
point. 

We assume that p(t, x, Ax) is hyperbolic in the following sense: there is 
T(t,*) E C1 (R+, S0) such that T 1 (t, *) E C1 (R+, S0) and 

- I ~~ ~~~~~d d 
Re(T(t, x, co)p(t, x, ico)T l(t, x, co))-0 V(t, x,coj) eR1+x x l XRd 

The finite difference operator q(t, h, x, Tx, Tt) of (3.1) is said to be dis- 
sipative with order p > 0 if there are a , c0 > 0 such that each root (in z), 
say A(.) where A depends on the parameters, of q(t, h, x, e'i, z) = 0 satisfies 

I( )l < eak(l - c0IjIp), for all (t, h, x, 4) E R+ x (O, h0) x Rd X [-1r, 7n]d . 

The finite difference operator q(t, h, x, Tx, Tt) of (3.1) is said to be accu- 
rate with order p > 0 if 

(4.6) 11sk - kp(t, x, iwo) - kq(t, h, x, e io), esk)11 < c(t)(?ojhjP+1 + Isklp+l), 

for s eC with Res > 0 and (t, h, x, w) ER+ x (0, ho) xRd x rh We note 
that the variable s represents the Laplace transform dual variable with respect 
to t, as in [12], although we are not here transforming in t. 

Our definitions of accuracy and dissipation are insensitive to whether q is 
multi- or single-step, and generally, the order of dissipation is even. 

To ease the details, we now assume, as in [4], that the finite difference op- 
erator q(t, h, x , Tx, T) is single-step and equals k 1 T1 + q1 (t, h, x, Tx), in 
which case A(t, h, x, 4) = -kql (t, h, x, e'i) . We are interested in the ques- 
tion of whether the matching condition between accuracy and dissipation could 
yield a symmetrizer. It seems that in general the answer is no; there are many 
possibilities for pathological behavior of the eigenvalues of A(.) near 4 = 0. 
To get around these problems, we now assume that none of the eigenvalues of 
A(-)l*=o are exceptional points, that is (cf. [3, 2.1.1]), a point of X where the 
number of eigenvalues changes (i.e., collisions at the unit circle). This assump- 
tion allows us to define smooth eigenprojection and eigennilpotent operators. 
One could most likely modify the next theorem to allow for exceptional points 
with more work, but we choose not to pursue that line because the results would 
be quite specialized. 

Theorem 4.2. Suppose the single-step finite difference operator is accurate with 
order p - 1, dissipative with order p, p > 0, and there are no exceptional points 
at the unit circle. Then there exists a symmetrizer. 
Proof. The family {A(.)}x is no longer uniformly semisimple at the unit circle, 
so we cannot utilize the decomposition of A(.) given at the end of the proof of 
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Theorem 4.1. We will modify the construction of H(.) for 4 near 0 in a manner 
inspired by [8]. Accuracy and dissipation allow us to break up the set X into 
two pieces, one being X: {(t, h, x, 4) E R x (0, ho) x Rd x B,(0)} and the 
other being X\X , for e > 0 arbitrarily small. There is no problem constructing 
the local symmetrizer on X\XE , by the dissipation assumption and the previous 
method for handling eigenvalues bounded away from the unit circle. In fact, the 
match between accuracy and dissipation allows enough control over the location 
of the eigenvalues so that the finite partition X. and X/Xe can be applied. We 
only need to construct the local symmetrizer on X,,. 

From (4.6), using the flexibility of the choice of s there, we see that the 
eigenvalues of A(.) on X, (e sufficiently small) must be contained in the region 
G(4) {= z E C: Iz - 11 < cjjljo and IzI < 1 - coIjIP}, for some co, cl > 0. 
For each A(.) E a(A(.)), let FI be the positively oriented circle centered at A 
and containing only A out of the spectrum. We define the local symmetrizer 
on X to be 

00 

H(.) H, H P*P + (DA) (DA) 
AEu(A(-)) n=1 

where P. := (27i)l f A Rz (A) dz and 

DA := (27ri) 1(1 - JI)-' j(z - A)Rz(A) dz- 

We must first check that H is well defined. The assumption of no exceptional 
points means that these operators are smooth functions of X E X-, cf. [3, 2.11. 
We need to classify a(A) on Xe by the cluster method and then utilize (4.3). 
First we note that the accuracy and dissipation assumptions guarantee that the 
resolvent condition holds (pointwise); this was shown in [9, Theorem 1 or 4, 
Theorem 4], and amounts to using the hyperbolicity of symbol p(t, x, iw) 
together with s = 0 in (4.6). The resolvent condition is all that is needed for 
the estimate (4.3) to go through. 

For each X E Xe we can change our chain UAEa(A(A)) F. to a certain chain 
of contours by using the cluster method of the last theorem. It is easy to see 
that we can divide the spectrum a(A(X)) into clusters fCy IMEM(X) for some 
set M(X) c a (A (X)), such that there are unit-index contours {2YY },EM(X) which 

satisfy supz~y Iz - A)( 1 - I)I)1 < 1/2, for A E C, . Therefore, by changing the 
chain of contours, we have 

E D= Dn 

AEu(A(X)) yEM(X) AECpu 

= (2ri)-l f (z _ A)n~(1- _I)-nIRz(A) d z. 
MEM(X) u AE CU 
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We obtain from (4.3) 

gEMEx DA < EZCm (SUP {jZ-A(1 I )1) } < Cm(1/2) - 
yuEM(X) AEC,, YEM(X) zRECK 

Thus, the series defining H are uniformly convergent. 
The only property of Definition 3.2 which is not completely straightforward 

to check is (3.5). The family can be decomposed as 

A =E (APE + (1 1- IA)DA). 
AEa(A) 

We have: 

A*HA = E (AP* + (1 - IAI)D*)HA(APA + (1 - IAI)DA) 
AEa(A) 

? Z ol jHi+A2ReHH (l - jAj)D9) + (1 - 
JAI)2HA 

AEa(A) 

Since 0 < (AJ}J?'PA - DA)*HA(AlAl A - DA) and DH Dl < Hi, we immedi- 
ately obtain 2Re(AH,(l - IAI)DA) < 2JAJ(1 - AII)H,. This implies 

A*HA < E (I2I +1- IAI)2H1 = H, 
AEa(A) 

and completes the proof. o 

We conclude with some comments. The problem of constructing a sym- 
metrizer has not been completely solved here because there is a need for exam- 
ples in which a smooth symmetrizer cannot be constructed in order to sharpen 
our understanding of stability theory for general types of equations. Our ma- 
chinery provides only sufficient conditions, which are practical, but it seems 
that there is the possibility for rather pathological behavior of the eigenvalues 
of A(.) even in the presence of matching dissipation and accuracy. 

Regarding condition [N] from [12], it seems that it may not be the case 
that H can always be constructed to be smooth, even if the matrix N could 
be. This dilemma stems both from the fact that the resolvent condition in the 
Kreiss Matrix Theorem does not necessarily imply the existence of a smooth 
symmetrizer H (condition [S] causes trouble, cf. [10]), and also from the 
following (quite elementary) example. Let 

A:=('20 1/2); 

then A satisfies condition [N] of [12] with the matrix N taken to be the 
identity. However, the 2-norm of A is strictly greater than one, and so H 
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must be different from the identity matrix. One can prove these claims by 
noting that the numerical radius of A equals the spectral radius of its real part, 
a fact which follows from the nonnegativity of the entries of A; details are 
in [161. Since the spectral radius of Re A is one, it is easy to check that the 
matrix N from [12] can be taken as the identity (it is convenient here to first 
use Tadmor's condition, cf. [13]). However, IIAII > 1, so H cannot be the 
identity. 

So there is a curious question before us: For variable coefficients, are the 
conditions [H] of Definition 3.2 and [N] of [12] (suitably modified for the 
variable-coefficient context) equivalent? 
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