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RIGOROUS SENSITIVITY ANALYSIS 
FOR SYSTEMS OF LINEAR AND NONLINEAR EQUATIONS 

SIEGFRIED M. RUMP 

ABSTRACT. Methods are presented for performing a rigorous sensitivity analysis 
of numerical problems with independent, noncorrelated data for general systems 
of linear and nonlinear equations. The methods may serve for the following two 
purposes. First, to bound the dependency of the solution on changes in the input 
data. In contrast to condition numbers, a componentwise sensitivity analysis of 
the solution vector is performed. Second, to estimate the true solution set for 
problems whose input data are subject to tolerances. The methods presented are 
very effective and have the additional property that, owing to an automatic error 
control mechanism, every computed result is guaranteed to be correct. Examples 
are given for linear systems, demonstrating that the computed bounds are in 
general very sharp. Interesting comparisons to traditional condition numbers 
are given. 

0. INTRODUCTION 

In the first part of the paper we concentrate on the theoretical results; the 
practical implementation is discussed in ?3. 

Let T denote one of the sets R (real numbers) or C (complex numbers). 
Vectors v E VT and matrices A E MT consist of n and n x n components, 
respectively, throughout this paper. Let S denote one of the sets T, VT, or 
MT. The power set over one of these sets is denoted by PT, PVT, PMT, 
respectively. 

Unless otherwise stated, operations +, -, *, / are power set operations 
throughout this paper, defined in the usual way. Sets occurring several times in 
an expression are treated independently, e.g. 

Z E PS: Z * Z := {z1 * Z21Z1 Z2 E Z} D {z * Z1Z E Z} 

for all suitable operations * E {+, -, *, / 
The infimum inf(z) and supremum sup(z) of nonempty and bounded sets 

Z E PS are defined in the usual way, in case of vectors and matrices compo- 
nentwise (so that inf(A) E MT when A E PMT). The diameter d(Z) and 
the radius r(Z) of some nonempty, bounded Z E PS are defined by 

d(Z) := sup(Z) - inf(Z) and r(Z) := 0.5 * d(Z). 
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The diameter of A E PMT is the matrix of diameters of its components. 
Throughout this paper we use partial ordering for complex numbers and for 
vectors and matrices over those, i.e., for T E {C, VC, MC} 

Z1, z2 E T: z1 < Z2: X Re(z,) < Re(z2) and Im(z1) < Im(z2). 

1. BOUNDS ON THE SENSITIVITY 

In [ 1 5, 1 6] Neumaier gives estimations on the sensitivity of systems of linear 
equations. He computes sensitivity bounds, together with an inclusion of the 
solution, using methods described e.g. in [18, 20]. The bounds are sharp but 
require some additional computational effort. In particular, the solution of the 
linear system with another right-hand side is needed; for guaranteed estimations 
on the sensitivity, this solution has to be guaranteed to be correct. 

In the following we use ideas of Neumaier to design rigorous bounds on the 
sensitivity of a linear system, together with an inclusion for the solution, with 
very little additional computational effort. Similar techniques for systems of 
nonlinear equations are described in ?2. The sensitivity is bounded by estimat- 
ing the interior of the solution set of a linear system whose data are subject to 
tolerances. 

We start with a lemma which estimates the diameter of sets. 

Lemma 1. Let S E fR, VR, MR, C, VC, MC}, and let Q, Z, A E PS be 
nonempty and bounded subsets of S with 

(1.1) Q C Z -A. 

Then 

(1.2) inf(Z) < inf(Q) + sup(A) 

and 

(1.3) sup(Z) > sup(Q) + inf(A). 

Proof. Without loss of generality we prove the real vector case only. The other 
cases can be dealt with similarly, for example, the complex case by treating real 
and imaginary parts. Formula (1.1) states 

(1.4) VqeQ3zeZ 36eA: q= z- . 

For every 1 < i < n there is a convergent sequence {qk}, kEN, with qk E Q 
for all k E N and 

k 
(1.5) lim qi = (inf(Q))i. 

By (1.4) there follows 

VkeN3zeZ 35eA:z=q k+5J. 
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Therefore, for fixed i, 1 < i < n, one has 

(1.6) Vk E N: (inf(Z))i < zi = qk +di < qk + (sup 

Since (1.6) holds for every k E N and i E {1, ... , n}, the assertion (1.2) 
follows from (1.5). Assertion (1.3) follows similarly. n 

In the following we use Lemma 1 to derive an estimation on the infimum and 
supremum of the solution set of a set of linear systems, the latter being defined 
by 

Definition 2. Let T E {R, C}, [A] E PMT, and [b] E PVT. Then 

(1.7) Z([A], [b]) := {x E VT13A E [A] 3b E [b]: Ax = b}. 

Definition 2 does not require all, or even any, A E [A] to be nonsingular; 
Z([A], [b]) may be empty. 

First we mention an outer estimation for Z([A], [b]) given in [18]. All 
operations are power set operations. 

Theorem 3. Let T E {R, C}, 0 $ [A] E PMT, 0 $ [b] E PVT, x E VT, 
R E MT, and 0$: X E PVT compact. Define 

(1.8) Y := x + R * ([b]-[A] * x) + {I-R * [A]} * (X-x). 

If 

(1.9) Y C int(X), 

then R and every matrix A E [A] is nonsingular, Z([A], [b]) is nonempty, 
and 

(I. I0) j:([A], [b]) c Y. 

Remark. I denotes the identity matrix and int(X) the interior of X. 
Estimations of the set Y described by Theorem 3 are effectively computable, 

as has been shown in [18, 20]. Note that there are no a priori assumptions on 
the nonsingularity of R or of matrices in [A]. Next we give an upper and 
lower estimation of the infimum and supremum of Z([A], [b]), using Lemma 
1, which is virtually free of cost, together with the outer estimation (1.10). 

Theorem 4. Let T E {R, C}, 0 $ [A] E PMT, 0 $ [b] E PVT, x E VT, 
R E MT, and assume every matrix in [A] is nonsingular. Define 

Q := x + R *([b] -[A] * x),5 

( 1.1 1 ) A:= (I -R *[A]) * (E([A] 5 [b]) -).k 

Then 

(1.12) inf (Z([A], [b])) < inf(Q) + sup(A), 

and 
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(1.13) sup (Z([A], [b])) > sup(Q) + inf(A). 

Remark. All operations in Theorem 4 are power set operations. 

Proof. For nonsingular A E MT and for b E VT there holds 

(1.14) -+R.(b-Ak)=A lb-(I-R.A).(A-' b-b ). 

The set Z([A], [b]) is nonempty and 

Q = {x + R * (b - A * x)IA E [A], b e [b]} 

= IA b- (I -R A) * (A- b-x)IA E [A], b E [b]} 

C j([A], [b]) -I (I- R* A) * (A- * b-xk)A E [A], b E [b]j 

c E([A], [b]) - {(I-R A1) * (A- *b-iQ)IA1, A2 E [A], b E [b]} 

= j([A], [b]) - (I -R R [A]) * (([A], [b]) -x 

= ([A], [b]) -A 5, 

by virtue of Definition 2 and the nonsingularity of every A E [A]. Applying 
Lemma 1 with Z := Z([A], [b]) finishes the proof. n 

The infimum and supremum of Z([A], [b]) are the (componentwise) vari- 
ations of the set of solutions of Ax = b for A E [A] and b E [b] . 

It may appear to be a vicious circle to estimate Z([A], [b]) by some expres- 
sion depending on Z([A], [b]). This is not true. Using an outer estimation Y 
of Z([A], [b]), e.g. some outer estimation computed by using Theorem 3, and 
defining A* := (I - R * [A]) * (Y -Sx), yields 

A = (I -R R [A]) * (([A], [b]) -. C A, 

which implies 

(1.15) Q C Z([A], [b]) -A* 

Hence, applying Lemma 1 proves estimations (1.12) and (1. 13) with A replaced 
by A*. 

To obtain very sharp estimations of the infimum and supremum of the set 
Z([A], [b]), it is necessary that 

d((I -R * [A]) * (Y -x)) << d(xk + R * ([b] -[A] *x) 

If [A] and [b] are of small diameter, this is true, in general, because with 
R ; A-1 for some A E [A] and x := R * b for some b E [b] the quantities 
I - R * [A], Y - x, and [b] - [A] . . are of the same small order of magnitude. 

It should be mentioned that if, for some source, there is further knowledge on 
the structure and especially on the interior of (I - R * [A]) * (Y - .) , estimations 
(1.12) and (1.13) can be further sharpened. 
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2. SYSTEMS OF NONLINEAR EQUATIONS 

In [ 18, 20] methods have been given for computing guaranteed bounds for the 
solution of nonlinear equations involving differentiable real or complex func- 
tions in one or more variables. The formulation of such a method requires an 
appropriate definition of derivative. 

Definition 5. Let T E {R, C} and f: D -* VT, D C VT continuously 
differentiable. Let I': VT -* MT denote the Jacobian of f. Then for 
XEPVT, XCD, 

(2.1) f(X):= { O(jax (I) Ox (n)) * n E X 

f' coincides with the Jacobian if X consists of one point. f' is chosen such 
that for xu y C D 

(2.2) Vx, y E D 3Q E f(x-uy): f(y) = f(x) + Q (y - x), 

where U denotes the convex union and t denotes transposition (see [20]). 

An inclusion of a zero of each individual function out of a set of functions 
can be effectively calculated according to the following theorem (see [18]): 

Theorem 6. Let T E {R, C}, and let [f] be a nonempty set of continuously 
differentiablefunctions f: D -* VT, D C VT. For R E MT, x E VT, and 
compact and convex 0 $ X E PVT, define 

(2.3) Y := Uf - R * f(xk) + (I -R * [Q]) * (X -k) If E= [if]j 

where [Q] := Uf`('UX)If E [f]} 
If 

(2.4) Y C int(X), 

then the matrix R and every matrix Q E [Q] is nonsingular. Furthermore, 
every nonlinear system f E [f] has exactly one zero in Y: 

Vf E [f] 31'-lx E Y: fI(N) = 0. 

For the proof cf. [18]. The methods derived in ? 1 allow us to give in- 
ner estimations, i.e., estimations of the infimum and supremum of the set 
{k E Y13f E [f]: f(x) = 0}. 

Let the assumptions of Theorem 6 be satisfied, especially (2.4) with (2.3) 
Then for every f E [f] there is one and only one kf E Y with f(Gf) = 0. 
Therefore, the set 

(2.5) Z := {x E Y13f E [f]: f(x) = 0} 

is nonempty. f' is defined in such a way (see (2.2)) that for every f E [f] 
there exists a Qf E [Q] with 

(2.6) fG() = fG(f) + Qf * (X - Xf); 
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Qf is, in general, not uniquely determined. By (2.5) and (2.6) the following is 
true for every f E [f]: 

- R * f(s) =x - R* {f(Skf) + Qf * (X -Xf)} 

- Xf- {I - R* Qf } * (X -X) 

c Z -fI -R f`(xkuX)j * (X -xk) 

Defining 

(2.7) AA:= U{(I- R * f(5uX)) * (X-x)If E [fI}, 
Q (= {XQ - R f (x) If E [f]} 

yields 

(2.8) QCZ-A. 

Together with Lemma 1, this proves the following theorem. 

Theorem 7. Let T E {R, C}, and let [f] be a nonempty set of continuously 
differentiable functions f: D -* VT, D C VT. For R E MT, x E VT, and 
compact and convex 0 :$ X E PVT, define Y by (2.3). If Y C int(X), then 
the following holds true. The set Z defined by (2.5) is nonempty and 

(2.9) inf(Z) < inf(Q) + sup(A), sup(Z) > sup(Q) + inf(A), 

where Q and A are defined in (2.7). 

Theorem 7 is applicable on digital computers. In particular, estimations 
for f'(xuX) can be computed automatically without calculating the Jacobian 
explicitly, by computing the value of the derivative of an arbitrary function 
implicitly (see e.g. [4, 12, 14, 17, 21]). Sets of functions can be stored on 
computers using interval techniques, as will be described in ?3. 

As in the case of linear systems, (2.9) estimates inner bounds for edges of 
the smallest hyperrectangle containing Z. The bounds are very sharp as long 
as d(A)?< d(Q). 

Having bounds for general systems of nonlinear equations, similar estima- 
tions of the overestimation of calculated inclusions for other problem areas 
in numerical analysis, such as eigenvalue problems, polynomial zeros, singular 
values, etc., can be derived. 

3. IMPLEMENTATION ON DIGITAL COMPUTERS 

In order to implement our methods on a digital computer, a number of prob- 
lems have to be solved. First, we need an appropriate representation for sets 
which is simple enough to allow efficient arithmetic operations, and general 
enough not to be too restrictive for practical applications. Second, an appro- 
priate arithmetic has to be defined, allowing simple and fast execution, with 
the property that inner and outer estimations of the corresponding power set 
operations are possible. Third, the arithmetic must handle rounding errors in 
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an appropriate way to maintain the guarantee of correctness of all results. We 
want to stress that any arithmetic having the above properties is suitable for the 
following discussions. Here, we will concentrate on a rectangular interval arith- 
metic. First we discuss this for the set of real or complex numbers, postponing 
the problems of rounding errors for floating-point numbers. 

The set of intervals, i.e., hyperrectangles over real, resp. complex, numbers 
is denoted by IR, resp. IC. Let T E {R, C}; then we define 

[A] E IT ?} [A] = {A E TIA < A < A for some A, A E T}. 

Obviously, A = inf([A]) and A = sup([A]). Intervals over vectors, resp. ma- 
trices (IVT, resp. IMT), are defined as vectors, resp. matrices, of intervals. 

In contrast with usual definitions, we do not require A < A for intervals. 
This means, for instance in the case of matrices, that some components of an 
interval matrix may be empty. We do not need, and do not define, operations 
for those; such interval matrices are needed in results which contain useful 
information for the nondegenerated components. 

The rules of interval arithmetic (see [2, 12]) define an arithmetic which is 
best possible in the sense that the result interval is the smallest interval con- 
taining the result of the power set operation. More precisely, let S,, S25 
S3 E {R. VR, MR, C, VC, MC} and let [A] E IS1 and [B] E IS2 be in- 
tervals such that for some fixed but arbitrary operation * E {+, -, *, /} 

A*B forallAE[A],BE[B] 

is well defined, with result in PS3. Then the corresponding interval operation 
* is defined by 

(3.1) [A] * [B] = i{[C] E IS31A * B E [C] 

for all A E [A], B E [B]}. 

It can be shown (see [2, 12]) that all operations * according to (3.1) are well 
defined and, most important, are effectively computable using the component- 
wise definition (except for complex division, which we do not need here). For 
example, the multiplication of two interval matrices [A], [B] E IMT with 
T E {R, C} can be performed by using 

(3.2) ([A] ^ [B])ij = [A]j ^. [B]l+ [A]in *. [Bn 4-A 

where n is the number of columns of every A E [A] and rows of every B E [B]. 
This componentwise definition (3.2) is indeed identical with definition (3.1). 

However, in an interval matrix multiplication the components of every ma- 
trix occur several times, so that the computed interval matrix is in general an 
overestimation of the power set operation: 

[A] * [B] = {a * bla E [A], b E [B]} C [A] ̂  [B]. 

This is not the case for multiplying intervals over T, or for performing a dot 
product of two interval vectors. 
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For our subsequent considerations it is especially important to notice that 
the multiplication of an interval matrix by a point vector does not imply an 
overestimation: 

(3.3) [A] E IMT, b E VT => [A] b = [A] ̂  b . 

This is true because every component of the interval matrix [A] occurs only 
once in the process of the multiplication. Addition and subtraction of inter- 
vals over scalars, vectors, or matrices are always identical with the power set 
operations without any overestimation. 

For the multiplication of a point matrix R E MT by an interval vector 
[b] E IVT we have at least 

(3.4) inf(R ^ [b]) = inf(R. [b]) and sup(R ̂  [b]) = sup(R* [b]). 

This can be shown, for instance, by estimating the multiplication component- 
wise. 

According to the proof of Theorem 4, we need to compute an inner estimation 
of Q and an outer estimation of A and of Z([A], [b]) -A. The latter problem 
can be solved by replacing every operation in the computation of A by its 
corresponding interval operation: 

(3-5) [A] C (I ^R ̂ . [A]) ̂ . (X ^k) . 

The first problem is more difficult to solve. The proof of Lemma 1 shows that 
for our purposes it suffices to have for fixed, but arbitrary i E {1, ... , n } a 
sequence of qk E Q with limk ,0 q. = (inf(Q))i and a similar sequence for 
the supremum of Q. 

Intervals are closed; therefore, some q, q E Q with 

(q)i = (inf(Q))i and (q)i = (sup(Q))i 

can be found. However, such q, q are effectively computable using interval 
operations and (3.3). By (3.3), we already know that 

[b] - [A] . = [b] [A] ^ x. 

From this and (3.4), there follows 

inf(Q) = inf(ik + R * ([b] - [A]i*)) = inf(ii 4- R * ([b] [A] * x)) 

and 

sup(Q) =sup(x + R * ([b]-[A]Sk)) = sup(x +- R^ ([b] [A] ̂  x)). 

Using definition (3.4) for [A] and [Q] :=.k 4- R ^ ([b] [A] ̂ .x), and carefully 
following the proof of Lemma 1, demonstrates that 

inf (E([A], [b])) < inf([Q]) + sup([A]), 
(3.6) 

sup (E([A], [b])) ? sup([Q]) + inf([A]). 
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Bounds on the infimum and supremum of Z:([A], [b]) are therefore com- 
putable using hyperrectangles for the representation of sets, by computing [Q] 
and [A] using traditional interval operations, and by applying (3.6). If the di- 
ameter of [A] gets too large, some or, in extreme cases, all inner estimations 
on the components of Z([A], [b]) may become empty. 

In the following we use the definition of an interval in terms of its bounds 
for some A1, A2E TE{R, VR, MR, C, VC, MC}: 

[A1, A2] {A E T=AA ? A < A2} E IT. 

In this notation, (3.6) can be written as 

[inf([Q]) + sup([A]), sup([Q]) + inf([A])] 

(3.7) C [inf (E([A], [b])) ,sup (Z([A], [b]))] 

The final goal is to calculate bounds similar to (3.7) on a computer. This is 
made difficult by the fact that digital computers only allow the exact represen- 
tation of a finite set of floating-point numbers to approximate the infinite set of 
real or complex numbers. 

To achieve this goal, we need appropriate rounding procedures from the real 
numbers R into a set F C R of floating-point numbers. In order not to exclude 
certain arithmetics, we state the mathematically necessary properties for these 
rounding operations and for an appropriate arithmetic. Rounding occurs always 
together with an arithmetic operator; therefore, we add the rounding symbol to 
the operator. 

Let F C R denote some finite subset of R (which may be regarded as the 
set of floating-point numbers on a computer) and CF := F + i * F be a complex 
extension of F. Vectors and matrices over F and CF are defined as n-tuples, 
resp. n -tuples, forming the sets VF, MF, resp. VCF, MCF. 

The set of intervals IF over F is defined by 

[A]EIF: X [A]I=[a,a]=f{aERja a< a }. 

The corresponding sets ICF, IVF, IMF, IVCF, and IMCF are defined sim- 
ilarly. 

Let T1, T2, T3 E {F, VF, MF, CF, VCF, MCF} with corresponding sets 
S1 S2' 52 E {R, VR, MR, C, VC, MC}, respectively. Using the canonical 
embedding TF C Si, i = 1, 2, 3, let * E {+, -, /, *} be an operator such that 
for A1 E T1 and A2 E T2, the image A1 * A2 is well defined and A1 * A2 E 
S3. Let [A]1 E IT1 and [A]2 E IT2 be given. Then * is an operator with 
*: IT1 x IT2 -* IT3 satisfying 

(3.8) [A]1 * [A]2 C [inf([A]1 * [A]2), sup([A], * [A]2)], 

where the last two operations in (3.8) are the power set operations over Si in 
the canonical embedding Ti C Si, i = 1, 2, 3. The result may be the empty 
set for some components. We deliberately do not restrict the operators * in 
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any way except requiring property (3.8). Operators * give inner estimations on 
the infimum and supremum of a power set operation. 

In a practical implementation it suffices, in principle, to have operators *: IF 
x IF -* IF which can be implemented taking advantage of the different rounding 
modes. Such operations are, for instance, defined in the IEEE 754 standard for 
binary floating-point arithmetic [5] or in [10, 11]. Operations over CF and 
vector and matrix operations over F and CF can be defined componentwise 
using appropriate roundings. 

For vector and matrix operations, better results are achieved when using 
the inner product proposed by Kulisch (see [9, 10, 11]). These inner product 
algorithms are especially advantageous for point vectors. 

For interval operations, i.e., operations with outer roundings, over floating- 
point numbers we use (without danger of confusion) the same symbol *: IT, x 
IT2 -k IT3 as for those over real numbers. Compared to interval operations over 
{R, VR, MR, C, VC, MC}, interval operations over {F, VF, MF, CF, 
VCF, MCF} deliver slightly wider results. They have the property 

(3.9) [A], * [A]2 D [inf([A]1 * [A]2), sup([A], * [A]2)] 

for every [A], E IT, and [A]2 E IT2. 
Summarizing the discussion above, and using interval floating-point opera- 

tions * and * , we can state the following theorem. 

Theorem 8. Let F C R, CF C C, and T E {F, CF} with operations * and * 
having the properties (3.8) and (3.9), respectively. Let [A] E IMT, [b] E IVT, 
.x E VT, R E MT, and X E IVT be given, where every component of [A], 
[b], and X is nonempty. Let 

(3.10) Y :=xk + R ^. ([b] ^[A] ^X.) +~ (I ^R ^. [A]) *. (X^X) 

If Y C int(X), then R and every matrix A E MC with A E [A] is nonsingular, 
the solution set Z([A], [b]) defined in Definition 2 satisfies 

E([A],5 [b]) C Y. 

andfor [Q] :=. -x R ([b] [A] i x) and [A] := (I R ^ [A]) (X ^ ) there 
holds 

[inf([Q]),& sup([A]), sup([Q])'W inf([A])] 

(3.11) C [inf (E([A], [b])) ,sup (E([A], [bi))] 

Here, A and V denote the floating-point addition rounded upwards and 
downwards, respectively. Components of [Q] may be empty, in which case no 
lower bound on the sensitivity for this component is given. Computing [Q] is 
practically free of cost compared to the costs for solving the linear system. [A] 
has already been computed in (3.10). 

In the case of systems of nonlinear equations there is the problem of comput- 
ing a sharp inner estimation of x* - R * f(x) . This canbe done using operations 
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* for * E {+, -, *, /} or other methods, e.g. [8]. For special nonlinear meth- 
ods, such as eigenproblems, methods similar to the ones described above can be 
used. 

4. PRACTICAL RESULTS 

In the following we display results for linear systems with well-conditioned 
and ill-conditioned matrices and varying diameter of matrix and right-hand 
side. Matrices used are Hilbert matrices, which, in order to be exactly repre- 
sentable on a digital computer, are multiplied by the least common multiple of 
all denominators: 

Hilbert (Hn)ij := (lcm(l, .. ., 2n - 1))/(i + j - 1), 

and Pascal and Zielke matrices, defined by 

Pascal (Pn)ij (i + i) 

(n +- 1).~ (n'1 

Zielke (Z nij ( - - 

Zielke matrices in particular are extremely ill-conditioned and have the inter- 
esting property that a checkerboard-like distribution of +/- signs over Zn 
generates the inverse matrix of Zn . In the following, randomly generated ma- 
trices have components uniformly distributed in [0, 1]. 

In the following tables we list the "overestimation" ( calculated by (3.1 1) in 
percent. In the notation of Theorem 4, and the abbreviation Z := [inf([Q]) + 
sup([A]), sup([Q]) + inf([A])], we define 

(100 if d(Z,) = 0 for some 1 < i < n 

(1) { max (1 - d(zi.) . 100 otherwise. 

( gives the percentage of the inner estimation Z with respect to the outer 
inclusion Y. Inclusion Y is calculated using Theorem 7 and the inclusion 
methods described in [18, 20]. 

It should be mentioned that ( is an upper bound on the true "overestima- 
tion" of a computed inclusion. If ( is poor, i.e., near or equal 100%, the true 
overestimation might still be reasonable. 

The first example involves Zielke matrices with tolerances 

(4.2) Mi := Zi * (1 ? 1014') for i = 5, ..., 10. 

The right-hand side b is randomly chosen (denoted by rand) with proper di- 
mension: 

b =rand. (1 10- 8+2i) for i = 1, ..., 5. 

The computations are done on an IBM 3090 using double precision equivalent 
to 14 hex or 16 to 17 decimal digits in the mantissa. 
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TABLE 4.1 
Overestimation for Zielke matrices (4.2) 

5[%] bl b2 b3 b4 b5 

M5 3.0 3.0 3.1 3.2 3.2 
M6 3.3 3.3 3.4 3.5 3.4 
M7 3.8 3.8 3.9 3.9 3.8 
M8 4.4 4.4 4.4 4.5 4.4 
MA9 5.2 5.2 5.3 5.3 5.4 
Ml10 6.4 6.4 6.5 6.6 6.5 

Obviously, there is only a small dependency on the diameters of the right- 
hand side. The difference between inner and outer inclusion is less than 7%. 
This is an excellent value, since even a value of 90% suffices for the purpose 
of estimating the magnitude of the sensitivity. 

For different diameters of the matrix, things change. In Table 2 we have 
treated in the first row the matrices 

(4.3) Z5 * (1 ? l0-'?+i) for i =0(1)4, 

and in the second row the matrices 

(4.4) Zlo(I ? 10-l5+i) for i=0(1)4, 

using Theorem 7 and randomly chosen right-hand sides of relative diameter 
102 . The results for 3 are shown in Table 4.2. An entry -1.0 indicates that 
no inclusion Y using Theorem 7 and the methods described in [18, 20] could 
be computed. Finer methods proved that in these cases there was indeed a 
singular matrix within the tolerance matrix. An entry 0.0 indicates that 3 was 
less than 0.05%. 

Table 4.2 reveals an almost linear dependence of the overestimation a on 
the diameter of the matrix of the linear system. a gets big when the diameter 
of the matrix gets so big that nearly singular matrices are enclosed. We omit 
corresponding tables for Hilbert and Pascal matrices, because they look very 
similar, in fact almost identical. 

TABLE 4.2 
Overestimation for Zielke matrices (4.3) and (4.4) 

(5[%] i i=0 i= 1 i=2 i=3 i=4 

z* (1 ? 10-10+i) 0.0 0.0 0.3 3.0 30.4 
Z 0.(1 ?10-5+i) 0.7 6.5 62.8 -1.0 -1.0 

For random right-hand sides of proper dimension and of constant relative 
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diameter 10- 2, and for a linear system with matrices 

(4.5) Rn * (I ? lo-') for i = 5(-1)2, 

with random matrices Rn of dimension 10(10)50, we obtain the percentage 
values of 3 shown in Table 4.3. The entry 100.0 indicates that an inclusion Y 
was computed according to Theorem 7 but at least one component of the inner 
estimation Z was empty. 

TABLE 4.3 
Overestimation for random matrices (4.5) 

3[%] i=5 i=4 i=3 i=2 

RIO(?l10 ') 0.1 2.8 12.2 -1.0 
R20. (1 ? 10) 0.2 1.0 62.8 -1.0 
R30 (1 ? 10) 2.0 6.6 100.0 -1.0 
R40.(1 ?ll) 3.7 13.6 100.0 -1.0 
R 50* (1 ? 10) 2.4 28.7 100.0 -1.0 

Tables 4.1-4.3 indicate that there is a small area where the matrix of the 
linear system does not contain singular matrices, but nearly singular matrices 
where the overestimation 3 is poor. 

Below we display estimations of the sensitivity of a linear system with respect 
to perturbations of the input data. Let a linear system A * x = b be given with 
A E MT, b E VT for T E {R, C}, and A invertible. The diameter of 
Z([A], [b]) for [A] = A * (1 ?e) and [b] = b * (1 ?e) for small e > 0 gives 
a componentwise measure of the sensitivity of A-1 * b with respect to small 
changes in A and b. In the following tables we display the maximum of 

(4.6) F := r(Y)/e > r (Z([A], [b])) /,e 

using the upper bound Y of Z([A], [b]), cf. Theorem 8. The quality of Y 
is estimated by 3 from (4.1). The quantity F bounds the maximum factor 
by which an e-perturbation of A and b is amplified in terms of variations in 
the solution. An algorithm based on Theorem 7 gives F for every component 
independently. In the following we solve the linear system Ax = I, i.e., com- 
pute a full inverse of A. The algorithm yields n2 amplification factors F, the 
largest of which, namely f, is displayed. Next to f we display the condition 
number c defined by c s/ where s1 I > s > 0 are the singular values 
of A. 

In the following table we choose e := 10- 1, one order of magnitude above 
the relative rounding error unit. Matrices used are Hilbert matrices Hn , Pascal 
matrices Pn , and Zielke matrices Zn of different dimensions. 
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TABLE 4.4 
Sensitivity of linear systems vs. traditional condition number 

f(H) c(Hn) (P) C(In) f(Z) C(Zn 

n = 5 2.0e5 4.8e5 1.5e4 6.3e4 1.9e5 7.9e5 
6 5.3e6 1.5e7 1.4e5 9.3e5 5.3e6 3.7e7 
7 1.5e8 4.8e8 1.2e6 1.4e7 1.5e8 1.8e9 
8 4.4e9 1.5e1O L.1e7 2.0e8 4.4e9 9.4e10 
9 1.3el 1 4.9e 11 9.5e7 3.0e9 2.6e 11 5.0e12 

10 4.0e12 l.6e13 8.4e8 4.5e0 8.0e12 2.7e14 

The uncertainty J of f in all cases of Table 4.4 is less than 1%, i.e., all esti- 
mations of f are correct to two figures and, by the general principle underlying 
the methods, are guaranteed to be correct. 

In the examples above, the condition number c(.) is an overestimation of the 
true sensitivity f (.) . Of course, the condition number is not usually computed 
in this way because a singular value decomposition is too expensive for the sole 
purpose of giving an estimation of the condition of the matrix. 

The next example, Table 4.5, shows a significant underestimation of the sen- 
sitivity r(E([A], [b]))/e by the condition number c, owing to the equilibration 
effect of norms. Let Rn be a random matrix with n rows and columns, e is 
again 10- 5 . 

TABLE 4.5 
Sensitivity analysis of linear systems with random matrix 

vs. traditional condition number 
n f(Rn) c(Rn) 

10 5.4e3 5.3e1 
30 1.7e5 2.0e2 

Table 4.5 shows that the traditional definition of the quotient of largest and 
smallest singular value underestimates the true sensitivity of the linear system 
by 2, resp. 3, orders of magnitude. Moreover, the traditional method only 
considers the matrix of the linear system, not the right-hand side. The true 
sensitivity depends significantly on the right-hand side. 

The reason why the componentwise estimations f defined in (4.6) are much 
larger than c is that some individual components of the inverse are much more 
responsive to small perturbations in the input data than others. In the second 
example, with the matrix R30, the componentwise estimation of f (which is 
provided by Theorem 7) is 

< 1e3 for 95% of all components, 
< 1e4 for 98% of all components, 

and only in two cases greater than 1 e5. 
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In the last example with random matrices, the greater sensitivity of an indi- 
vidual component of the inverse occurred exactly for those components being 
of significantly smaller absolute value compared to all others. This need not 
be the case, as has been demonstrated by the examples for Hilbert, Pascal, and 
Zielke matrices. The new methods allow a componentwise sensitivity analysis. 

5. CONCLUSION 

Methods have been described for the computation of inner and outer bounds 
of the solution set of linear and nonlinear systems whose data are subject to tol- 
erances. The bounds computed are sharp and guaranteed to be correct. It turns 
out that in most cases the differences of inner and outer bounds is negligible. 
This difference becomes larger only in extreme cases where (in the examples) a 
singular matrix is very close to the set of matrices of a linear system. 

A criticism of inclusion algorithms for data subject to tolerances was that 
correct bounds for the solution set are computed and all experiences showed 
that those bounds are sharp, but the degree of sharpness could not be estimated 
(see [6]). The present theorems and practical results fill this gap. 

The inner estimations come virtually free of cost, together with outer estima- 
tions. They allow a sensitivity analysis of problems, with the additional advan- 
tage that instead of a single number estimating the condition of the problem in 
question, a whole sensitivity matrix can be computed, estimating variations of 
individual components of the solution for perturbations in the input data. 

The estimation of the sensitivity of the linear system is guaranteed to be 
correct and reflects the true sensitivity of the linear system, i.e., of the matrix in 
combination with the particular right-hand side. It has been shown by means of 
examples that traditional condition numbers do not necessarily reflect the true 
sensitivity of individual components of a solution. 

The methods described can be implemented very effectively on digital com- 
puters. No special computer arithmetic is necessary; a state of the art arith- 
metic, e.g., described in the IEEE 754 binary floating-point standard, suffices. 
Especially all kinds of computer arithmetic allowing the representation of sets 
on computers are suitable; in our implementation we used a rectangular real 
or complex arithmetic. A computer implementation for nonlinear systems is 
somewhat more involved and will be described later. 
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