
MATHEMATICS OF COMPUTATION
VOLUME 54, NUMBER 190
APRIL 1990, PAGES 755-770

FACTORING MULTIVARIATE POLYNOMIALS
OVER LARGE FINITE FIELDS

DAQING WAN

ABSTRACT. A simple probabilistic algorithm is presented to find the irreducible
factors of a bivariate polynomial over a large finite field. For a polynomial
f (x, y) over Fq of total degree n, our algorithm takes at most

4.89 2 n log n log q

operations in Fq to factor f (x, y) completely. This improves a probabilistic
factorization algorithm of von zur Gathen and Kaltofen, which takes

O(n 1 l log n log q)
operations to factor f (x, y) completely over Fq . The algorithm can be easily
generalized to factor multivariate polynomials over finite fields. We shall give
two further applications of the idea involved in the algorithm. One is concerned
with exponential sums; the other is related to permutational polynomials over
finite fields (a conjecture of Chowla and Zassenhaus).

1. INTRODUCTION

The factorization of polynomials over finite fields has been studied for a long
time. However, an efficient algorithm for factoring univariate polynomials over
finite fields was not presented until the late 1960's. Berlekamp [2] then devised
a deterministic algorithm which factors a univariate polynomial of degree n
over F in O(n3q) field operations. This running time is polynomial both in q
n and q. Soon after, Berlekamp [3] made the running time polynomial in
the input size, i.e., using logq rather than q, at the expense of introducing
a probabilistic rather than a deterministic method. The Cantor-Zassenhaus [5]
probabilistic version of the algorithm factors a univariate polynomial of degree
n in O(n 3+n2 log n logq) operations. Various other algorithms for this problem
are due to Rabin [17], Ben-Or [1], and Camion [4]. Unfortunately, there is no
known deterministic method for factoring univariate polynomials over finite
fields in time polynomial in the input size.

The corresponding problem of factoring multivariate polynomials over fi-
nite fields has recently been studied by numerous authors. There are several
approaches. Lenstra [14] and Chistov-Grigoryev used the short vector algo-
rithm for lattices from Lenstra, Lenstra, and Lovasz [13]. Their algorithms

Received August 26, 1988.
1980 Mathematics Subject Classification (1985 Revision). Primary 1 1T06, 68Q40.

Q 1990 American Mathematical Society
0025-5718/90 $1.00 + $.25 per page

755

756 DAQING WAN

are deterministic, and require O(n8 + n 3q) field operations to factor a bivari-
ate polynomial of total degree n. By establishing an effective version of the
Hilbert Irreducibility Theorem, von zur Gathen [7] gave a probabilistic algo-
rithm to compute the factorization pattern of a multivariate polynomial (i.e.,
the degrees and the multiplicities of the irreducible factors of a given multi-
variate polynomial). Utilizing similar ideas, von zur Gathen and Kaltofen [8]
presented a probabilistic algorithm to factor a sparse multivariate polynomial.

In [9] von zur Gathen and Kaltofen described a complete probabilistic multi-
variate factorization method which uses Newton's iteration and linear equation
systems. It takes O(n8 log n log q) field operations to factor a nice bivariate

polynomial of total degree n . In general, it takes O(n 1 log n log q) field oper-
ations to factor a bivariate polynomial of total degree n over a large finite field
Fq.

In this paper, we present a new probabilistic algorithm to factor bivariate
polynomials over a finite field, which is simpler and faster than the above meth-
ods. This algorithm takes at most O(n4,89 log2 n log q) field operations to factor
a bivariate polynomial of total degree n over Fq . It can also be generalized to
factor multivariate polynomials over finite fields in time polynomial in the total
degree of the polynomial. However, we shall concentrate on the bivariate case.

We remark that our algorithm can be adapted to many other fields instead
of finite fields, for example, the rational number field. In this case, an interest-
ing phenomenon is that, whenever the Berlekamp-Hensel algorithm succeeds in
factoring the related univariate polynomial over the integers, our algorithm suc-
ceeds in factoring the bivariate polynomial over the integers. See the remarks
at the end of ?3 for more details. In view of this, we describe our main result
in the more general setting as follows.

Let F be a field (arbitrary effectively computable) and f(x, y) be a bivariate
polynomial of degree n over F. By preprocessing f(x, y), we may suppose
f(x, y) is nonsingular at infinity. We write

(1) fPX Y) = fn(X 5 Y) + fn-1(Xx 5y) + **+ fO(X5 y),

where fk (x, y) is the homogeneous part of degree k in f(x, y) . Let

(2) tn(X S Y) = Pe, (x,5 Y). Pe, (x,5 y)

be the prime factorization of fn (x, y) over F. Then we can deterministi-
cally find all irreducible factors of f over F with at most 0(2tn3 log2 n) field
operations in F.

To apply the above result in a particular field, one needs to know a prepro-
cessing algorithm and a univariate factorization algorithm. In the case of finite
fields, this does not present a problem. In ?6, we shall show that a random uni-
variate polynomial over F has small t, i.e., t < e log n . Combining this with q
Berlekamp's probabilistic algorithm gives our algorithm, which takes at most
O(n3+e log2 log2 n log q) = O(n4.89 log2 n log q) field operations.

FACTORING MULTIVARIATE POLYNOMIALS 757

2. MOTIVATION FOR THE ALGORITHM

Before we give the algorithm in the next section, we would like to see what we
can extract from the assumption that f(x, y) is reducible. This will produce
the algorithm more naturally and serve as part of the proof of our algorithm in
the next section. F is an arbitrary field in this section.

For simplicity, we first suppose that f, (x, y) is squarefree, i.e., ej = 1
(j = 1, ... , t) . Now, let f(x, y) be reducible over the field F. Then there
are two nonconstant polynomials g(x, y) and h(x, y) over F such that

(3) f(x, y) = g(x, y)h(x, y).

Let deg(g(x, y)) = r and deg(h(x, y)) = s. Then, s = n - r. As in (1), we
write

(4) 9~(X, Iy) = gr(X I Y) + gr- I(X, Iy) + + 0(X I y),

h(x, y) = hs(x, y) + hs_l (x, y) + + ho(x, y) .

Substituting (4) into (3) and comparing the homogeneous part of degree k, we
get

fn =grhs ,

fn = grhs (sgr + hs)
(5)

f-k = gh (Ei=0 gr-ihs-k+i)

where we define gk = hk = 0 for k < 0.
We claim that g(x, y) and h (x, y) are uniquely determined by their highest-

degree parts gr and hs, i.e., all the polynomials gi and h are uniquely deter-
mined from f, grX and hs. In fact, dividing (5) by grhs = fn we have

fn - I gr-I +h sl

fn gr hs

4-2- 1 hs-1 gr-2 +hs-2

n6 gr hs
(6)

fn-k -Z1 gr-ihs-k+ gr-k + hs-k

fn gr hs

where 1 < k < n.
Since gr and hs are relatively prime (fn is squarefree), from the first ex-

pression of (6) we find that grI and hs - are uniquely determined and can
be obtained, for example, by expanding the partial fraction of fnI fn and

758 DAQING WAN

then taking suitable partial sums (a more practical way is to use the Euclidean
algorithm, as we will do in the algorithm). Similarly, the second expression of
(6) implies that gr-2 and h,-2 can also be uniquely determined, and so on. In
this way, we prove the claim.

Above we showed that if f(x, y) = g(x, y)h(x, y), then the factors g(x, y)
and h(x, y) can be constructively recovered using only g,(x, y) and h,(x, y) .
So, by trying all possible pairs gr h, with grh, = An X we can find all pairs g,
h with gh = f. This naturally suggests an algorithm for factoring f. More
precisely, for each given pair g, X h, with grh, = fn , by the above constructive
method we can produce two polynomial sequences gi (i = r, r - 1, ... , r - n)
and hi (j = s, s-, ... , s-n). If gi = = 0 for all i, j < 0, then we do find
a pair of factors g, h such that g = g, +gr-l + - * * +go X h=hs +hs-1 + +ho.
Otherwise, f simply has no such factors, and we need to try another pair gr,
hs with grih = fn. This forms the basic part of the deterministic algorithm.
It clearly works for any field for which an algorithm for factoring univariate
polynomials is given.

There is an alternative in the construction of the above polynomial sequences.
Without loss of generality, assume r < s. We may first construct only gi
(i =r, r- 1, ..., O), h1 (j = s, s - 1, ..., s - r), and then check whether
g = gr + * * * + go divides f or not. If g divides f, we get a factor; otherwise,
we need to try another pair gr, hs with grhs = fn.

We assumed that f, (x, y) is squarefree in the above discussion. If fn has
repeated factors, but any of these repeated factors is relatively prime to fn- '
then the above argument still works. In this case, we claim that (gr, hs) = 1
(the crucial point). Otherwise, let p(x, y) be a nontrivial prime factor of
(gr, hs). The first two expressions of (5) would imply that p(x, y)IfnI and

P 2(x, y) Ifn . This is a contradiction. Now, the crucial condition (gr, hs) = 1
makes the rest of the above discussion work well.

The above weaker condition can be formulated using singularities of a pro-
jective curve. Let f(x, y) be given as in (1). Then f(x, y) defines a projective
curve (possibly reducible) in P 2(F) by its homogenization:

(7)
f(5 Y5

Z)
=nXXI

+ tn
0(x .~

+ +fxy)zn.

It is easy to verify that f is nonsingular at infinity (z = 0) if and only if
any repeated factor of fn is relatively prime to fn_1 . Motivated by this, we
introduce the following

Definition 2.1. f is called "nice" with respect to z if the curve f(x, y, z) = 0
has no singular points at infinity (z = 0) .

Note that our nice polynomials are similar to the nice polynomials defined by
von zur Gathen and Kaltofen [9]. In their paper, a nice polynomial f satisfies:
f(x, 0) is squarefree and f is monic with respect to x. This later condition
corresponds to our "normalized" polynomials (to be introduced).

FACTORING MULTIVARIATE POLYNOMIALS 759

We have seen that if f is nice with respect to z, an algorithm can be con-
structed to factor f . In the expressions (6), all the gi and h are bivariate
homogeneous polynomials. By dehomogenization, they are equivalent to uni-
variate polynomials. This will simplify calculations in practice. To carry out this
simplification, we can normalize f(x, y) by requiring f, (x, y) to be monic
with respect to x. Under this assumption, dehomogenization of gi and hi
and their homogenization with respect to y are simply inverse processes to
each other.

Definition 2.2. f is called "normalized" with respect to x if f, (x, y) is monic
with respect to x.

3. THE BASIC ALGORITHM

In this section, F is still an arbitrary field. We give the basic algorithm
for nice normalized polynomials. In many cases, a general polynomial can be
preprocessed to become a nice normalized one, so the basic algorithm here can
be applied in general. We also suppose an algorithm is given for factoring uni-
variate polynomials over F. The algorithm will be allowed to be probabilistic,
so that it will either return the correct answer or else fail, the latter with small
probability. In the rest of this section, we assume that f is nice and normalized
with respect to z and x, respectively. f has been given as in (1).

Basic Algorithm.
Input: A nice and normalized polynomial f(x, y) E F[x, y].
Output: A complete factorization of f (x, y) over F or failure.
Step 1. Use the given algorithm for univariates to factor fn completely

over F:

fn(Xx 5) = Pe, (xx, Y). Pe, (X, y)

where p, (x, y) are distinct prime factors of fn over F, monic with respect to
x. If the probabilistic univariate procedure returns failure, then return failure.
Otherwise, go to Step 2.

Step 2. Consider all proper divisors of fn of the form Pe ...Pe 'k (1?< <
pi k

<lk ?t, 1? k < [t/2]). List them in a table, say, d1, ..., dN, where

N=(1)+ (2)+ ...+ (t/2] -

Step 3. Choose any element d in the table of Step 2. Let deg(d) = r,
gr(x) = d(x, 1), h,(x) = fn(x, 1)/d(x, 1). Use the Euclidean algorithm to
find univariate polynomials u(x) and v (x) in F[x] such that

(8) u(x)gr(x) + v(x)hs(x) = 1,

where deg(u) <n - r = s and deg(v) <r.

760 DAQING WAN

Step 4. Inductively define the univariate polynomial sequences gi(x) (r-n <
i < r) and h1(x) (s - n < j < s) as follows:

k-1

gr-k = V(X) fn-k - gr-ihs-k+i) mod gr(x),

(9) k-i

hs-k U(X) (fn-k
- gr-ihs-k+i) mod hs(x),

where fnfk = fn-k(X 1) and 1 < k < n.
If deg(gi) > i or deg(hj) > j, then f has no such factors, and we go back

to Step 3 and choose another d in the table.
Step 5. Let Gi(x, y) and Hi(x, y) be the homogenization of gi and hi

with respect to y such that deg(Gi) = i and deg(Hj) = j (O < i < r, 0 < j <
s). Return

g = Gr +Gr-I +...+GO
h =Hs+Hs_ +.+Ho.

Then g and h are two proper factors of f satisfying f = gh. In this case, g
and h are still nice and normalized with respect to z and x. We repeat the
above algorithm until we find all irreducible factors of f .

As we pointed out in ?2, there is an alternative in Step 4 and Step 5. Hence,
Step 4 and Step 5 can be replaced by the following Step 4'.

Step 4'. Let r < s (if s < r, interchange the positions of g and h).
Inductively define the univariate polynomial sequences gi(x) (0 < i < r) and
h1(x) (s - r < j < s) as in (9). Let Gi(x, y) be the homogenization of gi
such that deg(Gi) = i (0 < i < r) (note that for 0 < i < r one always has
deg(gi) < i). Put

g = Gr + Gr- I + + Go

Check whether g divides f or not. If g divides f, we find a factor. Other-
wise, go back to Step 3 and choose another d in the table.

Proof of correctness of the algorithm. Recall the argument in ? 1. Instead of using
partial fractions, we have now used the Euclidean algorithm. Clearly, we only
need to prove that the Gi and H. are the same as the gi(x, y) and hi(x, y)
in ?1. Now, (8) implies

(10) gr(x) hu(x) _n

Thus, for any univariate polynomial q(x) with deg(q) < n, we have

q(x) _ v(x)q(x) u(x)q(x)

(11l) fn(X) gr (x) hs(x)
v(x)q(x) mod gr(x) u(x)q(x) mod hs(x)

gr(x) hs(x)

FACTORING MULTIVARIATE POLYNOMIALS 761

Now, comparing (11) and (6) (noting that f is normalized), we find that Gi =

gi and Hi = hi. This proves the correctness of the Basic Algorithm. o

For the analysis of running time, we assume that the factorization procedure
used in Step 1 to factor a univariate polynomial of degree n takes at most T(n)
operations in F. We will allow a probabilistic procedure, which either correctly
returns an irreducible factor or else fails.

Theorem 3.1. Let f(x, y) E F[x, y] be a nice and normalized polynomial of
degree n, and assume that Step 1 of the Basic Algorithm does not return failure.
Then the Basic Algorithm deterministically finds all irreducible factors of f in

0(2tn3 log4 n) + T(n) operations in F, where log4 n can be replaced by log2 n
if F has more than 2n elements.

Lemma 3.2 [9]. Let F be an arbitraryfield, and r(x) E F[x] of degree d. Then
an arithmetic operation (+, -, multiplication, and division by an invertible
element) in F[x]/(r(x)) can be performed in 0(d log4 d) operations in F. If
the cardinality qf F is at least 2d, then it can be performed in 0(d log2 d)
operations.

Proof of Theorem 3.1. Lemma 3.2 shows that Step 3 and Step 4 take 0(n3 log4 n)
operations in F. By the inequality for N in Step 2, we deduce that the algo-
rithm can be performed in 0(2tn3 log4 n) + T(n) operations. The theorem is
proved. 0

Remarks. (i) The above algorithm has a bottleneck quite similar to that of the
Berlekamp-Hensel algorithm for factoring a univariate polynomial over the in-
tegers, see [1 1]. In Step 2, we may have to test as many as 2t 1 potential factors
d(x) of f,. If t is large, this presents an exponentially bad case. However,
if we combine the Berlekamp-Hensel algorithm and our algorithm to factor a
bivariate polynomial f of degree n over the integers, we find the following
remarkable fact: If the Berlekamp-Hensel algorithm succeeds in factoring the
univariate polynomial fn over the integers (this forces t to be relatively small),
then our algorithm will succeed in factoring f over the integers. In view of
Landau's comments in her survey article [12], the Berlekamp-Hensel algorithm
is considered to be a practical one for factoring a univariate polynomial over the
integers. Thus, we expect that our algorithm is practical for factoring bivariates
over the integers.

(ii) In Step 2, we order the elements dl,..., dN in such a way that di has
no more distinct prime factors than dj (i < j) does. If f is reducible and the
ordering is fortunate, then one can find a factor of f in only one step! On the
other hand, if f is irreducible, then no best ordering exists; any ordering takes
the same amount of time. It is an interesting but seemingly difficult problem
to obtain an optimal ordering method. This question is equivalent to finding a
factor d of fn such that f has a factor of the form d(x, y) + lower degree
terms.

762 DAQING WAN

(iii) The above algorithm (in Step 2) takes at most N steps to factor f
completely. However, it will take exactly N steps to prove that an irreducible
polynomial is irreducible. Hence, this algorithm is more suitable for factoring
a polynomial with many factors. On the other hand, if f has only a few
factors, then the Hilbert Irreducibility Theorem shows that t is often small. By
preprocessing f again, as we shall do in ? 5, we can expect to obtain smaller t,
and then the algorithm can be applied.

Definition 3.3. Let c be a positive constant. We define the Basic Algorithm C to
be the Basic Algorithm given above except that in Step 1 of the Basic Algorithm
we return failure whenever t > clog n .

Corollary 3.4. Basic Algorithm C can be performed in O(n3+clog2 log4 n) opera-
tions, where log4 n can be replaced by log2 n if F has more than 2n elements.

In the case of finite fields or number fields, we shall show in ?6 that a random
univariate polynomial of degree n has t < e log n . Hence, we can take c > e
in Basic Algorithm C.

4. BIVARIATE FACTORING OVER LARGE FINITE FIELDS

In this section, we give a probabilistic algorithm which completely factors an
arbitrary bivariate polynomial of degree n over a finite field.

For the convenience of time analysis, we assume that F = Fq is a large finite

field compared to the degree of f . More precisely, we suppose q > n . If F
q

is a small finite field, then we can first extend F to get a larger field, and apply
the algorithm to the bigger field, as von zur Gathen and Kaltofen did in [9]. We
note that the preprocessing stage (Step 1-Step 5) of the algorithm given here
also works for many other fields; in particular, it works over algebraic number
fields.

Let f(x, y) be any bivariate polynomial over Fq . The following algorithm
converts f into a nice normalized polynomial and gives a complete factoriza-
tion of f over Fq. Note that in Step 5, we have a constant c > e to be
determined. How to choose the value of c depends on the requirement for
failure probability.

Bivariate Factoring C.
Input: A polynomial f (x, y) E Fq[x, y] of total degree n .
Output: A complete factorization of f over Fq or failure.
Step 1. Check squarefreeness. Compute fx = Of/Ox and f = Of/Dy. If

fix = fy = 0, then f = 5?I J~n /i1x'~yp , where p is the characteristic of F
Let g = E2 j<n f5i1j'PXy ; then g is a factor of f and f = gp. In this case,
replace f by g and factor g.

If fix $ 0?, or $:& 0, compute the greatest common divisor d = (ff, fx) or

(f, ,f respectively. Replace f by L and factor L (L is squarefree). Thus,
fL ad sa in the following steps we assume f is squarefree.

FACTORING MULTIVARIATE POLYNOMIALS 763

Step 2. Normalize f with respect to y. Let f = f(x, y) = fn + + f.
Choose an element bo in F satisfying fn(boy, y) = yntf(bo, 1) $ 0 (this can
be done if q > n). Then

f*(5 =f (x + boy, y)

fn (bo, 1)

is a normalized polynomial with respect to y.
Step 3. Transform to a nice polynomial. Compute the g.c.d. of the resultants

Ry1X)- (Resy f* at , Res f* a*

This is a univariate polynomial in x of degree < n(n - 1) < n . Since f* is
squarefree, Ry (x) $ 0 . Choose a nonzero element a in F satisfying Ry (a) $ 0

(this can be done if q > n 2). Using the same symbol f* for the homogenized
polynomial f*(x, y, z) as for f*(x, y), then

f*(xy,z)=f* (x~ y x - z

is a nice polynomial with respect to z.
Step 4. Normalize f* with respect to x . Let f* = f*(x, y, 1) = fn + +

fJ. Choose an element b in F satisfying fn (x, bx) = xntf (1, b) $ 0. Then
f*(x bx +y)

f* (X5 Y) An* 1(, b)

is a normalized polynomial with respect to x.
Step 5. Call procedure Basic Algorithm C with input f* E F[x, y], to return

a complete factorization of f* with factors P1(x, y) E F[x, y] (i = 1, ... , 1),
where 1 is the number of factors of f** .

Step 6. Set ni = deg(Pi); return the following complete factorization of
f(x, y) E F[x, y]:

f(a + abob X ab) x y a) x - by x + bboy)

Proof. The correctness of Steps 1, 2, and 4 is obvious. For Step 3, suppose
(x, y, 0) is a singular point of f* at infinity. Since f* is normalized with
respect to y, (O, 1, 0) is not a point of the curve f* = 0. We must have
x $ 0. This implies (a, ay/x, 1) would be a singular point of f*. This
forces Ry (a) = 0, contradicting the choice of a. Step 6 is simply the inverse
transformation. 0

For a concrete estimate of the running time, as in [9] we have to imple-
ment Step 1 of the procedure Basic Algorithm C. The probabilistic version of
Berlekamp's univariate algorithm, due to Cantor and Zassenhaus [5], factors a
polynomial of degree n in

O(n3 + n log n log q)

764 DAQING WAN

operations in Fq . This algorithm can be written as a Las Vegas procedure, so
that it either returns an irreducible factor or failure-the latter with probability
at most 1/2. The cost of the Las Vegas univariate factoring procedure in Step 1
of the Basic Algorithm is dominated by the cost of other steps. So we can apply
that procedure several times, say n times, to obtain failure probability at most

2~~~~~~~~~~
Theorem 4.1. Let q > n2 and c > e, and let f (x, y) E F [x, y] be a polyno-
mial of total degree n over F . Then the algorithm Bivariate Factoring C with q

input f can be performed in 0(n 3+c log 2g2 n log q) operations in F with

failure occurring with probability at most nc(l-logc)/ V2r log n + 1/2q .

Proof. In Step 1, the pth root and the g.c.d. can be computed respectively in
O(n log q/p) and 0(n2 log2 n) operations in Fq . (See the proof of Theorem 3.2

in [9].) Lemma 3.2 shows that Step 2, Step 4, and Step 6 all take 0(n2 log2 n)
operations in Fq. In Step 3, the resultant and the g.c.d. algorithms can be

performed in 0(n3) operations. (See the proof of Theorem 3.2 in [9].) The
cost of the whole algorithm is dominated by the running time for Step 5, which
is 0(n3+clog2 0g2 n + n(n3+ n2 lognlogq)) . By Theorem 6.4 in ?6, the failure
probability of the algorithm is bounded by nc(l -logc) /27r log n + 1/2q. 0

Taking c = e in Theorem 4.1, we deduce

Corollary 4.2. Let q > n 2. Any bivariate polynomial over Fq of total degree n

can be completely factored in O(n4,89 log2 n log q) operations, with failure prob-
ability at most 1 / t -log .

5. AN IMPROVED PROBABILISTIC VARIANT

The algorithm given in ?4 is fast if we choose c to be small. Compared to
the algorithm in [9], however, it has the disadvantage that the failure proba-
bility is not very small. There are two ways to improve this. The first is to
increase the value of c. This will increase the running time significantly, but
the improvement in the failure probability is not very great. In the following,
we give another way which seems to be efficient.

An Improved Probabilistic Algorithm.
Step 1. Check squarefreeness as in Step 1 of the Bivariate Factoring C.
Step 2. Use the preprocessing stage (Steps 2-4 of the Bivariate Factoring C)

to convert f into a normalized nice polynomial. Use the Basic Algorithm to
extract all small factors of f, i.e., in Step 3 of the Basic Algorithm we only
consider those elements d of the form pe', (x, y)...p'k (x, y) with k < c.

Step 3. Check whether or not t(f4) < clog n. If yes, apply the Basic Algo-
rithm to factor f completely. Otherwise, go back to Step 2 and repreprocess
f in different ways (that is, randomly choose bo, a , and b satisfying the nec-

FACTORING MULTIVARIATE POLYNOMIALS 765

essary requirements in Steps 2-4 of the Bivariate Factoring C). One can repeat
this process for up to 0(n) times.

Remarks. (i) In the above algorithm, one can take c = 3, 4, 5, 6, or even 7,
because n 71og2 < n4.9*

(ii) We give a heuristic argument that the above algorithm should be efficient.
First, if a squarefree bivariate f(x, y) has many factors, then it is likely we
can find some of the factors in Step 2; this would decrease the degree of f and
the number of factors. If, on the other hand, f(x, y) has only a few factors,
then by repreprocessing f in different ways several times as in Step 3, one can
expect that t (the number of distinct factors of f,) is small. In fact, this could
be justified by using the effective Hilbert Irreducibility Theorem developed in
von zur Gathen [7] if q is large.

6. DISTRIBUTION OF POLYNOMIALS OVER FINITE FIELDS

As we have just seen, we need to study the probability that a polynomial fn
has small t. This question is clearly equivalent to the distribution problem of
irreducible univariate polynomials.

We consider the case when F = F is a finite field. For example, in the case q
of a number field K, we can take a prime ideal P with sufficiently large norm
q, in which case the residue class field is a large finite field Fq . It is well known
that if a given polynomial f over K has a certain factorization pattern over K,
then there exists a large residue class field over which its reduction has the same
factorization pattern. Therefore, the probability P(deg(f) = n t(f) < clogn)
over a large finite field F measures in some sense the corresponding probability q
over the global field K. In the following, we assume that F = Fq is the field
of q elements.

Let Nr(n) be the number of monic univariate polynomials of degree n over
Fq with no repeated factors and with exactly r distinct prime factors. We study
the distribution of Nr(n) as r varies (1 < r < n). We want to show that a
typical polynomial of degree n has no repeated factors and has no more than
e log n factors.

It is a classical result that

(12) N, (n) = -j()qd < lqn
din

Let Mn (q) be the number of monic univariate polynomials of degree n over
Fq with at least one repeated prime factor. Then, by definition, we have

(13) Mn (q) < E qiqJ < 2qiO
2i+j=n, i>0

766 DAQING WAN

Let 1 < r < n. From equation (12), we have

Nr(n) < - N (I) NIr) -r!

(14) il +ir=nq ij

< I I qn

il +**.+ir=nf ij> 1 r

Let

br(n)= E 1
il + .+i r=n, ij >I 1r

and ar(n) = br(n)/r!. We have proved the following

Lemma 6.1. Let 1 < r < n; then Nr(n) < ar(n)qfl.

Lemma 6.2. For 2 < r < n, we have

1 I logr 1 o r-2n) ar(n) <! (l ~7 +)

Proof. If we define bo(O) = 1, we have the following generating function for
br(n):

fr(x) br~ n (x n +) =(log(,-X))r.
n=r

It is easy to see that

I(x) = rfr I(x)(1 -x7

Hence, we have the following recursive relations:

n-1
nbr(n) =r E br-1(k)

k=r-I

and

n-1

(15) ar(n)= n E ar-I(k)
k=r-1

By definition of ar(n), we have a (n) = /n . Now, (15) gives

a2(n) = E < (log n+ 1),

FACTORING MULTIVARIATE POLYNOMIALS 767

In general, suppose Lemma 6.2 is true for some r - 1 (> 3). From (15), and
by induction, we deduce that

ar(n) < 1 E (lor k)+ k(r- k)

n -2 (x(r - 2)! x(r o dx

__1 K _log n log
r 2

-n t(r- 1)! (r -2)!)

The second inequality is true because we extended the limits of integration,
and the functions in the integrand have only one local minimum. The proof is
complete. E

Lemma 6.3. Let cr(n) =
I logr 1 n/(r - 1)!; then for n > 1 and c > e we have

E Cr (n) < 1 nc(l-logc)

clogn<r<n 27zlogn

Proof. In the inequality
m r x m+1

eX ex (x > O)
r=O

we put x = logn and m = [clogn]; then

cr(n) <
I|?1

flogrn < (log n)m+1
clogn<r<n r=O

Now, Stirling's approximation formula for factorials implies that the rightmost
term is

< e (elogn m+1 (e)IOcflog= 1 c(l-logc)

27r(m+ 1) m+ 1 J) = 2Iog n 2zlogn

So Lemma 6.3 is correct. o

Lemmas 6.1-6.3 and (13) together imply the following

Theorem 6.4. For any n > 2 and c > e, one has

P(fn E FT[x], deg(fn) = nlt(fn) < clogn) > 1 - 1 c(l -logc) 1
q ~~~~~~~~~27r log n

The theorem shows that the number of factors of a typical univariate poly-
nomial of degree n is less than e log n .

7. Two APPLICATIONS

The basic idea involved in our algorithm has theoretical interest. It can be
used to prove certain polynomials are absolutely irreducible (irreducible over

768 DAQING WAN

an algebraic closure of the ground field). Here we shall give only two examples.
One is concerned with exponential sums; the other is related to permutational
polynomials (the Chowla-Zassenhaus conjecture). We first discuss exponential
sums.

Let f(x1, .. , xn) (n > 2) be a polynomial of degree d with integral coef-
ficients. Let p be a prime number and Fp.. be the finite field of pm elements.
Define the exponential sum

S(p f) =x E -P"F((X,.. n)

where exp(x) = e . It is a classical problem of number theory to give a good
estimate for IS(pm, f)I . For a nice account of this subject, see [10 and 18]. A
deep theorem of Katz [10, Theorem 2.3.1, p. 41] shows that if f (x1, Xn)-T
is irreducible over an algebraic closure of the rational function field Q(2T), then
one has

(16) IS(pm f) I ?mnl)

for all sufficiently large primes p (depending on f) and all m, where the
implied constant depends only on deg(f). This result is best possible under
the given conditions.

We shall give a large class of such polynomials.

Theorem 7.1. Let F be any field and f be any polynomial over F of degree
d > 0 with n (n > 1) variables. We write f in the form

(17) f = fd + fd-1 + + fo

where]i (i = 0, ..., d) is the homogeneous part ofdegree i in f . Suppose that

g.c.d(fd, 5ff_1) is squarefree (for example, this is true when fd is squarefree).

Then, among the polynomials fa = f(xi, ... , Xn) - a (a E F), at most 2d of
them are reducible in the algebraic closure F.

Remark. In the case of algebraic number fields or finite fields with large char-
acteristic, we can improve the bound 2d to O(d . However, the proof is not
simple.

Proof of Theorem 7.1. Similar to the discussion of ?2. Let X = (xi, ...X, Xn).
If fa (X) is reducible in F, then we can write

fa(X) = g(X)h(X),

g(X) =gr(X) + + go(X)
(18) h(X) hs(X) + + ho(X)

fd (X) = gr(X)hs (X)

where 0< deg(g) =r< d.

FACTORING MULTIVARIATE POLYNOMIALS 769

The discussion of ?2 shows that, if g.c.d(fd, fdf1) is squarefree, then g(X)
and h(X) (hence also a) are uniquely determined by g,(X), h,(X), and

fd(X) + * * + f1(X) . Now, by (18), we know there are at most 2d such pairs

g,(X), h,(X), so there are at most 2d values a E F such that fa(X) is re-
ducible in F. E

Corollary 7.2. Under the assumptions of Theorem 7.1, we have that f(X) - T
is irreducible over any algebraic closure of F(T), hence irreducible over F.
Proof. Suppose f(X) - T is reducible in some algebraic closure of F(T); then
for any value a E F, f (x) - a is reducible. This contradicts Theorem 7.1. n

Corollary 7.3. Let f(X) be an integral polynomial given in the form (17). If
g.c.d(fd ff1 _1) is squarefree, then (16) holds.

This corollary follows from Katz's theorem and Corollary 7.2.
We now turn to permutational polynomials over finite fields. Let Fp be the

finite field of p elements. A polynomial f(x) E Fp (x) is called a permuta-
tional polynomial over Fp if the values f(a) (a E Fp) are distinct. For the
general theory of permutational polynomials, see [1 5]. Chowla and Zassenhaus
[6] conjectured that if f (x) is an integral polynomial of degree > 2 and p is
a sufficiently large prime for which f (x) is a permutational polynomial over
Fp, then for no a E F * is f(x) + ax a permutational polynomial over F .

p p
Mullen and Niederreiter [16] have recently shown that the Chowla-Zassenhaus
conjecture is true for a special class of polynomials (the so-called Dickson poly-
nomials). Using Theorem 7.1, we have

Corollary 7.4. Let f(x) be an integral polynomial of degree d > 1 and p be
a sufficiently large prime. Then f(x) - ax can be a permutational polynomial
over Fp for at most 2d values of a e? F.
Proof. By Theorem 7.1, we know that

F(Y) (f (x) + ax) - (f (y) + ay) f (x) - f (y) +
x -y x -y

is absolutely irreducible over Fp except for at most 2d values a. If Fa(x, y)
is absolutely irreducible over Fp , then for large p the Riemann Hypothesis for
curves over finite fields shows that Fa(x, y) = 0 has a solution with x $ y in
Fp, i.e., f(x) + ax is not a permutational polynomial over Fp . This proves
the corollary. o

As we remarked before, the bound 2d in Corollary 7.4 can be improved to
2 d . But the proof would not be elementary.

ACKNOWLEDGMENT

I would like to thank Professors Neal Koblitz, Andrew Odlyzko, and Susan
Landau for their comments on the original manuscript, especially Neal Koblitz
for his encouragement and many valuable corrections.

770 DAQING WAN

BIBLIOGRAPHY

1. M. Ben-Or, Probabilistic algorithms infinitefields, Proc. 22nd Sympos. Foundations Comp.
Sci., IEEE, New York, 1981, pp. 394-398.

2. E. R. Berlekamp, Factoring polynomials over finite fields, Bell System Tech. J. 46 (1967),
1853-1859.

3. , Factoring polynomials over largefinitefields, Math. Comp. 24 (1970), 731-735.
4. P. F. Camion, Improving an algorithm for factoring polynomials over a finite field and

constructing large irreducible polynomials, IEEE Trans. Inform. Theory 29 (1978), 378-38 5.
5. D. G. Cantor and H. Zassenhaus, On algorithms for factoring polynomials over finite fields,

Math. Comp. 36 (1981), 587-592.

6. S. Chowla and H. Zassenhaus, Some conjectures concerningfinitefields, Norske Vid. Selsk.
Forh. (Trondheim) 41 (1968), 34-35.

7. J. von zur Gathen, Irreducibility of multivariate polynomials, J. Comput. System Sci. 31
(1985), 225-264.

8. J. von zur Gathen and E. Kaltofen, Factoring sparse multivariate polynomials, J. Comput.
System Sci. 31 (1985), 265-287.

9. , Factorization of multivariate polynomials over finite fields, Math. Comp. 45 (1985),
251-261.

10. N. M. Katz, Sommes exponentielles, Asterisque 79 (1980).
11. D. Knuth, The art of computer programming, Vol. 2, Seminumerical Algorithms, Addison-

Wesley, Reading, Mass., 1981.

12. S. Landau, Factoring polynomials quickly, Notices Amer. Math. Soc. 34 (1987), 3-8.
13. A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovdsz, Factoring polynomials with rational

coefficients, Math. Ann. 261 (1982), 515-534.
14. A. K. Lenstra, Factoring multivariate polynomials over finite fields, J. Comput. System Sci.

30 (1985), 235-248.

15. R. Lidl and H. Niederreiter, Finite fields, Encyclopedia of Math. and Its Appl., Vol. 10,
Addison-Wesley, Reading, Mass., 1983.

16. G. L. Mullen and H. Niederreiter, Dickson polynomials overfinitefields and complete map-
pings, Canad. Math. Bull. 30 (1987), 19-27.

17. M. 0. Rabin, Probabilistic algorithms infinite fields, SIAM J. Comput. 9 (1980), 273-280.
18. J. P. Serre, Majoration de sommes exponentielles, J. Arithmetiques de Caen, Asterique

41-42 (1977), 111-126.

19. H. Zassenhaus, On Henselfactorization. I, J. Number Theory 1 (1969), 291-331.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WASHINGTON, SEATTLE, WASHINGTON 98195

	Cit r217_c218:

