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PARALLEL MULTILEVEL PRECONDITIONERS 

JAMES H. BRAMBLE, JOSEPH E. PASCIAK, AND JINCHAO XU 

ABSTRACT. In this paper, we provide techniques for the development and anal- 
ysis of parallel multilevel preconditioners for the discrete systems which arise in 
numerical approximation of symmetric elliptic boundary value problems. These 
preconditioners are defined as a sum of independent operators on a sequence 
of nested subspaces of the full approximation space. On a parallel computer, 
the evaluation of these operators and hence of the preconditioner on a given 
function can be computed concurrently. 

We shall study this new technique for developing preconditioners first in 
an abstract setting, next by considering applications to second-order elliptic 
problems, and finally by providing numerically computed condition numbers 
for the resulting preconditioned systems. The abstract theory gives estimates 
on the condition number in terms of three assumptions. These assumptions 
can be verified for quasi-uniform as well as refined meshes in any number of 
dimensions. Numerical results for the condition number of the preconditioned 
systems are provided for the new algorithms and compared with other well- 
known multilevel approaches. 

1. INTRODUCTION 

We shall provide some new techniques for the development and analysis 
of preconditioners for the discrete systems which arise in approximation to 
the solutions of elliptic boundary value problems. It has been demonstrated 
that preconditioned iteration techniques often lead to the most computationally 
effective algorithms for the solution of the large algebraic systems corresponding 
to boundary value problems in two- and three-dimensional Euclidean space 
(cf. [3] and the included references). The use of preconditioned iteration will 
become even more important on computers with parallel architecture. 

This paper provides an approach for developing completely parallel multilevel 
preconditioners. In order to illustrate the resulting algorithms, we shall describe 
the simplest application of the technique to a model elliptic problem. Let Q 
be a polygonal domain in R2 and consider the problem of approximating the 
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solution u of 

Lu= f inQ, 
u=O onaQ, 

where 
2 a a_u 

Lu= E 5 i ijXjau. 
i,j=1 

We assume that the matrix {aij (x) } is symmetric and uniformly positive defi- 
nite and a(x) > O in Q. 

We first define a sequence of multilevel finite element spaces in the usual 
way. Since Q is polygonal, we can define a 'coarse' triangulation 'r = UI zl, 

where T represents an individual triangle and r denotes the triangulation. 
Successively finer triangulations {Tk, k = 2, ... , J} are defined by breaking 
each triangle of a coarser triangulation into four triangles by connecting the 
midpoints of the edges. The subspace Ak is defined to be the continuous 
functions defined on Q which are piecewise linear with respect to Tk and 
vanish on a 0Q. We shall be interested in developing a preconditioner for the 
solution of the Galerkin equations on the Jth subspace, i.e., U E -e satisfying 

(1.2) A(U, 0) = (f, 0) for all 0 E A9. 

Here A(., *) denotes the generalized Dirichlet integral defined by 

(1.3) A(u, v) 
fa. Et 

| 9i dx a In 

and (,*) denotes the L2 inner product on Q. 
Let {fok} denote the usual nodal basis for the subspace Ak i.e., the Ith 

basis function is one on the Ith node of the kth triangulation and vanishes on 
all others. The preconditioner ' is defined by 

J 
(1.4) RV = (E v, q')0k 

k=1 I 

The above preconditioner is simply a double sum, the terms of which can be 
computed concurrently. This results in an inherently parallel algorithm. 

As is well-known, the rate of convergence of an iterative method can be 
estimated in terms of the condition number of the preconditioned system. We 
provide a theory for the estimation of the condition number for this type of 
multilevel preconditioner in terms of a number of a priori assumptions. In 
the above example, this theory can be used to show that the relevant condition 
number is at worst O(J 2). Moreover, these results hold for problems in two, 
three, and higher dimensions as well as problems with only locally quasi-uniform 
mesh approximation. 
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We note that many alternative preconditioning techniques have been pro- 
posed for such discrete systems. For example, domain decomposition precondi- 
tioners have been developed ([5], [6], [7], [8], [13], and the included references). 
These domain decomposition preconditioners are inherently parallel, however 
become somewhat complex in three-dimensional applications. Alternatively, 
multigrid [4], [9], [14], [17] and hierarchical multigrid [2], [20] techniques give 
rise to different multilevel preconditioners. The standard multigrid algorithms 
do not allow for completely parallel computations, since the computations on a 
given level use results from the previous levels. Theoretical results for the usual 
multigrid algorithms are available, in general, for problems in any number of 
spatial dimensions but only for quasi-uniform mesh approximation. Good re- 
sults hold for the hierarchical basis method in two dimensions with refined 
meshes but degenerate when applied to three-dimensional problems. Finally, 
preconditioners based on approximate LU factorization are often proposed; 
however, a comprehensive theory is yet to be developed [11], [12], [18]. 

The outline of the remainder of the paper is as follows. A general abstract 
theory for the development and analysis of parallel multilevel preconditioners is 
given in ?2. In ?3, this theory is applied to second-order elliptic boundary value 
problems, and the serial and parallel complexity of the resulting algorithms is 
discussed. We apply the abstract theory to a second-order problem with a locally 
refined mesh in ?4. Finally, the results of numerical experiments illustrating the 
theory of the earlier sections are given in ? 5. 

2. GENERAL THEORY 

In this section, we develop a general theory for the construction of parallel 
multilevel preconditioners. This theory is presented in an abstract setting to 
most clearly illustrate the relevant analytic techniques and assumptions. The 
development of this class of preconditioners is based on a certain orthogonal 
decomposition of the approximation space. The parallel multilevel precondi- 
tioners are then abstractly defined in terms of this decomposition by the replace- 
ment of orthogonal projections by more computationally efficient operators. 
Applications to second-order elliptic boundary value problems are given in ??3 
and 4. 

We start with the basic abstract framework. We assume that we are given a 
nested sequence of finite-dimensional spaces, 

(2.1) c C J>2. 

The space Xr and hence all of its subspaces are equipped with two inner prod- 
ucts (., *) and A(., *). The first part of this section will consider properties 
of a certain orthogonal decomposition of Xr with respect to the inner product 
(., *) and the sequence of spaces (2.1). We shall investigate the spectral prop- 
erties of these spaces with respect to the form A(., *) since, ultimately, we are 
interested in computing the solution to the Galerkin equations: Given f E Xr, 
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find u E X4 satisfying 

(2.2) A(u, v) =(f,v) for all v E,X. 

We shall use the following notation in the development and analysis. For 
each k = 1, ... , J, we introduce the following operators: 

(1) The projection Pk :X ) 1k is defined for u e A by 

A(Pku, v) = A(u, v) for all v elAk. 

(2) The projection Qk: A' - Alk is defined for u E X by 

(Qku, v) = (u, v) for all v E Ak. 

(3) The operator Ak : Ak is defined for U eZk by 

(AkU, V) = A(u, v) for all v E.1k. 

We shall also denote A = Ai and define 

(&k =+ fO IX (Qk Qk-OV I V/ E } '1 

where Qo = 0. We shall study the spectral properties of A with respect to the 
decomposition 

(2.3) X 1 + + 6J 
It follows from the above definitions that 

( 2.4) QkA=AkPk, 
QkQl =QlQk=Ql o lk 

From the second equation of (2.4), it follows that 

(Qk - Qk-1)(Ql - Q1-1) = 0 

if k # 1, and hence the decomposition (2.3) is orthogonal, i.e., (u, v) = 0 
whenever u E 61, v E &k with 1 $ k . 

We consider first the operator 
J 

(2.5) B = Zk' (Qk -Qk-1)' 
k=1 

where Ak denotes the spectral radius of Ak. Clearly, B is symmetric and 
positive definite, and 

(2.6) A(BAv, v) = A-' -|Q Qk- _)AVI 
k= 1 

2 where 11.11 = (-, *). Note that B is block diagonal with respect to the decom- 
position (2.3) and each diagonal block is a multiple of the identity matrix. 

The operator B may be thought of as an "approximate inverse" for A. Thus, 
we shall be interested in estimating the condition number K(BA) of BA. We 
note that K(BA) < cl /co for any positive constants co, c1 satisfying 

(2.7) cOA(v, v) < A(BAv, v) < c,A(v, v) for all v E A'. 
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Remark 2.1. The form of the operator B can be motivated by the spectral 
decomposition of the operator A. Indeed, for a special example, namely, -k 

the space spanned by the eigenvectors corresponding to the smallest k distinct 
eigenvalues of A, the operator B defined by (2.5) is in fact equal to A-' . 

In general, we can see that 

(2.8) A(BAv, v) < JA(v, v) for all v E '. 

Indeed, by (2.4), (2.6) and the definition of Ak' 

J J 

A(BAv, v) < Z AkI ||QkAv| < EZA(Pkv, PkV). 
k=1 k=1 

Inequality (2.8) follows from the fact that Pk is a bounded operator with op- 
erator norm one in the norm induced by the A(., ) inner product. 

The lower estimate of (2.7) will require some hypotheses concerning the 
spaces 9k . We first consider the following assumptions on the operators Qk: 

For k = 1, ..., J, there exists a constant Cl > 0 such that 

2 - 
(A. 1) (I'- Qk-I)V| < ClAk A (v , v) for all v EeX. 

We can now prove the following theorem. 

Theorem 1. Assume that (A. 1) holds. Then 

(2.9) Cl J A(v, v) < A(BAv, v) < JA(v, v) for all v E X. 

Proof. By (2.8), we need only prove the first inequality of (2.9). We note that 

A(v, v) = ZA((Qk - Qkl)V, V) 
k=1 

J 

= -I Qk-1)V, (Qk - Qk-I)Av). 
k=1 

By the Schwarz inequality and (A. 1) , it follows that 

J 

A(v, v) < C:/'2 ZA(v, V) 1/2 -1/2 )Av A(v, v) ? ~~~k (Qk - Qk I)A 
k=1 

Applying the Schwarz inequality to the sum gives 

A(v, v)l/2 < c'/2J"/2A(BAv v)l /2 

which is the lower inequality of (2.9). 

Corollary 1. For any real s, 

(2.10) B = Z,kS(Qk -Qk-)- 
k=1 
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Moreover, for any s E [0, 1], 

(2.11) JS (Asvv)<(B svv)<(CIJ)s(Asv,v) forallvelt. 

Proof. The orthogonality of the decomposition (2.3) immediately implies (2.10). 
Clearly, Bs and As are Hilbert scales. By interpolation, it suffices to verify 
(2.1 1) for s = 0 and s = 1 . The case s = 0 is trivial and s = 1 is given by 
Theorem 1. 

We have included Corollary 1 for the purpose of future applications which 
will not be described in this paper. In particular, it will be used for the develop- 
ment of preconditioners for certain boundary operators which arise in domain 
decomposition techniques for second-order boundary value problems [10]. 

In the next corollary, we consider the case of the sum of two operators. Let 
A(-,*) be another symmetric positive definite form and let A, {Ak} and {Ak } 
be defined analogously in terms of A(,*). Consider the operator B: ' X-+A 
defined by 

J 
= E(Ak + k) (Qk Qk-1)^ 

k=1 

Theorem 1 immediately implies the following corollary. 

Corollary 2. Assume that (A. 1) holds for both A and A. Then, 

J .((A+A)v,v)<(B v,v)<C1J((A+A)v,v) forallvEAX. 
Proof. A change of variable shows that (2.9) is equivalent to 

J I(Av,v)?< (B 1v,v)<CJ(Av,v) forallvEeX. 

Corollary 2 follows adding this and the analogous inequality involving A. 

The most natural application of the above corollary is to the discrete systems 
which arise in parabolic time-stepping algorithms. At each time level, a function 

e X satisfying 
(I+TA)Un =F , 

with known Fn e A' must be computed. Here T is a positive number which 
is related to the time step size. We shall not consider further application of 
Corollary 2 in this paper. 

We next apply the above results to analyze parallel multilevel preconditioners 
for A. An operator ~F: XA' X- A' is a good preconditioner for A if it satisfies: 

(1) The action of S7 on vectors of A' is economical to compute. 
(2) The condition number K(iWA) of the preconditioned system is not too 

large. 

Item (1) above guarantees that the cost per iteration in a preconditioned scheme 
using F for solving (2.2) will not be unreasonable. Item (2) guarantees that the 
number of iterations in a preconditioned scheme will not be too large. Note that 
by Theorem 1, B satisfies (2). W may in fact satisfy (1) in many applications 
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but generally it is desirable to avoid evaluating the action of Qk. Hence we 
shall develop more computationally effective algorithms by modifying (2.5). 

To get a computationally effective preconditioner, we write (2.5) in the form 
J-1 

B = E k -2kk+l)Qk +?'I. 
k=1 

Notice that if {' k}ILI satisfies the growth condition Ak+1 > aAk for a > 1, 
then the operator 

J 

(2.12) B = AE)kQk 
k=1 

satisfies 
(1l-& a )(Bu, u) < (Bu, u) ? (Bu, u) for all u E X- 

We consider a slightly more general operator defined by replacing A I in (2.12) 
with a symmetric positive definite operator Rk k X-*k , i.e., 

J 

(2.13) ?W =ERkQk. 
k=1l 

Clearly, W is symmetric and positive definite on X#. The cost of evaluating 
the action of the preconditioner W on a vector in X' will be discussed in later 
sections but will obviously depend on an appropriate choice of Rk . 

For our subsequent analysis, we shall need to make the following assumption 
concerning the operator Rk. We assume that 

(A.2) u2 < (Rku, u) < C3(Ak u,u) for all u e 4k X 
k 

where C2 and C3 are positive constants not depending on J. Clearly, the 
choice Rk = Ak II corresponding to (2.12) satisfies (A.2). 

The preconditioner (2.13) can be thought of as a parallel version of a V-cycle 
multigrid algorithm. The operator Rk plays the role of a smoothing procedure. 
The major difference between (2.13) and the V-cycle multigrid scheme is that the 
smoothing on every level of (2.13) is applied to the original fine grid residual. In 
contrast, the multigrid V-cycle applies the smoothing to the residual computed 
using the corrections from the previously visited grid. Obviously, the different 
terms in (2.13) can be computed in parallel while, in contrast, computations on 
a given grid level in a standard multigrid algorithm must wait for the results 
from previous levels. The connection between (2.13) and the multigrid V-cycle 
will be more fully discussed in ? 3. However, it is not surprising that assumptions 
which are equivalent to (A.2) have been made in the analysis of the usual serial 
multigrid algorithms [4], [9], [15], [16]. 

Remark 2.2. A particularly interesting choice of Rk can be motivated as fol- 
lows. As noted above, Rk = k 1I satisfies (A.2). Let {y,k} be an orthonormal 
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basis for ,Z . Then 
k ~ ~ ~ ~ ~ ) 

(2.14) Ak IU = Ak I(U, 1k)k for all u e Ak 

In practice, an orthonormal basis for Xk is seldom available. However, for fi- 
nite element applications with quasi-uniform grids, the right-hand side of (2.14) 
with normalized nodal basis functions {f 

- } defines an Rk satisfying (A.2) (see 
?3). Moreover, we note that for u E X', 

RkQkZU =k )k 

and hence Rk Qk is computable without the solution of Gram matrix systems. 
This will be discussed in more detail in ?3. 

With q defined in (2.13), we have the following corollary. 

Corollary 3. Under assumptions (A. 1) and (A.2), 

(2.15) C7 IC2JY'A(v, v) < A(qAv, v) < C3JA(v,v) forallvE/X. 

Proof. By (A.2), for v E X, 

J J 

(2.16) A(qAv, v) = Z(RkAkPkV, AkPkV) < C3ZA(PkvI PkV), 
k=1 k=1 

from which the second inequality of (2.15) follows. For the first inequality, by 
Theorem 1 and (A.2), 

cl-IJ- IA(v, v) < A(BAv, v) 
J 

< Z'Ak l QkAv|| < C21A(Av, v). 
k=1 

This completes the proof of the corollary. 

We next provide an alternative hypothesis for a lower estimate in (2.15). 
This is the so-called "regularity and approximation" assumption often used in 
multigrid analysis (cf. [4], [14], [17]). We assume that for a fixed a E (0, 1], 
there exists a positive constant C4 not depending on k = 1, ... , J satisfying 

(A.3) A((I - Pk_l)v, v) < (C4k1 IAkV12 )'A(v, v)' for all v E k 

where PO = 0. In finite element applications, the above assumption is usually 
proved by using elliptic regularity for the continuous problem and the approxi- 
mation properties of the space 0 1 [1], [4]. In such applications, assumption 
(A.3) may be stronger than (A.1), e.g., when a = 1, (A.3) implies (A.1). We 
can now prove the following theorem. 
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Theorem 2. Assume that (A.2) and (A.3) hold. Then 

(2.17) C2C4J / A(v, v) < A(qAv, v) 
(2.17) C2 C4Jl/AV )?(A,) 

<C3JA(v,v) forallve/. 

Proof. We need only prove the first inequality in (2.17). Writing 
J 

V = E(Pk - Pkl)V, 
k=1 

and using the properties of Pk and (A.3), gives 

A(v, v) = ZA((I - Pk_)PkV I PkV) 

k=1 

? C4 ({k |AkPkVI2)aA(v, v) 
k=1 

By (A.2), 

A(v, v) ? (C2 C4)EZ(RkAkPkv , AkPkV)a(AV, 1-) 
k=1 

By Holder's inequality, for a sequence of nonnegative numbers {bk }, we clearly 
have 

J J \'a 

Eb < Jl -( bk) 
k=1 k=1 

from which it follows that 

(2.18) A(v, v)a < (C2 C4) J -(E(RkAkPkV , AkPkV)) 

< (C2 CX)J'AA,vR 

The first inequality of (2.17) follows from (2.18) in an obvious manner. This 
completes the proof of Theorem 2. 

Remark 2.3. Included in (A. 1) and (A.3) is the implicit assumption that C1 and 
C4 are greater than or equal to K(A1). In finite element applications, K(A1) 
will not be large if the grid size of the coarsest grid is of unit size. However, 
if a good preconditioner R1 is available for any finer grid, i.e., Ri satisfies in 
addition 

(2.19) (R Iu, u) < C5(A u, u), 

then it suffices to use 

= >ZRkQk- 
k=j 
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In such applications, (A. 1) or (A.3) need only be satisfied for k > j. Note that 
R= A 1 will be effective provided that the jth grid size is relatively small. 
Many alternative choices are possible. 

3. THE QUASI-UNIFORM APPLICATION 

In this section, we shall illustrate the application of the abstract theory and 
algorithms discussed in the previous section to a second-order elliptic boundary 
value problem approximated using finite element functions on a quasi-uniform 
mesh. We first show that the hypotheses of the previous section are satisfied. 
We also consider the computational complexity of the resulting algorithm in 
both serial and parallel computing applications. For brevity, we consider only 
the most basic finite element applications. Many other applications are possible, 
including examples of elliptic problems in higher dimensions. 

Let Xl c . c ji _= X be the finite element spaces defined in the intro- 
duction subsequent to (1.1), A(-, *) be the generalized Dirichlet form defined 
in (1.3) and (-, *) be the L2 inner product on Q. 

We will apply the results of ?2 to Problem (1.2) with the above sequence of 
spaces. Let hk denote the size of the kth triangulation. It easily follows that 
there are constants co and cl , not depending on k and satisfying 

(3.1) cOh2 < Ak clh7-2 

Inequality (A. 1) with k > 2 is well-known. For k = 1, we have that 

11V112 < A 'A(v, v) for all v EAX, 

where A is the smallest eigenvalue of A and is obviously bounded away from 
zero (independently of J). We shall suppose in this application that 4 is 
such that h, is proportional to the diameter of Q, so that Cl > I1/A, which 
is not large. 

We next consider the operator Rk motivated by Remark 2.2, i.e., 

(3.2) Rkv = E(v, <)/< for v E. ' 

where the sum is taken over all nodes of Tk. As observed in Remark 2.2, the 
action of Rk Qk can be computed without explicitly computing Qk. Moreover, 
using Rk defined by (3.2) in (2.13) leads to the preconditioner of (1.4). 

We now show that (A.2) holds for this Rk. Any u E -k may be represented 
by 

(3.3) U a/ 

where a, is the value of u at the Ith node of Tk. Let a' denote the corre- 
sponding vector with entries {a,}, Gk denote the matrix with entries (Gk)im 

(qI , Om) and (-,.) denote the Euclidean inner product. Note that 

(3.4) (Rku, u) = Z(u, qk) = KGka, Gk). 
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By the quasi-uniformity of rk, h2 2jo a is a norm which is equivalent to 

1jul12 = (Gk&, a) . This equivalence is uniform with respect to k. It immedi- 
ately follows that (Gka, Gk&a is uniformly equivalent to h (a, a) . Thus, by 
(3.1), 

jjujj2 jjujj2foalE4 
(3.5) c (Rku, u) < cl for all u e 1k , 

k k 

with co and cl independent of k. Assumption (A.2) follows immediately 
from the definition of ik . 

For this problem, (A.3) will always be satisfied for some a E (0, 1] (cf. for 
example, [1], [4]). The size of a depends on the elliptic regularity of Prob- 
lem (1.1). Thus, in the case when Q is a convex polygonal domain and the 
coefficients defining L are smooth, a = 1 and we conclude from Theorem 2 
that 

K(5A) <cJ. 

In the case of a so-called crack problem (with smooth coefficients), the largest 
interior angle is 2w and the regularity of (1.1) is such that (A.3) does not hold 
for a > 1/2. Hence Corollary 3 yields the better estimate and shows that 

K (,WA) <Cj2. 

Remark 3.1. It is possible to apply the theory of ?2 to elliptic problems in three 
or more dimensions. Many examples are possible, and we consider the simplest. 
In three dimensions, we let the coarse mesh be a union of equally sized cubes. 
Finer meshes are obtained by breaking each cube of a coarser mesh into eight 
smaller cubes in the obvious way. The subspaces {k } are defined to be the 
functions on Q which are continuous and piecewise trilinear with respect to 
the kth mesh and vanish on OQ. The nodes of these spaces are the vertices of 
the cubes defining the mesh. We may take 

J 
(3.6) fiu = hj1 Z(u, u, O 

k=i I 

where {X1 } denotes the set of nodal basis functions. We emphasize here again 
that all the terms in (3.6) are independent and hence may be computed concur- 
rently. 

Remark 3.2. Assumption (A. 1) is often easier to verify than (A.3). For example, 
we consider the two-dimensional problem (1.1) when the coefficients of the 
operator L are discontinuous. If the jumps in the coefficients are only along the 
lines of the coarse mesh, then it is possible to prove that (A. 1) holds with Cl < 
CJ, where the constant C depends on the local variation of the coefficients 
of L on the coarse grid triangles but not on the magnitude of the jumps across 
triangles [ 1 9]. This leads to a conditioning result of the form 

K(,7A) < CJ3. 
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The dependence of constant C4 (in (A.3)) on the size of the jumps is a much 
more difficult question, since it requires the knowledge of the dependence of 
the elliptic regularity constants on such jumps. 

In the remainder of this section, we consider computational issues involved 
in implementing the above algorithm in serial and parallel computing architec- 
tures. However, before proceeding, we make the following observation. Even 
though we have defined X as an operator on X, in a preconditioned iterative 
scheme we are only required to compute Wv given the data Wj = (v, I01). 
This is because when v = A10, we always compute {(A 0, 0q1 ) = A(O, 01)} 
and hence avoid the solution of the Gram matrix problem required for the 
computation of AJO. 

We first consider the serial version of the algorithm. Let v E X be given 
and define Ikj = (V, q$$9. Let Wk denote the vector with entries (Wk)1 = K. 
We need to compute the action of l9Jv given WJ . We define Wk_ from Wk 
in a recursive manner. Note that each basis function in -'k- can be written 
as a local linear combination of basis functions for Ak . Thus, each value of 
Wk -I can be written as a local linear combination of values of Wk. Moreover, 
the work involved in computing Wk_, from Wk is proportional to the number 
of unknowns in k-I . Consequently, the work involved in computing the 
vectors { Wk }, k = 1, ... , J, is bounded by a constant times the number of 
unknowns in X4'. Once the vectors { Wk } are known, we are left to compute 
the representation of Wv in the basis for X4'. To do this, we compute the 
representation of 

m 
V 1 #:(V, 

# k?) 

k=I I 

in the basis for Im' for m = 1,... J. The result at m = J is of course the 
basis representation for ?Wv. For m = 1 , the representation is already given 
by WI. The representation of AjV for m > 1 is calculated from that of 
-m__v by interpolating the -rm_ v results (i.e., expanding them in terms of 
the mth basis) and adding the mth level contribution from Wm . The work of 
calculating the representation of Gmv, given that for Wm-Iv, is on the order 
of the number of unknowns in 'nM ' and thus the total work for this algorithm 
is bounded by a constant times the number of unknowns on the finest grid. 

Remark 3.3. The serial implementation of the operator W is closely related 
to the multigrid V-cycle algorithm. The step of computing WkY 1 from Wk 
in X is nothing more than the step which "transfers the residuals" from grid 
level k to k - 1 in a multigrid V-cycle algorithm. However, the multigrid 
algorithm requires extra computation since it must smooth and then compute 
new residuals on the kth level before transferring. The second step in the serial 
algorithm for -9 is also duplicated in the "coarser to finer interpolation" step 
in the multigrid V-cycle algorithm. The symmetric multigrid V-cycle requires 
extra computation since it requires additional smoothing on each grid level. 
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Thus the serial W algorithm, in terms of complexity, is similar to a multigrid 
V-cycle algorithm without smoothing. 

We next consider parallel implementation of the preconditioner X~. The 
execution of (1.4) can obviously be made parallel in many ways by breaking up 
the terms into various numbers of parallel tasks. The optimal splitting of the 
sum is clearly dependent on characteristics of the individual parallel computer, 
for example, memory management considerations, task initialization overhead, 
the number of parallel processors, etc. We note, however, the simplicity of the 
form of (1.4) allows for almost complete freedom for parallel splitting. 

It is of theoretical interest to consider the algorithm on a shared memory ma- 
chine with an unlimited number of processors. As above, the implementation 
Xv involves two steps, the calculation of the coefficients Wl and the compu- 
tation of the representation of _9v in the basis for X4'. Each coefficient can 
be computed independently and involves a linear combination (not necessarily 
local) of the values of WJ . With enough processors, a linear combination of 
m numbers can be computed in log2 m time. Hence the coefficient vectors 
{ Wk } can be computed in log2 N time where N is the dimension of X4. Each 
coefficient of 9v involves a linear combination of Mn J contributions from 
the J grid levels (here, Mn is the maximum number of neighbors for any given 
level). Thus, computation of Gv can be done in time bounded by CJ. 

4. A LOCAL REFINEMENT APPLICATION 

In this section, we shall consider the application of the parallel multilevel al- 
gorithm to the finite element equations corresponding to a problem with mesh 
refinement. Such mesh refinements are necessary for accurate modeling of prob- 
lems with various types of singular behavior. For simplicity, we shall make no 
attempt at generality. Instead, we shall illustrate the technique by considering 
an example from which many obvious generalizations are possible. For this 
example, the domain Q will be the unit square and we shall approximate the 
solution to (1.1). The form A(., *) and the inner product (., *) will be as in 
?3. The sequence of grids which we shall consider will be progressively more 
refined as we approach the corner (1,1). Such a mesh would be effective if, for 
example, the function f in (1. 1) behaved like a 6-function distribution at the 
point (1,1). 

To define the mesh, we first start with a sequence of subspaces Xl, ..., 

defined using uniform grids of size hk 2- k k = 1, ..., j, as described in 
the quasi-uniform case (see ? 1). The (j + 1)st triangulation is then defined by 
refining only those triangles in the upper quarter, [ 1 /2, 1 ] x [ 1/2, 1 ]. Similarly, 
the (j + 2)nd triangulation is defined by refining only those triangles in the 
(j + I)st grid which are in the region [3/4, 1] x [3/4, 1], etc. (see Figure 4.1). 
The spaces 9k for k = j+ 1, ... , J are defined to be the continuous functions 
on Q which are piecewise linear with respect to the kth grid. Note that this 
introduces slave nodes into the computation, i.e., the vertices of the triangles 
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on the boundary of the kth refinement region which are not nodes for the 
(k - 1) st subspace (see Figure 4. 1). These nodes are slaves, since the values of 
functions on these nodes are determined by the values of neighboring nodes and 
the continuity condition on the subspace. Thus, they do not represent degrees 
of freedom in the subspace. 

FIGURE 4.1 
A mesh with two refinement levels 

We shall first show that (A. 1) is satisfied. The argument in ?3 gives that (A. 1) 
holds for k = 1, . , j + 1 since this is just the quasi-uniform case. In order 
to complete the proof of (A. 1), we shall introduce some additional notation. 

k 
that hk corresponds to the size of the finest triangle in the mesh defining - o 

In addition, let nk = (1 - 2]- 1) x (1 - 2j-k, 1) Notice that the mesh size 
of the triangulation defining ~,restricted to nk is hkanthfucis 
in e, with support in n/nk for / > k are in ek Let ek be the space 
of piecewise linear functions (which vanish on an) defined from the regular 
uniform triangulation of Q of size hk 'Note that both ' and ek have the 
same mesh restricted to nk and ek~ i. Finally, Qkwill denote the L2 
projection onto lk 

We prove (A. 1) for k >1j + 1 . Let v -e 5' 
/ = k - 1 , and consider the 

function w -e , defined by 

{ Q1V at the nodes of e, in the interior of n,, 
v at the remaining nodes of A. 
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By the definitions of Q1 and w, and the triangle inequality, 

| - Qdv 11 < IIV - W 11 = IIV - W II 
(4.1) ? (I-Q1)v + Q1v-w 

where *Q denotes the L2 norm on Q,. Clearly, 

||(- Q,)v| < Ch,A1 (V, V) < C~_A- 2A (V, V) 
and hence it suffices to estimate the second term on the right-hand side of (4.1) 
by the first. But by the definition of w, 

Q1v - w < Chi z(Q v (X;) -V (XI)) 

where the sum is taken over the nodes x on aQI . Clearly, 

h2 E(QV(Xi) - V(XI))2 < C (I- Q 2)v 2 h 
II 

This proves (A. 1). 
We next define a sequence of operators {Rk} satisfying (A.2). For k < j, 

Rk is given by (3.2). Let {xk} denote the nodes of the kth grid, and let {qk} 

denote the corresponding nodal basis functions. For each node xk with k > j 
we define 

h k = k ifx EQk, kl 
h if x IEQm/Qm+, j< m <k. 

Note that if xk E 0k/ k+i, then Xk is a node for each finer subspace and gets 
assigned the same value hk . We then define 

(4.2) Rku = h2 E hkj (U, q$$)0q 

We will show that 

lIuII2 hiull 2 
(4.3) Co ? < (Rku, U) < cl A for all u c- k 

k k 

holds with co and cl not depending on k . We proceed as in ?3. For u ck 
we define a' by (3.3) and (Gk)lm = I, qm). Let Dk denote the diagonal 
matrix with diagonal entries {hkl}. As in ?3, El hklaJI = KDk& ) is a norm 

which is uniformly equivalent to jlull2 = KGk&, o) . It immediately follows that 
there are constants co and cl , not depending on k, satisfying 

Co (Dka, ) < (D) G a, Gk) ?<c1 KDkD a) 

Inequality (4.3) then follows from 

(Dk Gka, Ga) h E 2(U, Xk) = h 2(R u, U) 

and (3.1). Hence (A.2) holds for Rk given by (4.2). 
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We can apply Corollary 3 to show that K(?IVA) < CJ 2, where q is defined 
by (2.13) with Rk and Ak as above. For this application, we have not been 
able to prove the regularity and approximation assumption (A.3). 

For the purpose of implementation, it is more efficient to reorder the terms 
defining iW. For k = j, ..., J let Xk be the nodes of 9k in fk and for 

k < J let AVkl be the nodes of Zk inQk lQk+I . For a function u E X, it is 
not difficult to see by induction on J that 

j-1 

,Wu =ERkQku + E (u, >J)J 
k=il xi EAJ 

(4.4) F 

+ E E ~Yk ( k-k+ E (U E O'k) 
k 
-jX 

k Xk Jk|- 

J 2 J 2 
where h7 Zm= hm Note that the Rk terms in the first sum of (4.4) 
involves the same sums which appear in the uniform case of ?3. In addition, 
the calculation corresponding to the kth mesh in (4.4) for k = j, ..., J only 
involves nodal basis functions on ?k . 

Finally, we define a simpler preconditioner g by replacing Yk by one in 

(4.4), i.e., 

JI J 
(4.5) 'XU = E (U, Ok)k + E E (U, k)Ok 

k=1 I k=j+1 XI ElVk k~~~~~~1 /~~~~~~ 

Note that in (4.5), the kth refinement grid only adds a sum over the nodes in 

Qk. We note that for u E X, by (4.4), 

i-1 

(iIu, U) = (u, q 92 + E (U, XJ) 
k=1 I xl E11 

J-1 

+ E J 
y(U, 1)2 + E (U, 01)2, 

k=j' xI.>a x.Gl EJ1A 

with an analogous expression for iW. Clearly, 1 < yj < 4/3, from which it 
follows that 

~~~~~4^ 
(a7u, tl) < (Wu, U) < - (,Wu , U) for all u E- X. 

From the discussion in ?3, it is clear that the first sum in (4.5) is a precon- 
ditioner for the problem on X//), i.e., the finest uniform grid. As we shall see, 
this sum can also be replaced by any uniform preconditioner for A without 
adversely affecting the asymptotic behavior of the overall condition number. 
Indeed, let the operator Rj be a preconditioner for A. (satisfying (2.19) and 
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the second inequality of (A.2)), and define for u E X 

(4.6) Bu=R1Q1u+ E E(u,q<)5. 
k=j+? xi Ef 

Note that by Remark 2.3, the operator 

J 
Bu = YZRkQkU 

k=j 

satisfies K(BA) < C(J - j)2. We will show that B is uniformly equivalent to 
B. Reordering the terms as in (4.4), we have 

Bu = RjQju + E (yJ-l )(u, $ )q 

J-1 

(4.7) + E yEY(u, 0k$)p + E (u, 0) 
k =j +I _k 6k 

k 
k kv 

k 
V& 

+ Ej (U, q$J)q$kE . 
Xl EA1 

It clearly follows from (4.7) and 1 < yj < 4/3 that the operator B is uniformly 
equivalent to the operator 

Bu+ E (u,q<)j. 
x 

But, by (3.5) and (2.19), 
Z 

(U, 0/12 -1C(A 
- 

u, Qju) 

< C(RjQju, Qju) < C(Bu, u), 

from which the equivalence of B and B follows. Thus, K(BA) < C(J - j) 

Remark 4.1. Clearly, we could generalize this example to include much more 
general refinements for problems in R2 as well as higher-dimensional space. 
Note that the refinement only changes the preconditioner W (resp. B) by 
adding additional terms in (4.5) (resp. (4.6)) involving nodes from the refine- 
ment region. Thus, this approach is well suited to dynamic adaptive refine- 
ment techniques. New refinement regions add terms to the sum, whereas the 
"de-refinement" of existing regions only takes away terms from the sum. The 
operator B is even more useful in this context, since it allows the easy inclusion 
of this refinement preconditioner into existing large-scale uniform grid codes. 
Preconditioners for the uniform grid already available in the existing code can 
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be used, supplemented with additional routines implementing the terms due to 
the refinement. 

5. NUMERICAL RESULTS 

In this section, we provide the results of numerical examples illustrating the 
theory developed in the earlier sections. To demonstrate the performance of the 
proposed algorithms, we shall provide numerical results for a two-dimensional 
problem with full elliptic regularity and one with less than full elliptic reg- 
ularity, a two-dimensional example with a geometric mesh refinement and a 
three-dimensional example. In all of the reported results, the experimentally 
observed behavior of the condition number of the preconditioned system was 
in agreement with the theory presented earlier. In the first example, we also 
compare the results of the new method with those obtained using the hierarchi- 
cal preconditioning method [20] and a classical V-cycle multigrid preconditioner 
[4]. 

For our first example, we consider Problem (1.1) when L = -A -02/0x2- 

2/9x2 and LI is the unit square. This example satisfies the regularity and 
approximation assumption (A.3) for a = 1 as well as (A. 1). 

We will use a finite element discretization of (1.1) and develop a sequence 
of grids in a standard way. To define the coarsest grid, we start by breaking 
the square into four smaller squares of side length 1/2 and then dividing each 
smaller square into two triangles by connecting the lower left-hand corner with 
the upper right-hand corner. Subsequently, finer grids are developed as in the 
introduction, i.e., by dividing each triangle into the four triangles formed by the 
edges of the original triangle and the lines connecting the centers of these edges. 
The space A is defined to be the set of continuous functions on Q which are 
piecewise linear on the ith triangulation and vanish on aQ. 

We shall compare three preconditioners for (1.2). The first preconditioner 
,q is defined by the multilevel algorithm (2.13) with Rk given by (3.2) and fits 
into the framework considered in ?3. For comparison, we also provide results 
for the hierarchical preconditioner BH [20] and a preconditioner BM defined 
by a standard symmetric V-cycle of multigrid [4]. The multigrid algorithm uses 
one sweep of Jacobi smoothing whenever a grid level is visited, and hence results 
in two smoothing steps on each grid for each evaluation of the preconditioner. 
The multigrid algorithm uses ho = 1/4 for the coarsest grid, while both the 
hierarchical and the parallel multilevel algorithms use ho = 1/2. 

Table 5.1 gives the condition numbers K of the preconditioned systems 
BHA, AA, and BMA corresponding, respectively, to the hierarchical pre- 
conditioner, the preconditioner defined by (2.13), and the V-cycle multigrid 
preconditioner. We note that for these examples, a preconditioned conjugate 
gradient algorithm using the new preconditioner would be expected to take twice 
as many iterations as the corresponding algorithm using the V-cycle of multi- 
grid. However, even in a serial implementation, the multigrid algorithm involves 
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TABLE 5.1 
Condition numbers when Q is the square 

hi K(BHA) K(_JJA) K(BMA) 

1/16 19 7.0 2.3 
1/32 31 8.1 2.4 
1/64 43 9.0 2.4 

1/128 58 9.8 2.4 

substantially more computational effort per step. The new method outperforms 
the hierarchical preconditioner. 

This test problem illustrates an example where all three methods work rea- 
sonably well. However, we note that X is preferred over standard multigrid 
when the parallel aspects of the algorithm are important. In addition, X gen- 
eralizes to higher-dimensional problems without convergence rate deterioration 
(see Table 5.5) and hence would be preferred to the hierarchical method in 
three-dimensional computations. 

We next consider the above preconditioners on a problem with less than full 
elliptic regularity. We again consider (1.1) with L given by the Laplacian and 
Q equal to the "slit domain", i.e., Q is the set of points in the interior of 
the unit square excluding the line {(1/2, y) I y c [1/2, 1)}. This example 
does not satisfy the a priori estimates used in the proof of the regularity and 
approximation assumption (A.3) for a > 1/2. However, assumption (A.1) is 
satisfied. 

TABLE 5.2 
Condition numbers when Q is the slit domain 

hi K(BHA) K(f/IA) K(BMA) 

1/16 14.6 7.9 2.6 
1/32 25.17 10.0 2.9 
1/64 38.2 12.6 3.1 

1/128 53.8 14.9 3.4 

Table 5.2 gives the condition numbers K of the preconditioned systems 
BHA A , VA, and BMA corresponding, respectively, to the hierarchical precon- 
ditioner, the preconditioner defined by (2.13), and the V-cycle multigrid pre- 
conditioner. The results are in general agreement with the theoretical estimates 

K(BHA)f<tCesnt(etlohj), 

K(_56A) < C In2( 1lhj ), 

for the respective methods. 
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We next provide numerical results for the refinement example of ?4. We 
once again consider the solution of (1.1) with L the Laplacian and Q the unit 
square. The sequence of spaces /4 c c 1j are as developed in ?4 and 
provide results for the preconditioner X defined by (4.5). As noted in ?4, 
some such refinement would be necessary if, for example, the function f had a 
8-function behavior at the point (1,1). Table 5.3 gives the condition number of 
the preconditioned system GqA as a function of the mesh size of the uniform 
grid hi and the number of refinement levels 1. The size of the finest triangle 

can be computed by dividing the uniform mesh size by 2 . In all of the runs, 
the coarsest grid level corresponded to ho = 1/2. The numerical results seem 
to indicate that an increase in the number of uniform levels has a greater effect 
on the condition number than an increase in the number of refinement levels. 

TABLE 5.3 
Condition numbers for the refinement example 

h. _ I = 2 1 = 3 1 = 4 

1/8 6.3 6.5 6.7 6.9 
1/16 7.7 7.9 8.05 8.1 
1/32 8.8 9.0 9.1 9.2 
1/64 9.6 9.7 9.8 9.9 

We next present results for the refinement operator defined by (4.6). The 
problem and sequence of subspaces are as just described but only the subspaces 

Zk' k ? j, are used. In (4.6), we use a multigrid preconditioner (cf. [4]) 
scaled by 4 to define Rj, the operator on the finest uniform grid. The scaling 
was introduced to balance the size of the two terms in (4.6). Table 5.4 gives the 
condition number of the preconditioned system BA as a function of the mesh 
size of the uniform grid hi and the number of refinement levels 1. 

TABLE 5.4 
Condition numbers for BA using multigrid preconditioning on level j 

h1 I = 2 1 = 3 1 = 4 

1/8 4.3 6.0 6.4 6.6 
1/16 4.7 6.7 7.6 8.1 
1/32 4.9 7.0 8.4 9.2 
1/64 5.0 7.1 8.5 9.6 

As a final example, we illustrate the preconditioning technique on a three- 
dimensional problem. We consider a Galerkin approximation to the Laplace 
equation 

-Au = f in Q, 
u=0 on0Q, 
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where A = 0 /OX2 + 02/Oy2 + 02/9Z2 and Q is the unit cube. We define 
the coarse mesh by dividing Q into eight smaller cubes of size ho = 1/2. 
Successively finer meshes are formed by dividing each cube of a coarser mesh 
into eight smaller cubes. The finite element space A, is defined to be the set 
of continuous functions on Q which are trilinear with respect to the kth mesh 
and vanish on OQ. 

Table 5.5 gives the condition number K of the preconditioned system -,WA 
where X is defined by (3.6). This example satisfies full elliptic regularity, and 
the regularity and approximation assumption (A.3) holds with a = 1. Thus, 
the theory predicts only a logarithmic growth in the condition number, which 
is in agreement with the reported results. Note the finite element spaces are of 
rather large dimension, in fact, the hi = 1/64 example has over a quarter of a 
million unknowns. 

TABLE 5.5 
Condition numbers for the three-dimensional example 

hi | K(-4A) 

1/8 4.1 
1/16 5.2 
1/32 6.0 
1/64 6.6 
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