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LATTICE RULES: PROJECTION REGULARITY 
AND UNIQUE REPRESENTATIONS 

I. H. SLOAN AND J. N. LYNESS 

ABSTRACT. We introduce a unique characterization for lattice rules which are 
projection regular. Any such rule, having invariants n1, n2. ns, may be 
expressed, uniquely, in the form 

Qf n nES ... E7 j 
+ J22+ ...+us) 

where the matrix Z = (zl Z2,. ZST is upper unit triangular and individual 

elements satisfy 0 < z(c) < (nr!nc)' r < c. 

1. INTRODUCTION 

The notion of a lattice rule for numerical integration over the unit s-dimen- 
sional cube was introduced in Sloan [4] and Sloan and Kachoyan [5], and further 
discussed in Sloan and Lyness [6], where it was shown that any s-dimensional 
lattice rule Qs can be expressed in the canonical form 

( 1 . 1 ) 1s s = nln2 Zn nii) ~l2 S 11=11i2=1 Is=1 =1 I 

Here the invariants n 1 n2, ... , ns are positive integers satisfying 

(1.2) ni+1Ini, i = 1 ,. ,s - I; 

zi E Zs for i = 1, ..., s; and f is a 1-periodic extension of f . (For a more 
precise specification of f see Sloan and Lyness [6].) The abscissa set of the 
rule Q5 is the set 

(1.3) A (i } ji ni i 

where {v} denotes the vector whose components are the fractional parts of 

those of v. Clearly, {v} E [O, 1 )s, the half-open unit cube. The order of Qs is 
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the number v(Q,) of distinct elements of the abscissa set; since the abscissa set 
(1.3) of a rule (1.1) in canonical.form is by definition nonrepetitive, the order 
is v(Q,) = nn2... n. 

The invariants in (1.1) are uniquely defined, but there is a wide choice avail- 
able for the vectors z , Z2, ... , zs. The purpose of this paper is to show that 
for a particular class of lattice rules a representation of the form (1.1) can be 
prescribed in which even the vectors z 1, Z2, ... , z, are uniquely determined. 

The rules we consider have principal projections that are well behaved in a 
certain sense. The d-dimensional principal projection of Qs is the rule Qd 
obtained by retaining only the first d components of each abscissa. In Lyness 
and Sloan [1] it is shown that, in terms of the invariants of Qs its principal 
projection Qd has v(Qd) < n1n2 ... nd distinct abscissas. A rule Qs for which 
equality is achieved for every principal projection, that is for which 

(1.4) v(Qd) = nln2 ...nd, d = 1, 2, ..., s, 

is said to be projection regular. Thus a projection regular rule is one in which 
each principal projection has as many distinct points as possible for a rule with 
the given invariants. Projection regular rules are the focus of this paper. 

The Z-matrix of the canonical form (1.1) is the s x s matrix defined by 
T 

(1.5) Z = (Z 1 Z2 . * ZS) 

We shall establish the following characterization of projection regular rules. 

Theorem 1.1. A lattice rule Qs is projection regular if and only if there exists a 
canonicalform for which the Z-matrix is upper unit triangular. 

This result will lead us to a standard form for projection regular rules, in 
which not only is the Z-matrix upper unit triangular, but also all elements of 
the Z-matrix are uniquely determined. 

In ?2 we collect together transformations of the Z-matrix which leave the 
rule unaltered. In ?3 principal projections are defined, and we establish the 
easier part of the above theorem, namely that if Z is upper unit triangular, 
then Qs is projection regular, while ?4 is devoted to the more difficult converse. 
In ?5 we use the results to establish the promised standard form for projection 
regular rules. The paper concludes with a brief discussion in ?6. 

2. TRANSFORMATIONS OF THE Z-MATRIX 

We now consider a more general (possibly repetitive) form of the lattice rule 

Qs~~~Q ' ..nE 

1 2 t i1=1 ,=1 ,=1 (= ) 

where t and n1, n2, ..., nt are positive integers (not necessarily satisfying the 
property (1.2)), and zi E Zs7 i = 1, ..., s. In this more general situation the 
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Z-matrix is a t x s matrix, 
T (2.2) Z = (Z 1, z22 * z) 

Our concern in this section is to find transformations which change Z to a new 
matrix Z', 

(2.3) Z' (Z' z' z T 

while leaving the rule Qs unchanged. Throughout this section the numbers 
t, n1 , . . . , nt are considered fixed. 

Given the rule Qs in the form (2.1), it is convenient to introduce 

(2.4) ci =zi/ni, i = 1, 2, ..., t. 

Then the lattice corresponding to this rule (see Sloan and Kachoyan [5]) can be 
written 

(2.5) L { jici+k: ii E Zfor i = 1, ..., t, andkE7 s} 

Note that Ln [O, 1)s = A(Qs). 
It is clear that a given transformation of the Z-matrix leaves the rule QS 

unchanged if, and only if, it leaves the corresponding lattice L unchanged. 
Transformations which leave the lattice L, defined by (2.5), unchanged are: 

for given i E { 1, 2, .. , t}, replace ci by 

(2.6) -C1i; 

or by 

(2.7) ci =c i+k, wherekeZs; 

or by 

(2.8) ci =ci+c , wherel7 1i. 

It can be shown that all the affine transformations that leave L unchanged are 
combinations of these three. 

We are interested only in those transformations which retain the form (2.4), 
i.e., with ni being given. We require in addition the conditions 

zi := nic E ZS Zi := nc E , i = 1, 2, ...,5 s. 

The following theorem includes all these. 

Theorem 2.1. The rule Qs given by equation (2.1) is unchanged iffor given i E 
{ 1, 2, ... , t} the vector zi is replaced by any of 

(a) z'i = rzi if r E Z and r and ni are relatively prime; 
(b) z'=z +n k, where ke Zs; 
(c) Z' =z +nn z1/nj, where 1l- i, n eZ, and ullnni. 
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Proof. Parts (b) and (c) follow immediately from (2.7) and (2.8), with the sec- 
ond condition in (c) coming from (2.4), or, equivalently, from the requirement 
that z1, z Zs . Part (a) is more interesting. Note that it subsumes (2.6) when 
r = -1. Since r and ni are relatively prime, it is well known that 

fr, 2r, .i.., nirl = X,1,5 25 ... , nil (mod nd). 
It follows that {{jrzi/ni}: j = 1, 2, ... , ni} is merely a reordering of 

{fjzi/ni}: j = 1, 2, ... , ni}, so that the rule (2.1) is unchanged. ci 

In the important special case in which Q, is given in canonical form (1.1) 
we have, for each pair of invariants ni, n1, either n1Ini or niIn, (or both, 
if n1 = ni ). There is therefore good reason to be interested in the following 
special cases of Theorem 2.1(c). 

Corollary 2.2. The rule Q, given by (2. 1) is unchanged if the vector zi is replaced 
by 

(a) z' =z + n(ni/nl)zl if nIn, l n i, and n eZ; 
(b) z' =z +kzl if niln1, 17&i, and keZ. 

3. PROJECTION REGULAR RULES 

We begin with a definition from Lyness and Sloan [1]. 

Definition. The d-dimensional principal projection of an s-dimensional quad- 
rature rule for the unit cube is the d-dimensional rule obtained by omitting the 
final s - d components of each abscissa. 

Specifically, the d-dimensional principal projection of the quadrature rule 
N 

Q~~f=Zwf(51) (2) (S) Qsf = wjf(;l) 5 ) *** Us... 

j=1 

is 
N 

QdfZ~w jf(51) ;(2).. ;(d)) Qdf d =, 
k 

W cik 4,4,** 
1=1 

The d-dimensional principal projection Qd of a lattice rule Qs is itself a lat- 
tice rule (see Sloan and Lyness [6, Theorem 5.1]). This leads to the following 
characterization of Qd . 

Theorem 3.1. If Qs is an s-dimensional lattice rule, then its d-dimensional 
principal projection Qd is characterized by the three properties: 

(a) Qd is a d-dimensional lattice rule; 

(b) 'l 5 C()5. *5, s) E A (Qs) (C(1) 5C(2) ; . (d) EAQ) 
(c) ( ;(1)), ;(2), ... , C4(d) E A (Qd) = there exists an element of A (Qs) of the 

form 

(C(1) c(2) (d) (d+1) (S) 
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Proof. This is almost self-evident: given Q, abscissas of Qd are determined 
by (b). Additional abscissas are excluded by (c). Since Qd is a lattice rule, each 
abscissa has the same weight. Thus Qd is determined by (a), (b), and (c). ci 

Theorem 3.2. If Q, is given by (1.1), with n1, ..., ns satisfying (1.2) and the 
Z-matrix in upper unit triangular form, then 

(a) Qs is in canonical form; and 
(b) for d E {1, 2,.. ., s} the rule 

nl n2 nd d (1) (2) (d) \ 
(3.1) Qdf = 1 E . ... Ef tE zi' X Zi ( 

.. 

))) 
nln2 ... nd nl dlk= 

is the d-dimensional principal projection of Qs f, expressed in canonical form. 
Proof. (a) That (1.1) is nonrepetitive when the Z-matrix is upper unit trian- 
gular follows easily by inspecting the abscissa set A(Qs): for each value of 
k = 1, 2, ..., s it contains the nk distinct points 

(3.2) {{(k n}?J k } Jk = 12 2,n . , k} 

(where the 1 occurs in the kth component), obtained from (1.1) by setting 

ii = 0 for i #& k. The points obtained for different values of k are distinct. 
Thus there are nI n2 * nS distinct points in A(Qs), and ( 1.1 ) is nonrepetitive. 

(b) Almost by inspection, Qd given by (3.1) satisfies the conditions of The- 
orem 3.1 with respect to Qs. Thus it is indeed the principal projection of Qs. 
Finally, since Qd is in the same form as Qs , but with d replacing s, and since 

Qd has an upper unit triangular Z-matrix, it follows from (a) with s replaced 

by d that (3.1) is the canonical form of Qd . ? 
Since (3.1) is in canonical form, we have v(Qd) = nIn2 nd, from which 

it follows, by the definition in the Introduction, that Qs is projection regular. 
Thus Theorem 3.2 yields: 

Theorem 3.3. If Qs is given by (1.1), with n1, n2 5... , ns satisfying (1.2) and 
the Z-matrix in upper unit triangular form, then Qs is projection regular. 

4. THE CONVERSE RESULT 

In this section we establish: 

Theorem 4.1. If the lattice rule Qs is projection regular, it may be expressed in 
canonical form with the Z-matrix upper unit triangular. 

This is the converse of Theorem 3.3. Taken together, these give Theorem 1. 1 

stated in the Introduction. 
Throughout this section, n1, n2, ... , ns denote the invariants of Qs; thus 

n.+1nin, i = 1, 2,... , s- 1, 



654 I. H. SLOAN AND J. N. LYNESS 

and there exists Z = (z 1, z2 ... ZS)T such that 

1 ni n2 ns 

(4.1) Qsf LL..nL n E J r~lr) 
(4.1) nin~~~~~ns i1=1 i2=1 is= 

\r 

is in canonical form. Moreover, because Qs is projection regular, the d- 
dimensional principal projection Qd has invariants nl, n2, ...,nd, and has 
order 
(4.2) V(Qd) = nlln2 nd 

Our proof of Theorem 4.1 is by induction on the columns of the Z-matrix, the 
inductive step being: 

Lemma 4.2. Let d be an integer satisfying 1 < d < s . If the projection regular 
rule Qs can be expressed in the canonical form (4.1) with a Z-matrix whose first 
d - 1 columns are in upper unit triangular form, then it may also be expressed 
in canonical form with a Z-matrix whose first d columns are in upper unit 
triangular form. 
Proof ofLemma 4.2. It is convenient to denote the dth column of the Z-matrix, 
i.e., the column currently being treated, by 4, so that ;r = (d), r = 1, ..., s. 
Then the d-dimensional principal projection of (4.1) is given by 

l ni n2 n _ 1 S j (1~) Z (d- 1) <-) 

(4.3) 1d 
f = 

n ( 
j 

r(z 

r 

l)r 
Sj1=1ji2=1 Js=1 r=1 

The hypothesis of the lemma is that the elements of the Z-matrix in (4.1) 
satisfy 

(4.4) Z(C)=cr for r= c ,c +l,.s , c 12 ..d -1. 

We plan to provide a set of transformations which transform the Z-matrix, 
without changing Qs in such a way that (4.4) continues to hold, but in addition 

(4.5) (d) = 1 Cd = 1d 
and 

(4.6) (dr rZi) = 0 for r = d + 1, d + 2, ..., s. 

We shall specify sets of transformations ((4.11) and (4.16) below) which, 
while leaving the first d - 1 columns of the Z-matrix unchanged, produce a 
value of 4d satisfying (4.5), and after this a second set ((4.18) below) which set 
the 4ir of (4.6) to zero. However, before establishing these transformations we 
need the following: 

Lemma 4.3. Under the hypotheses of Lemma 4.2 the quantities in (4.3) satisfy 

whe ands bed+f o n sn f zdi=l. 

where, as before, frstands for Zrd). 
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The quantity on the left-hand side of (4.7) is the greatest common divisor of 
the numbers separated by commas. 

We now prove Lemma 4.3. Because Q, is projection regular, the abscissa set 
A(Qd) is of order nI n2 ... nd. We are interested in the subgroup Sd of A(Qd) 

obtained by setting Ij = 2 = Jd-I = 0 in (4.3). Because the first d - 1 
columns of the Z-matrix are already in upper unit triangular form, we obtain 
from (4.3) 

(4.8) Sd= f ( }rl 
r= d, d+ 1, ... ,s 

The dth components of (4.8) form the abscissa set of a one-dimensional 
lattice rule. Since the only such rule is the trapezoidal rule, the only thing not 
yet known is the spacing. We assert that Sd contains exactly nd distinct points, 
and therefore 

(4.9) 0d = { 0 ? ... 5 ? n ) 5 1 ?l ..., nd }. 

To show this, first observe that the summations over jl, ... 'd-1 in (4.3), 
with id' ... . is set equal to nd' ... . ns respectively, give exactly nIn2 .nd- 
distinct abscissas; this is easily verified directly, given that the first d - 1 
columns of the Z-matrix are already in upper unit triangular form. Since 
V(Qd) = n1n2... nd' the remaining sums, with jl, ... 'd-1 set to zero, must 
yield exactly nd abscissas. Thus (4.9) is established. 

It follows from the equivalence of (4.8) and (4.9) that there must exist integers 

id' Jd+ 1 ... , js and 1 satisfying 1 < jr < nr such that 

1 d Cd+1Cs 
~Jd +Jd+1 

nd nd dn+ I s+ 

or equivalently 

(4.10) 1 =ddd + id+l nddd+l + * + isn Cs + 1nd 

Any factor shared by each term on the right must occur in the left. This estab- 
lishes Lemma 4.3. 

Returning to Lemma 4.2, we are now ready to construct a sequence of trans- 
formations of the Z-matrix which change only the dth row of the matrix, and 
leave all other rows unchanged. We shall exploit Lemma 4.3 above to show 
these give z(d) = 1 . The transformations consist of row operations of the form 

Zd 

(4.11) Zd(i) = Zd(il- 1) + kin zi i = d+ 1, ... , s, 

where the initial vector zd(d) is the dth row of the Z-matrix as given to 
us in the hypotheses of Lemma 4.2. Note that the leading d - 1 zeros in 
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Zd are not altered by the transformations, and that by Corollary 72.2(a) the 
transformations (4.1 1) do not change Q, . 

Consistently with our earlier notation, we denote the dth component of Zd (1) 
by 4d (i), so that the leading nonzero component of (4.1 1) takes the form 

(4.12) Qd(i) = Cd(i- 1) + kijn Ci, i = d + 1, ...,s. 

We are now ready to specify ki in (4.1 1): it is chosen so that 

(4.13) (;d(i- 1) + ki Ci nd) (Cd(i 1 Ci 5 nd 

the existence of an integer with this property being guaranteed by Lemma Al 
in the appendix. Since (4.12) and (4.13) imply 

(Cd U) , nd) = (d(i - 1), ndSi, n d 5 i = d+ 1, ... ., s5 

it follows recursively that at the end of the sequence of transformations we have 

(Cd (S) n d) = d ((d) 5 d Cd 1 5 .. * n d X 

and hence, from Lemma 4.3, 

(4.14) (Cd(S), nd)= 1. 

Let us now denote by 4d instead of 4d (s) the value of z d) achieved at the 
end of the sequence of transformations (4.1 1). Since (Cd, n d) = 1 , there exists 
an integer q such that 

(4.15) qd- (mod nd) 

Since (q, nd) = 1, the transformation 

(4.16) Z = qz 

leaves Qs unchanged by Theorem 2.1 (a), and at the same time ensures 

(4.17) C = Zd()- I (mod nid ;d:=d 1 (m dd) 

An application of Theorem 2.1(b) then allows us to replace C' by 1 without 
(d)~~~ 

changing Qs. We now have the value of 4d = Zdd) required in (4.5). 
A final set of transformations 

(4.18) Zr = Zr-rZd r = d + 1, .. .,s 

(where Zd denotes the current dth row of the Z-matrix, satisfying (4.5)), now 
replaces the elements z(d) - r in the lower part of the dth column of the r =C 
Z-matrix by zeros, while at the same time, by Corollary 2.2(b), leaves Qs un- 
altered. The proof of Lemma 4.2 is now complete. o 

Theorem 4.1 now follows from Lemma 4.2 by induction on d., 
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5. A UNIQUE REPRESENTATION FOR PROJECTION REGULAR LATTICE RULES 

In this section we establish a unique standard form for all projection regular 
lattice rules. 

Definition. Q, of (1.1) is in standard form when the elements of its Z-matrix 
satisfy 

(5.1) Zr 
-, 1 <c< r<s 

Z(c) = 1, c= 1, 2, ... ,s, C 

(5.2) 0 < Z(c) < n1 < r < c < s. O<Zr <fr/flc 

Thus Z is an upper unit triangular matrix and so, from Theorem 3.3, a rule 

Qs in standard form must be a projection regular rule. 

In this section we establish 

Theorem 5.1. A projection regular lattice rule with invariants n1, n2, ... ns 

can be expressed, uniquely, in standard form. 

To establish the theorem, we use Theorem 4.1, and also prove in turn Lemmas 
5.2 and 5.3 below. The latter deals with uniqueness. 

Lemma 5.2. When Qs is given in canonicalform (1.1) with upper unit triangular 
Z-matrix, it may be re-expressed with a Z-matrix in standard form. 
Proof. This can be effected by transformations of the form 

(5.3) Z= Z [Zrn] L Zc for r < c, 

which according to Corollary 2.2(a) leave Qs unaffected. The transformation 
(5.3) affects only the rth row Zr of the matrix. Since zc has c - 1 leading zero 
components, it leaves unaltered the first c - 1 elements of Zr and generally 
alters the other elements. In particular, since z(C) = 1, it replaces z'(c) by 

(5.4) Zi(c) = Z(c) [r nc nr r r - nJ n~ 

which satisfies (5.2). It is necessary to carry out these transformations in an 
order arranged so that, once z(c) has been replaced by z'(c), the new element 
is not affected by any subsequent transformation. It is readily verified that a 
suitable order is obtained so long as the transformation involving zc) is carried 
out only after all transformations involving a lower column number c' < c are 
completed. This establishes Lemma 5.2. o 

Lemma 5.3. The rule Qs may be represented in standard form in only one way. 

Proof. Suppose that Z = (z 1I Z2, ... , Zs)T and W = (wl, w2, ...5, ws)T are 
two alternative Z-matrices for the rule Qs5 both in standard form, whose first 
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d - 1 columns coincide. Given r E {1, 2, ... , d - l}, the vectors zr/nr and 
Wr/nr belong to the lattice corresponding to QS, and therefore so too does 
(Zr - wr)/lnr On retaining only the leading d components of each vector, we 
conclude that the d-vector 

(5.5) (0, 0, 0, ? 
r 

' r') 

belongs to the lattice corresponding to the d-dimensional principal projection 
Qd. From this it follows that 

(d) A d (z1) (2) () 
0 ,0 0 Z. =) Ej (z' ' Z ) (mod 1) 

nr ~~~~~~n. 

for some integers il 2 ... id. Because of the upper unit triangular nature 
of Z, it is easily seen that this can be satisfied only if 

ii = 0 (mod ni) i= 1, 25 ...,5 d- 1 

thus we conclude that 
Z (d) (d) O 0 ___________ 

5 1 

05 05 ..W _ 0_ 
r r id Jd (0 . . 0 1 

( Z~d) _ U~r ), nd 

or 
Z(d) W(d) = r 
Zr - r idn 

for some integer id. Thus z(d) differs from W(d) by some integer multiple 
of nr/nd . Since by (5.2) both z(d) and w(d) are in the interval [0, nr/nd)' it 
follows that they coincide. 

We recall that our hypothesis is that the first d - 1 columns of Z and W 
coincide. The argument above shows that all elements of the dth column also 
coincide, and Lemma 5.3 then follows by induction. o 

Lemmas 5.2 and 5.3 together with Theorem 4.1 establish Theorem 5.1. 

6. CONCLUDING REMARKS 

In Sloan and Lyness [6], we introduced a classification of lattice rules based 
on the set of invariants n1 , n2, ..., ns . In this paper, for projection regular 
rules only, we have extended the argument to obtain a unique categorization, 
based on a standard form of the associated Z-matrix. 

It seems likely that the class of projection regular rules is wide enough to 
contain many interesting rules. However, not all rules are projection regular, 
even after an interchange of coordinate axes. For example, the 42-point 3- 
dimensional rank-i rule 

(6.1) Qf = 42 Et (j( ' 42 )) 
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has no one-dimensional projections of order 42, and so cannot be projection 
regular, even after interchange. 

It is interesting to note that the search for good lattice rules of rank 1 by 
Maisonneuve [2] was in fact restricted to projection regular rules, through the 
first component of z = z1 being forced to have the value 1. Her list (Maison- 
neuve [2]) includes optimal rank-i rules, i.e., the most economic rule (or rules) 
having a particular Zaremba p index (Zaremba [7]). A brief check by the 
present authors showed that in the range 10 < N < 150 with s = 3 she found 
all of the projection regular rules of this form. If all rank-i rules are allowed, 
then the rule (6.1) above should replace the one with N = 44 on her list, since 
both have p = 6 and (6.1) is more economic. The rest of Maisonneuve's results 
in this range would be unchanged by the wider search. 

APPENDIX 

Lemma Al. Let 1, m, n be integers, with n > 0. There exists an integer k 
such that 

(l + km, m) = (1, m, n). 

Proof. Since the result is trivial if / or m is zero, we may assume 1, m 
nonzero. It is sufficient to prove the result for the case (1, m, n) = 1, since if 
(1, m, n) = a we may apply that result to 1' = I/a, m' = m/a, n' = n/a. 

Given (1, m, n) = 1, we are required to choose k so that (l + km, n) = 1 . 
Let pi be the ith prime, and write 1, m, n as prime power decompositions, 

I= in pH , m = ifp', n = f P" 

Since (1, m, n) = 1, it follows that for each prime pi at least one of Ai, jp, 
Vi is zero. Defining 

a I if vi 5T 0 , Ai = pi = ? 
i 0 otherwise, 

we may choose 

k = Fpi. 

Then it is straightforward to verify that any prime pi which divides n does 
not divide / + kmi, since it divides one term but not the other. a 
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