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FIGURES OF MERIT
FOR DIGITAL MULTISTEP PSEUDORANDOM NUMBERS

DEBRA A. ANDRE, GARY L. MULLEN, AND HARALD NIEDERREITER

ABSTRACT. The statistical independence properties of s successive digital mul-
tistep pseudorandom numbers are governed by the figure of merit p(s ) (f) which
depends on s and the characteristic polynomial f of the recursion used in the
generation procedure. We extend previous work for s = 2 and describe how to
obtain large figures of merit for s > 2, thus arriving at digital multistep pseu-
dorandom numbers with attractive statistical independence properties. Tables
of figures of merit for s = 3, 4, 5 and degrees < 32 are included.

1. INTRODUCTION

The well-known linear congruential method for the generation of uniform
pseudorandom numbers in the interval [0, 1] is based on the one-step recursion

yn+lzbyn+c mod M forn=0,1,...,

where the modulus M is a large integer, b is a suitably chosen integer co-
prime to M, c is an integer, and the y, are integers with 0 <y <M. A
sequence X,, X, ... of uniform pseudorandom numbers is obtained by the
scaling x, = y,/M . Since these pseudorandom numbers have some undesir-
able features, such as their lattice structure (see e.g. Knuth [2, Chapter 3]), other
pseudorandom number generators have recently received increased attention.

The idea of using multistep recursions for pseudorandom number generation
is usually attributed to Tausworthe [12] but can be traced back to the 1950’s (see
e.g. van Wijngaarden [13]). The generation of uniform pseudorandom numbers
by k-step recursions with & > 2 proceeds as follows. First, we generate a
sequence y,, y,, ... of bits by the recursion

(1) Yook = bk Vpory +-+bpy, mod2 forn=0,1,...,

where the b, are fixed bits with b, = 1 and where the initial values y,, y,,
.» Yk, are not all 0. The sequence of y, is periodic, and to maximize
the length of its least period for given k, we assume from now on that the
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characteristic polynomial
2) [y =x 4 b Xt

of the recursion (1), considered as a polynomial over the binary field F,, is a
primitive polynomial. We recall that a polynomial over F, of degree k is called
primitive if its roots are generators of the cyclic group F q* , the multiplicative

group of nonzero elements of the finite field F v with ¢ = 2 elements (compare
with Lidl and Niederreiter [3, Chapter 3]).

The bits y, generated by (1) are transformed into a sequence x,, x,, ... of
uniform pseudorandom numbers in [0, 1] by setting

k .
(3) xn=2ykn+1_12_1 forn=0,1,....
=

In other words, we obtain the numbers x, by splitting up the sequence y,,
y,, ... into consecutive blocks of length k and then interpreting each block
as the dyadic expansion of a number in [0, 1) (more generally, one may take
any block length m with 2 < m < k, but we restrict the attention to the
most common case m = k). The numbers x, in (3) are called digital k-step

pseudorandom numbers. We assume from now on that gecd(k, 2k 1) =1;
then the sequence X, x,,... is purely periodic and its least period length

is t = 2 — 1. For these and other elementary properties of digital k-step
pseudorandom numbers we refer to Knuth [2, Chapter 3], Lidl and Niederreiter
[3, Chapter 7], and Niederreiter [6]. We note that the construction of digital
multistep pseudorandom numbers may be carried out in an arbitrary prime base
D, but that the base p = 2 with which we work is the most convenient one for
practical implementations.

For many simulation purposes the most desirable property of a sequence of
uniform pseudorandom numbers is that of statistical independence of succes-
sive terms. In the case of digital multistep pseudorandom numbers, theoretical
results on statistical independence properties are available and they will be de-
scribed in detail in §2. The essential feature of these results is that in order to
have any s successive digital k-step pseudorandom numbers close to statistical
independence, the characteristic polynomial f in (2) has to be chosen care-
fully. The suitability of f is measured by the figure of merit p(s)( f) which
will be defined in Definition 2 and depends on f and also on the prescribed
value of s. The larger the figure of merit p(s) (f), the closer we are to statistical
independence of any s successive digital k-step pseudorandom numbers. This
leads to the computational problem of finding primitive polynomials f over
F, with a large value of p(s) (f) for given s > 2. It is inherent in the nature
of this problem that the required computational effort increases with s. The
simplest case s = 2 was treated by Mullen and Niederreiter [4]. In the present
paper we deal with larger values of s. In this way we arrive at concrete digital
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multistep pseudorandom numbers with very attractive statistical independence
properties.

2. THEORETICAL BACKGROUND

The statistical independence properties of a sequence x, x,, ... of uniform
pseudorandom numbers in [0, 1] can be analyzed as follows. For fixed s > 2
consider the points
(4) X, =(x,,x

N+l e

, X €l0,17 forn=0,1,....

n+s—l)
In the ideal case where X, X, , ... is a sequence of uniformly distributed and
independent random variables, the probability that X, falls into a given interval
J C [0, 17 is equal to the volume V(J) of J. Therefore, the statistical
independence properties of the pseudorandom numbers x, can be tested by
comparing the actual distribution of the points X, in (4) with this ideal case.
The following definition from [9, §2] describes point sets for which the relative
frequency of points in J is equal to V' (J) for a whole family of intervals J .

Definition 1. Let 0 < ¢ < k be integers. A (¢, k, s)-net (in base 2) is a set P
of 2* points in [0, 1)° with the following property: every interval J C [0, 1)°
of the form

(5) J=]]la;2™", (a,+ N27%)
i=1

t—k

with integers @, and e; and with V(J) = 2 contains exactly 2’ points

of P.

It follows from Definition 1 that if P is a (¢, k, s)-net and J C [0, 1)’
is an interval of the form (5) with V' (J) > 2% or a finite disjoint union of
such intervals, then J contains exactly 2k V(J) points of P. In particular,
Definition 1 becomes stronger for smaller values of ¢. Further details and
numerous results concerning (¢, k, s)-nets can be found in Niederreiter [9].

If x,,x,,... is asequence of digital k-step pseudorandom numbers, then
consider the points X, in (4) over the full period, i.e., for 0 <n <1-1= k2.
According to Theorem A below, which is a special case of [9, Theorem 9.1], these
points together with 0 = (0, ..., 0) forma (¢, k, s)-net with a value of ¢ that
depends on the figure of merit p(s)( f) defined in Definition 2. We write again
Fq for the finite field with g = 2* elements and note that F , can be viewed as
a vector space of dimension k over F,.

Definition 2. For any s > 2 and any characteristic polynomial f of degree k,
the figure of merit p* (f) is defined by

p(f) =miny d,
i=1
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where the minimum is extended over all s-tuples (d,,...,d,) # (0,...,0) of
integers with 0 < d; < k for 1 < i <'s such that the elements QL= Dk+i=1 <

b

j<d;, 1<i<s, are linearly dependent over F,. Here a is a fixed root of f

in F , (the value of p(s)( f) does not depend on the specific choice of «, since
S is assumed to be primitive, and hence irreducible over F, ).

Theorem A. Let x,, x,, ... bedigital k-step pseudorandom numbers and let f
be the characteristic polynomial. Then for any s > 2 the points 0, X,, X, ...,

X,_, forma (t, k, s)-net with t =k + 1 —o90).

It is clear from Definition 2 that we always have 2 < p(s)( f) <k+1. Since
the property expressed in Theorem A is stronger the smaller the value of ¢, the
desirable choices for f are those for which p'“)( f) is large.

The considerations above are closely connected with the s-dimensional serial
test, which is a standard test for the statistical independence of s successive
uniform pseudorandom numbers (see Knuth [2, Chapter 3] and Niederreiter
[5]). Let x;, x,,... be a sequence of uniform pseudorandom numbers in
[0, 1], and for given s > 2 define the points X, by (4). Then define the
discrepancy

Dx)=sup ]iv#{n<N:XneJ}—V(J) for N >1,
J

where the supremum is extended over all intervals J = Hf:l[O, u;1C[O0, 17°.

The sequence x,, x,, ... passes the s-dimensional serial test if Dgf,) is small
for large N . For digital k-step pseudorandom numbers we have the following
result on Dx) for the full period, i.e., for N =1 = p A ; a similar result for
N < 7 is also known (see [10]).

Theorem B. For digital k-step pseudorandom numbers and any s > 2, we have

s—2

s—1
27 <D < L2 w00

with p = p(s)( f), where the implied constant in the O-term is effective and
depends only on s .

27%)

The lower bound in Theorem B is a special case of [7, Satz 10], and the upper
bound is a special case of [9, Theorem 9.4). Theorem B shows that in order to
get a small discrepancy Df) , we have to choose f in such a way that p"*(f)
is large.

Thus, Theorems A and B lead to the same conclusion, namely that the suit-
ability of a characteristic polynomial f can be measured by the figure of merit
P (f), and that p“)(f) should be as large as possible. It is clear from Defi-
nition 2 that, as the notation suggests, p(s) (f) depends also on s. Character-
istic polynomials f for which p(s)( f) is large for several values of s, such as
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s=2,3,4,5, are of particular interest. It is easy to see that

(6) PN <P () forszr,

hence if p(s) (f) is large for some s, it is necessarily large for all smaller values
of s.

3. COMPUTATIONAL RESULTS

In searching for primitive polynomials f of degree k with large figure of
merit p(s)( f) for s > 3, we first require that such f be optimal characteristic
polynomials for the s = 2 case as discussed in Mullen and Niederreiter [4]. To
be more specific, if f is the characteristic polynomial of degree k as in (2),
then the rational function f(x) /xk has a unique continued fraction expansion

X
% =1+1/(4,+1/(4y+---+1/4,))=[1,4,,4,,...,4,],
where 4, is a polynomial over F, with deg(4;) > 1 for 1 <i < h. The partial
quotients 4,, 4,, ..., A, can be calculated by the Euclidean algorithm. We
put

L(f) = may, deg(4,),

so that L(f) is an integer with 1 < L(f) < k. It was shown in Niederreiter [7,
Satz 12] that

€) PPN =k+2-L(f).

Hence, in order to make p(z) (f) as large as possible for a fixed k (i.e., to
obtain an optimal characteristic polynomial), one would like to have L(f)=1;
however, it turns out that this is usually not feasible for the following reason.

As shown in Niederreiter [8], for every k > 1, there exists a unique poly-
nomial f, over F, of degree k with f,(0) # 0 and L(f,) = 1. Moreover,
S (x) is given by

d+1 k—[k/Z’J
filx) =) x ,
Jj=0

where the integer d is defined by 27 < k <2?! and lw] denotes the greatest
integer < w . Unfortunately, as indicated in Mullen and Niederreiter [4], most
of these polynomials are not even irreducible, let alone primitive (in fact, in the
range 2 < k < 32, the only primitive polynomials f, are f,, f;, and f,).
Hence, most are not optimal characteristic polynomials for the s = 2 case.

Since there are so few primitive polynomials f with L(f) = 1, primitive
polynomials with L(f) = 2 were also considered by Mullen and Niederreiter
[4]. On the basis of calculations performed for [4], there appear to be, in general,
a number of primitive polynomials f with L(f) =2 for each degree k.

For each k < 21, an exhaustive search was conducted by machine (an IBM
3090/400 computer) to locate all primitive polynomials f of degree k over
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TABLE 1

Primitive polynomials f with large p(3)( f) values
k pV) f
3 3 013
4 4 034
5 5 0123 5
6 4 0125 6
7 6 0136 7
8 7 0125 6 7 8
9 8 0568 9
10 9 0135 6 810
11 10 068911
12 11 0257 91012
13 11 0125 6 7 81011 1213
14 12 0123 91214
15 13 0167 8 9131415
16 14 0123 4 6 7 911 14 16
17 15 0245 611 12 14 15 16 17
18 16 0256 7 910 13 15 16 18
19 17 0124 6 91014 1517 19
*20 18 0124 911 121517 18 20
20 19 0236 91011 12 13 14 17 19 21
22 20 0123 91617 19 20 21 22
23 21 0124 6 91012 13 14 18 19 20 21 23
*24 21 0123 4 5 6 91011 12 14 15 16 17 20 21 22 24
25 22 0123 4 5 6 9121314 1517 19 20 21 22 24 25
26 23 0123 4 5 6 7 912141516 19 22 24 26
27 24 0123 4 5 6 711 1314 15 18 19 23 26 27
28025 0123 4 5 6 7 8 91314 17 18 23 24 25 26 28
29 26 01341116 18 20 23 25 27 28 29
*30 27 0135 6 7 81013 14 15 20 23 24 27 29 30
31 28 0123 4 5 6 7 8 9101415 18 22 23 27 29 31
32 29 0123 4 5 6 7 8 912151920 21 23 25 26 27 28 29 31 32

F, with L(f) <2. For 22 < k < 32, nonexhaustive collections of primitive

polynomials of degree k with L(f) < 2 were obtained. By having k < 32, one

can take full advantage of the precision of a 32-bit machine. While stopping

at k = 64 would have been beneficial for 64-bit processors, the amount of

calculation described below becomes excessive for k& much greater than 32.
The following simplified version of an algorithm from Peterson and Weldon

[11] was used to test a polynomial f of degree k over F, for primitivity. The

k—1
residues of x, x2 , x* Y eens x2 are computed modulo f(x). The product of
k

these residues is calculated to obtain the residue of x> ~' modulo f (x). If
k k

x2 7" #1 (mod f(x)), then f(x) is not primitive. If x> ~' =1 (mod f(x)),

we proceed as follows. The factorization of 2K _ 1 is obtained from Brillhart,

Lehmer, Selfridge, Tuckerman, and Wagstaff [1] and then for each prime factor
k
rof 28—1 , the residue of x% =Y modulo f(x) is calculated. If for at least

k
one such r we have x? /" =1 (mod f(x)), then f(x) is not primitive. If
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TABLE 2
Primitive polynomials f with large p(“)( f) values

k pP p¥n) f

3 3 3 013

4 4 3 034

5 5 5 012 35

6 4 4 012 5 6

7 6 6 013 6 7

8 7 5 012 56 7 8

9 8 6 056 8 9

10 8 8 023 7 8 910

1110 9 068 911
1210 9 013 8 91112

1311 11 012 5 6 7 810111213

14 11 11 023 4 61011 12 14

15 12 12 014 5 610111315

16 14 12 012 3 4 6 7 9111416

17 15 14 05812131617
*18 15 14 012 4 5 712151617 18

19 16 16 012 4 6 71013141516 18 19
*20 17 16 012 4 5 6 7 9101416 19 20
*21 19 17 013 4 5 6 8101416 17 20 21

22 19 18 0131213151617 18 20 22

2319 19 012 5 6 7 910111213 16 17 19 20 21 23
*24 21 20 013 5 6 7 81012 1518 20 22 23 24

25 22 20 012 3 4 5 6 91213141517 19 20 21 22 24 25
26 21 21 012 3 4 5 6 7121617 22232526

27 23 22 012 3 4 5 6 71012141517 19 20 21 25 26 27
28 23 23 012 3 4 5 6 7 8 911 141516 18 19 20 22 23 26 28
29 24 24 013 5 6 710131417 19 21 26 28 29
*30 25 25 012 3 4 5 6 7 8111317 18 23 24 26 28 29 30
31 26 26 012 3 4 5 6 7 8 91112131417 18 21 22 24 27 28 30 31
32 27 27 012 3 4 5 6 7 81214161920 21 22 24 27 28 30 32

x(zk‘l)/ "#1 (mod f(x)) for all such r, then f(x) is a primitive polynomial
of degree k over F,.

Having obtained exhaustive collections of primitive polynomials f with
L(f) < 2 for each k < 21, and extensive collections of such polynomials
for 22 < k < 32, we then attempted to locate among those primitive polyno-
mials of a given degree k, polynomials f with the property that for a fixed
3<s <5, the figure of merit p(s) (f) is large. Note that by (6), p(s) (f) can be
large for some s > 3 only if p(z)(f) is large, i.e., if L(f) is small (see (7)).

To calculate the figure of merit p(s) (f) for a given primitive polynomial f
of degree k, we proceeded as follows. Let o be a root of f(x). For a fixed
3 <5 <5 begin with d = k, and find all choices of (d,,...,d,) #(0,...,0)
so that Ef=1 d; = d, where the d; are integers with 0 <d, <k for 1 <i<s.
If for all such choices of (4|, ..., d;) the systems

DT < <d, 1<i<s)
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TABLE 3
Primitive polynomials f with large p(s)( f) values

k pPn 20 P f
3 3 3 3 01 3
4 4 3 3 0 3 4
5 5 5 4 01 2 3 5
*6 4 4 4 01 2 5 6
7 6 6 5 01 3 6 7
8 7 5 5 01 2 5 6 7 8
9 8 6 6 0 5 6 8 9
10 7 7 7 0 5 7 810
11 8 8 8 01 5 7 91011
*12 10 9 8 0 1 3 8 91112
13 11 11 9 01 2 5 6 7 810111213
14 12 10 10 01 2 3 91214
15 12 12 11 01 4 5 610111315
16 13 12 12 0 3 4 71012141516
17 14 13 12 0 6 913141517
*18 14 14 13 01 3 6 7121517 18
19 15 15 14 01 4 6 8 91215161819
*20 17 15 15 0 5 7131416 18 19 20
*21 17 17 16 0 1 3 4 5 6 912141617 19 21
22 17 17 17 0 1 4 5 61011 14 18 20 22
23 19 19 17 01 2 5 6 7 9101112131617 19 20 21 23
*24 21 19 18 0 1 2 3 4 5 6 9101112141516 17 20 21 22 24
25 21 19 19 0 1 2 3 4 5 7121821 23 24 25
26 21 21 20 01 2 3 4 5 6 71216 17 22232526
27 21 21 20 01 2 3 4 5 6 7 8131617 19 20 22 25 27
28 24 21 21 01 2 3 4 5 6 7 8 91217 18 21 22 23 24 26 28
29 25 23 22 0 1 3 41011 1317 18 19 21 22 24 25 26 28 29
*30 26 23 23 01 3 5 6 7 91011 121317 19 20 22 24 27 29 30
31 25 25 24 016 20 26 27 29 31
32 26 26 25 0 1 2 3 4 5 6 7 8 911 1221 2224 26 27 28 30 31 32

are linearly independent over F,, then p(s)( f) =d + 1. Otherwise, if at least
one of the systems is linearly dependent over F,, then d is decremented by
one and the procedure is repeated.

Unfortunately, for s > 2 no formula for p(s)( f) analogous to (7) for p(z)( f)
is known. For k < 21, an exhaustive search was made over all primitive
polynomials f of degree k with L(f) < 2. For each of these polynomials
f, p(” (f) was calculated for each 3 < s < 5. It was found that, for each
3<s<5 andeach k < 21, there exists at least one primitive polynomial f of
degree k with L(f) <2 and p(s)( f) > k —s. There are however cases where
there is no polynomial f of degree k& with p(s)( f) >k —s+ 1. For example,
if k=20 and s = 4, there does not exist a primitive polynomial f of degree
20 with L(f) <2 and p(“) (f) > 17. Hence, we see that in general, if f has
degree k, the best possible value for p(s)( f) is k —s. Thus, we have some
justification for the following concept.

Forafixed 3 <s <5, apolynomial f of degree k is said to be s-optimal if it
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TABLE 4
Universally optimal primitive polynomials

k pPn 2 PP /
3 3 3 3 01 3
4 4 3 3 0 3 4
5 5 5 4 01 2 3 5
6 4 4 4 01 2 56
7 6 6 5 01 3 6 7
8 7 5 5 01 2 5 6 7 8
9 8 6 6 0 5 6 8 9
10 8 8 6 0 2 3 7 8 910
11 10 9 7 0 6 8 911
*12 10 9 8 0 1 3 8 91112
13 11 11 9 01 2 5 6 7 810111213
14 12 10 10 01 2 3 91214
15 12 12 11 01 4 5 610111315
16 13 12 12 0 3 4 71012141516
17 14 13 12 0 6 913141517
*18 14 14 13 01 3 6 712151718
19 15 15 14 0 1 4 6 8 912151618 19
*20 17 15 IS 0 5 7131416 18 19 20
*21 17 17 16 0 1 3 4 5 6 912141617 19 21
22 18 18 16 0 1 2 5 6 8 91113141617 18 20 22
23 19 19 17 01 2 5 6 7 9101112131617 19 20 21 23
*24 21 19 18 0 1 2 3 4 5 6 910111214 151617 20 21 22 24
25 21 19 19 0 1 2 3 4 5 7121821232425
26 21 21 20 01 2 3 4 5 6 7121617 22232526
27 23 21 19 01 2 3 4 5 6 7 81217 232426 27
28 24 22 20 01 2 3 4 5 6 7 8 91112131518 19 24 27 28
29 25 23 22 0 1 3 410111317 18 19 21 22 24 25 26 28 29
*30 26 23 23 01 3 5 6 7 91011121317 19 20 22 24 27 29 30
31 25 25 24 016 20 26 27 29 31
32 26 26 25 0 1 2 3 4 5 6 7 8 9111221 22242627 28 30 31 32

is primitive and satisfies L(f) < 2 and p®(f) > k —s. Because of the amount
of computation required to determine whether a polynomial of degree k is
s-optimal for k > 21, only a small fraction of the total number of primitive
polynomials f with L(f) < 2 was tested.

In Tables 1-4, if f(x)= Zfzo b,x", we have listed only the exponents of the
terms for which b, # 0, and hence b, = 1. Thus, for example, the polynomial
1+ x+x° is listed as 013. We have indicated with an asterisk those degrees
k for which ged(k, 2" —1)> 1.

Tables 1, 2, and 3 list the primitive polynomials f of degree k, 3 < k <
32, with L(f) < 2 that have the largest p(s>(f) value for s = 3, 4, and 5,
respectively, out of all the polynomials tested. From Table 1 it can be seen
that there exists a 3-optimal polynomial of degree k for all k < 32. Table
2 gives 4-optimal polynomials up to degree 24, while Table 3 gives S-optimal
polynomials up to degree 22. In Tables 2 and 3 we have also listed for the
given polynomial f the values of p('>( f) for 3<r<s. Of course, from (6)
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it is clear that p")(f) > p“)(f). Moreover, in each of the three tables, for any
polynomial f of degree k we have p(z)( N=k.

4. UNIVERSALLY OPTIMAL CHARACTERISTIC POLYNOMIALS

From a practitioner’s point of view, it would be convenient to have, for each
degree, a single polynomial f that is s-optimal for all 2 < s < 5. Since such
polynomials in general do not exist, one would like to consider the question of
whether there exists, for each degree &, a primitive polynomial f of degree k
with L(f) < 2 having large p(s) (f) values for all 2 < s < 5. Such polynomials
will be considered to be universally optimal.

Table 4 contains a list of universally optimal polynomials. Notice that for

k<13, () z2k-s+1,
k<17, o) >k-s,
kS24a p(S)(f)zk—S—l9

k<26, pV(N)>k-s-2,
k<32, PN 2k-s-3

forall 2<s<5.

It should be pointed out that for k < 21 these results are best possible, so that
for example, if k = 14, there does not exist a universally optimal characteristic
polynomial f of degree 14 with p*(f) > 14—s+1 forall 2<s<5.

5. CONCLUSIONS

Our computational results show that for every 2 < s <5 and every k < 32
there exist digital k-step pseudorandom numbers such that any s successive
pseudorandom numbers are statistically almost independent. In fact, for every
k < 32 we have determined a primitive characteristic polynomial of degree k
such that the generated pseudorandom numbers pass the s-dimensional serial
test for all 2 < s <5 (see §4). It is to be expected that similar characteristic
polynomials can also be found for larger values of k. For the case s = 2, suit-
able characteristic polynomials are available for all k < 64 by the calculations
in [4]. For general s and k we have the following special case of a theorem of
Niederreiter [10]: for any s > 2 and k > 2 there exists a primitive polynomial
S over F, of degree k such that

P (f) > log,y(C,6(2" — k™),

where log, is the logarithm to the base 2, the constant C, > 0 depends only
on s, and ¢ is Euler’s totient function. It follows that for such an f the figure
of merit p(s)( f) has a lower bound that is essentially of the form k —s log, k .
However, the proof of the result above is nonconstructive.
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For the pseudorandom numbers obtained from our tables, the points X, in
(4) show a very even distribution over [0, 1]°. For instance, if we consider
the pseudorandom numbers generated by the characteristic polynomial listed in
Table 1 for k = 32, then the points 0, X, X, ..., X,_, in [0, 1)3 form a
(4, 32, 3)-net according to Theorem A. This means that every subinterval of
[0, 1)3 of the form (5) with volume 27 contains exactly 16 points of this
point set. Such strong uniformity properties are not known for comparable lin-
ear congruential pseudorandom numbers with modulus M = 2%, Digital mul-
tistep pseudorandom numbers have another advantage over linear congruential
pseudorandom numbers, namely, that they are generated by binary arithmetic
as opposed to modular arithmetic with a very large modulus. Therefore, digital
multistep pseudorandom numbers offer a viable alternative to linear congru-
ential pseudorandom numbers when ease of generation and strong uniformity
properties are desired.
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