
MATHEMATICS OF COMPUTATION 
VOLUME 54, NUMBER 190 
APRIL 1990, PAGES 885-893 

ON THE COMPUTATION OF g(k) 
IN WARING'S PROBLEM 

FRANCINE DELMER AND JEAN-MARC DESHOUILLERS 

ABSTRACT. Over two hundred years ago, Waring raised the question of repre- 
senting natural integers as sums of integral kth powers. At the beginning of 
this century, Hilbert proved that, for any fixed k , the minimal number of sum- 
mands needed in the representation of any integer can be uniformly bounded. 
The least such bound is denoted by g(k) . 

A first goal is to show that our knowledge of g(k) is rather satisfactory: 
-Writing down all the numbers g(2), g(3), ..., g(K) may be performed 

in O(K 2) bit operations, which is best possible, since g(k) has (k + 1) 
digits in its binary expansion. 

-Writing down g(k) may be performed in O(k logk.loglogk) bit opera- 
tions, which we expect to be fairly close to the actual complexity. 

A second aim is to discuss the complexity of checking the validity of the 
conjectured Diophantine inequality 

{(3/2) }< 1 -(3/4); 
the underlying idea has led J. M. Kubina and M. C. Wunderlich to check this up 
to 471,600,000. This inequality is related to Waring's problem in that it would 
imply the formula 

g(k) = 2 + [(3/2) ]-2; 
however, the knowledge of this relation would not improve our knowledge on the 
complexity of computing g(k), neither on average, nor for individual values 
of k. 

1. INTRODUCTION 

The original statement of E. Waring (1770), according to which every posi- 
tive integer is a sum of at most 4 squares, 9 cubes, and 19 biquadrates has now 
been completely proven through the works of J. Lagrange (1770), A. Wieferich 
and A. J. Kempner (1909-1912), and R. Balasubramanian, J.-M. Deshouillers, 
and F. Dress (1986). In a subsequent edition of his Meditationes Algebraicae, 
Waring (1782) raised the same question for higher powers. It is a tradition to 
denote by g(k) the least integer s such that every positive integer can be ex- 
pressed as a sum of at most s positive kth powers; thus, the original statement 
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may be formulated as g(2) = 4, g(3) = 9, g(4) = 19. The finiteness of g(k) 
is not obvious; the first proof was given by D. Hilbert in 1909; a simpler one is 
given in [3]. The consideration of the integer [(3/2) k]* 2k _ 1 readily leads to 
the lower bound 

g(k) > 2 k+ [(3/2)k] -2 

as was noticed by Euler in 1772 (quoted in [2, p. 717]), and it is quite possible 
that, on the faith of numerical evidence, he had in mind that, for all k, equality 
should hold in the previous relation; we shall refer to the statement 

(*) g(k) = 2 + [(3/2)k] -2 

as "Euler's conjecture" for exponent k. 
The main step towards this conjecture was accomplished in 1936 by S. S. Pil- 

lai and L. E. Dickson, when they independently obtained the precise value of 
g(k) for ranges containing all k between 7 and 100, proving Euler's conjec- 
ture for those exponents. Their results depend on a method-known as the 
circle-method-introduced in 1917 by G. H. Hardy and S. Ramanujan and de- 
veloped by G. H. Hardy and J. E. Littlewood around 1920. The combined 
efforts of L. E. Dickson, S. S. Pillai, R. K. Rubugunday, and I. Niven led to the 
following solution of Waring's problem, around 1944. 

Theorem A. Let k > 6, and define Xk, Yk,5k, and qk by 

Xk = [(3/2) ] + 1 = (3/2)k + k ' 

Yk = [(4/3) k] + I = (4/3 ) + q~k . 

Either we have 

k > (314)k X 

and then Euler's conjecture g(k) = 2k+ Xk - 3 holds, 
or we have 

either XkYk> 2?k + 1, and then g(k) = 2?k +Xk + Yk- 5 
k +k +k+y-4 or XkYk > 2 1, and then g(k) = 2 X kY-4. 

It is clear from Theorem A that Euler's conjecture for exponent k is equiv- 
alent to the validity of the Diophantine problem (**) for the same exponent. 

The following theoretical and computational results concerning (**) will en- 
hance our belief in the validity of Euler's conjecture. 

Theorem B (K. Mahler, 1957). The relation (**) holds when k is sufficiently 
large (and so does Euler's conjecture). 

Unfortunately, Mahler's proof is based on the Ridout p-adic extension of 
Roth's theorem (cf. Lemma 2 below), and so it is not effective, since it just 
provides us with a bound for the number of exceptions to (**). 
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Theorem C (R.-M. Stemmler, 1964). The relation (**) holds for 2 < k < 

200, 000 (and so does Euler's conjecture for 6 < k < 200, 000 ). 

Theorem D (J. M. Kubina and M. C. Wunderlich, 1989). The relation (**) 
holds for 2 < k < 471, 600, 000 and so does Euler's conjecture in the same 
range. 

In this paper, we pursue a double aim: 

(1) to present two algorithms which lead respectively to the determination 
of g(k) for a single value k and to the determination of all values of 
g(k) in the range k < K; 

(2) to present a practical method for testing (**) in an interval k < K and 
discuss its complexity. 

Theorem 1. There exists an algorithm, the input of which is an integer K and 
the output of which is the set of values (g(k)) k<K, which runs in O(K2) bit 
operations. 

k Since g(k) > 2 , it is clear that Theorem 1 is best possible, up to improve- 
ment of the implied constant. 

Theorem 2. There exists an algorithm, the input of which is an integer k and 
the output of which is the value g(k), which requires O(k logkloglogk) bit 
operations. 

Since g(k) > 2k , the running time cannot be o(k) . However, we would like 
to stress that we do not know any faster algorithm (up to the implied constant) 
to compute 2k + [(3/2)k] - 2. 

The next result presents a "nondeterministic algorithm", or what could be 
even described as a "diplomatic algorithm", the output of which is YES or 
MAYBE. Its interest relies on the fact that, in practice, we expect the output to 
be always YES, i.e., it will show the validity of Euler's conjecture in a certain 
range. 

Theorem 3. There exists an algorithm which has the following properties: 
(i) For an input K, the output is either YES (Euler's conjecture holds for 

K < k < 2K), or MAYBE (there might be some k < 2K for which 
Euler's conjecture fails). 

(ii) For an input K, the algorithm runs in O(K logK loglogK) bit opera- 
tions. 

(iii) There exists an integer Ko such that the answer is YESfor K > K0. 

The underlying algorithm uses FFT; in practice, it might well be more efficient 
to use the method of Karacuba and Toom, which easily gives a complexity 
O(K 58 ), a low cost improvement overe the standard O(K 2) complexity. 

The practical interest of Theorem 3 is that it may indeed be used for actual 
computation: the underlying basic idea is the one that is used for obtaining 
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Theorem D. In this light, one may notice that Proposition 1 would permit us to 
check Euler's conjecture for the range [175,600,000, 471,600,000] in five steps, 
Proposition 2 in seven steps, whereas Theorem D was proved in ten steps. 

The theoretical interest of Theorem 3 is to tell us, that, to our knowledge, 
checking the validity of Euler's conjecture for all k < K is not more compli- 
cated than writing down the single value 2K + [(3/2)K] - 2. 

One should notice that (iii) is neither completely trivial nor a direct con- 
sequence of Mahler's result, although it shares with it the dependence on the 
ineffective result of Ridout. Indeed, (iii) is a statement about the algorithm 
asserted to exist in the theorem; as such it proves again Mahler's theorem. 

Theorems 1, 2, and 3 formalize a discussion held in Banif in May 1988 
between Professor D. Shanks and the second-named author: Theorem 3 partly 
represents the point of view of Professor Shanks for whom the state of the 
Diophantine problem (**) will be satisfactory only when we know a bounded 
algorithm to settle it. On the other hand, Theorems 1 and 2 represent the point 
of view of the second-named author for whom the actual determination of g(k) 
is as easy (or as difficult) to perform whatever the computation is based upon: 
Theorem A, or Euler's conjecture. The second-named author is thankful to 
Professor Shanks for that stimulating exchange. 

The authors are grateful to the organizers of the NSF Computational Number 
Theory meeting held in Bowdoin College in July 1988, among other, for giving 
them this opportunity to meet. 

2. PROOF OF THEOREMS 1 AND 2 

The value of g(k) is trivial for k = 1, and, as we mentioned in the intro- 
duction, is already known for k = 2, 3, and 4. In 1964, Chen Jing-run proved 
that g(5) = 37. One can now check directly that Theorem A also applies for 
k < 5. 

The proofs of Theorems 1 and 2 rely on Theorem A. Since the evaluation 
of the product Xk * Yk may be cumbersome, we start with a more convenient 
reformulation of Theorem A. 

2.1. Mathematical analysis of Theorem A. 

Lemma 1. In the notation of Theorem A, and assuming that Ok < (3/4)k, we 
have the following equivalences: 

3 k > 2 _ I Xk * Yk > 2 
+ 

1, 

3 * k < 2 k _ I Xk * Yk = 2 + 1. 

Proof. We begin with two remarks: 

(i) The integer Xk * Yk = ((3/2)k + ?k) 
- ((4/3)k + 1k) is strictly larger than 

2k, so it is either 2k + 1 or at least 2k + 2. 
(ii) The integer 2k([(3/2)k] + 1) - 3k is strictly positive, thus it is at least 

1, and so 2 * Ok iS atleas 1, o tha (4/) * k > k 
1, and so 2 ~kis at least 1, 50 that (4/3)kk? (2 /3). 
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Assume that 3 *k > 2k - 1; then 

Xk * Yk = ((3/2)k + Xk) * ((4/3)k + qk) 

> 2 k+ (2/3 ) + I _ 1/2 k+ k * qk > 2 k+ 1. 
k k kkk 

Assume next that 3k *k < 2k _ 1; then 

Xk * Yk = ((3/2)k + ok) ((413)k + qk) 

<2 + (3/4) (4/3) + 1 -(1/2)k + (3/4)k (2/3)k 

=2k + + -(1/2)k + (1/2)k = 2 + 2, 

so that Xk * Yk = 2 + 1. E 

2.2. Proof of Theorem 1. The proof is based on Lemma 1 and Theorem A. We 
are going to name a few "boxes" in the memory of a binary computer, leaving 
unnamed the auxiliary buffers. The main boxes will be GI, ... ., GK, A, B, C. 

We initialize the data by storing 3 in A and 1 in GI, B, and C. 

At the end of the (k - 1 )st stage, we assume that we have filled the following 

boxes: 

GI, . ,Gk- I (with g(1), ... , g(k - 1), respectively), 

A with 3k-1, 

B with qk-1= [(4/3) 'I 

C with rk- I=3k-I {(4/3)k-11 

We now proceed from stage (k - 1) to stage k (for k < K). 

(i) compute 3k and store it in A 

(ii) compute Pk-I and Ski- such that qk - = 3Pk-I + Sk-I with 0 < 

Sk-1k < 2 

(iii) compute Sk * 3 + 4 * rk -3 
? if it is negative, then store qk qk-I + Pk-I in B and rk Sk-l 

3 k- + 4 rk in C, and go to (iv) 
? if it is nonnegative, then store qk = qk-I +Pki- + 1 in B and rk 

Sk- k3 + 4 * rk13 in C, and go to (iv) 
k-I~~~~ 

(iv) compute uk := [(3/2) ] and vk = 4 k {(3/2) } 
* if 4k v 3k3 is positive, then store 2k + Uk - 2 in G ,and go to next 

stage 
* if 4k _ Vk - 3k is negative or 0, then go to (v) 

(v) compute 3k r -2k + 1 
k~~~~ 

* if it is nonnegative, store 2k + Uk + qk - 5 in Gk, and go to next stage 
k 

* if it is negative, store 2k + Uk + qk - 4 in Gk, and go to next stage 
It is easy to verify that at the end of the Kth stage, the boxes GI,..., GK 

are filled with g( 1 ), ... , g(K), respectively. We must now check that each step 
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requires only O(K) bit operations: 

(i) 3k = 3k-1 + 2 * 3k l (shift and add), then store 0(k) bits 
(ii) Euclidean division by 3 can be performed in O(K) bit operations, 

exactly in the same way as one usually performs a division (by 3, or 
11, ... ) by hand 

(iv) if one writes 3k = ej 2i, then [(3/2)k] = Eilkej2J k, and 4k 

{(3/2) }k = E kej2k with ej E 1}. D 

2.3. Proof of Theorem 2. The kth step of the previous algorithm naturally 
splits into two phases: 

- the computation of 3k * [(4/3)k] , and 3k * {(4/3)k }, which is performed 
in steps (i) to (iii) 

- the determination of g(k) from those values, in steps (iv) and (v). 

To prove Theorem 2, it is thus sufficient to prove that one may get 3k 

[(4/3)k] , and 3 { (4/3)k }, ab initio, in 0(k log k log log k) bit operations. 
k 2I Fast exponentiation is used to get 3 : one computes t1 = 32 for 2 < k 

and then the product t. t , where k = E 2"; products are obtained by 
the Schonhage/Strassen FFT method in which the product of two integers of 
length n requires at most O(n log n log log n) bit operations. If one is clever 
enough to compute the product of the t 's by first multiplying the smallest 

ones, the total computing time for the determination of 3k does not exceed 
O((k + k/2 + k/4 + *)logkloglogk) bit operations. 

We now write down 4 k, which can be performed in 0(k) bit operations; it 
is then possible (cf. [6]) to determine integers a and b such that 4k = a3k + b 
with 0 < b < 3k in O(klogkloglogk) bit operations. We then notice that 

a = [(4/3) ] and b = 3 * {(4/3) }k. 

2.4. A second proof of Theorem 1. It is possible to prove Theorem 1 by 
noticing that the Ridout-Mahler way of proving Theorem B gives indeed an 
effective bound for the number of exceptions to (**) . Thus, one can follow the 
Stemmler route (i.e., the steps (i) and (iv) in the algorithm described in ?2.2); if 
an appeal to step (v) is needed, we just compute g(k) by the method described 
in ?2.3. The total cost is O(K 2) + 0(1) * O(KlogKloglogK) = O(K). 2 1 

3. PROOF OF THEOREM 3 

3.1. Statement of auxiliary results. If the Diophantine condition (**) is 
not fulfilled for some k, then 3k contains a long string of consecutive 1 's 
in its binary expansion; but then 3k+1 will also contain a long (but maybe 
slightly shorter) string of consecutive 1 's, and so on. However, on probabilistic 

grounds, 3 should not contain a long string of consecutive 1 's; thus, one has a 
good chance to verify this fact for some integer 1, and then the condition (**) 
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will be fulfilled for many integers k less than 1; in Proposition 1, we give a 
precise formulation of this fact. 

Proposition 1. Let m be a positive integer, and assume that 3 m does not contain, 
in its binary expansion, a block of h consecutive 1 's; then the Diophantine 
relation (**) holds for 

m(log 3/ log 4) + h/2 + 1/2 < k < m 

(and so does Euler's conjecture). 

It is now easy to deduce from Proposition 1 the following (the proof is left 
to the reader): 

Proposition 2. Let N be an integer greater than 11 and consider the assertion 

2 A"+j 22- None of the integers 32r2N- (j = 1, 2, 3,5 4) contains, in its 
(AN) binary expansion, a block of (.8 - (log 3/ log 4)) 2N -3 consecutive 

1 's. 

If (AN) is true, then (**) holds for 21N < k < 2N+1. 

By using fast exponentiation and FFT, it is readily seen that one has the 
following 

Proposition 3. Assertion (AN) can be checked in 0(2 N NlogN) bit operations. 

Our belief in the validity of (?N) for N > 12 relies on a computation 
performed by Ch. Batut, which shows that a slightly weaker result holds for 
12 < N < 18. The work of J. M. Kubina and M. C. Wunderlich shows that the 
range 19 < N < 29 lies within the range of present computations. 

Proposition 4. There exists an integer No such that (3N) is valid whenever N 
is larger than No. 

All these results clearly imply Theorem 3. 

3.2. Proof of Proposition 1. Let k be an integer from the interval 

[m(log3/log4) + (h + 1)/2, m] 

such that (**) does not hold; with the notation of Theorem A, one has 

X; = (3/2) +4k witho0 < k < (3/4)k, 
and so there exist integers M and a such that 

Mn k n-k 
3 =2 M-ca with0<aK< 3 2 

Since m(log3/log4) < k - (h + 1)/2, one has 

0 < O < 4 3(h12) (1/2) . 2-k-< 2?-h- 

it follows from this that the h digits of 3... corresponding to 2k 1, 2 +, ... 

2&-l are all equal to 1. El 
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3.3. Proof of Proposition 4. We are indeed going to prove a stronger result, 
namely: the length of the longest block of digits 1 in the binary expansion of 3m 

is o(m). 
This is a corollary to Ridout's approximation theorem, a special case of which 

reads: 

Lemma 2. Let A, , and c be real numbers such that 0 < ? < 1, A < 1-y, and 
c > 0; let p be restricted to integers of the form p = 2uM with 0 < M < cp"; 
then the inequality 

0 < lP - 3V, 3<V 

has only a finite number of solutions. 

We now prove our assertion. Let e > 0 be given; without loss of generality, 
we may assume that e < 1, and we have to prove that only finitely many 
integers m are such that 3m contains a block of em consecutive 1 's. We 
choose an integer q > 5/e, and, for any p with 0 < p < q(log3/log2), we 
denote by W4 the set of all integers m for which 3m = Ze,2' with ei = 1 
for pm/q < i < (p + 2)m/q. It is clear that each integer m for which 3m 
contains a block of em consecutive 1 's belongs to at least one set X ; it is 
thus sufficient to prove the finiteness of Yp for each given p. 

For m in 14, we have 

3m = E ei2'? + E 2+ E ei2 
i<(pm/q) pm/q<i<(p+2)m/q (p+2)m/q<i 

so that there exists Mm such that 

1 2[(P+2)mlq]MM - 3m 1 < 2 [pmlq]+ I 

(and for obvious arithmetical reasons, the left-hand side is different from 0). If 
we let 

p + 2 log2 and = P log2 
q log 3 q log 3' 

we see that Ridout's result can be applied, at least for m sufficiently large, and 
so the set I is finite. C1 

We should finally add that numerical evidence, as well as heuristics, suggest 
that the size of the longest block of digits 1 in the binary expansion of 3m 
should be O(log m), with a small implied constant. 
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