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OPTIMAL-ORDER NONNESTED MULTIGRID METHODS 
FOR SOLVING FINITE ELEMENT EQUATIONS 

I: ON QUASI-UNIFORM MESHES 

SHANGYOU ZHANG 

ABSTRACT. We prove that the multigrid method works with optimal compu- 
tational order even when the multiple meshes are not nested. When a coarse 
mesh is not a submesh of the finer one, the coarse-level correction usually does 
not have the a(-, -) projection property and does amplify the iterative error 
in some components. Nevertheless, the low-frequency components of the error 
can still be caught by the coarse-level correction. Since the (amplified) high- 
frequency errors will be damped out by the fine-level smoothing efficiently, the 
optimal work order of the standard multigrid method can still be maintained. 
However, unlike the case of nested meshes, a nonnested multigrid method with 
one smoothing does not converge in general, no matter whether it is a V-cycle 
or a W-cycle method. 

It is shown numerically that the convergence rates of nonnested multigrid 
methods are not necessarily worse than those of nested ones. Since nonnested 
multigrid methods accept quite arbitrarily related meshes, we may then combine 
the efficiencies of adaptive refinements and of multigrid algorithms. 

1. INTRODUCTION 

Multigrid methods are very attractive because of their optimal order of com- 
putation. Many papers have been published studying multigrid methods. We 
refer to McCormick [10], Hackbusch et al. [6, 8, and 7] for references. Most 
of them deal with multigrid techniques in conforming finite element methods. 
Some are for nonconforming and mixed finite element methods (for example, 
[12, 16, 17, 13, 1 1, and 3]). In this paper, we generalize the multigrid method 
to cases of nonnested meshes and prove the convergence of the algorithm when 
solving finite element equations which arise from the Galerkin discretizations of 
second-order elliptic boundary value problems defined on polygonal domains. 

In nonnested multigrid methods, a mesh could have quite arbitrary relations 
with its higher-level and lower-level mesh. Therefore, we require that two con- 
secutive meshes be comparable, i.e., each triangle can be covered by finitely 
many triangles of its coarser level and of its finer level (cf. (1.6)), and that 
the number of unknowns of each level grow geometrically at a rate greater than 
2. Under these conditions, we prove that the nonnested multigrid methods 
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are optimal-order algorithms. Our numerical results show that there is almost 
no difference in convergence rates between nonnested multigrid methods and 
nested ones if good coarser (finer) meshes have been used. 

A motivation for the nonnested multigrid method is its application to 3-D 
finite element problems defined on tetrahedral meshes. In 2-D, we can subdi- 
vide a triangle into four congruent subtriangles by linking the midpoints of its 
edges. However we cannot usually subdivide a tetrahedron into eight identical 
subtetrahedra. (There exists only one, of unit size, which can be subdivided 
into eight identical ones; see [20]). For example, the subdivision of a regular 
tetrahedron gives four regular subtetrahedra and four subtetrahedra of another 
type. Degenerated tetrahedra could be generated in the sequence of refined 
meshes if inappropriate refinements are used. One way to resolve this problem 
would be to relax the condition of nested refinement, i.e., to use the nonnested 
multigrid methods. Another way of resolving the problem would be to choose 
some suitable methods to obtain a sequence of nested, quasi-uniform meshes. 
The latter approach was studied by the author in [20], and it was proved there 
that at most six different types of tetrahedra can be generated in the successive 
refinements of any tetrahedron if a special method is used. In this paper, we 
will treat 2-D nonnested multigrid methods only. The 3-D nonnested multigrid 
method will be studied in [15], where a different technique is used to prove 
convergence. 

Besides the interest in 3-D problems, it is worthwhile knowing that the nest- 
edness of meshes is not essential to multigrid methods. Therefore, better (adap- 
tive) fine-level triangulations can be used. The trade-off might be the conver- 
gence rate, but not the optimal computational order of the algorithm. We con- 
fine ourselves to the case of quasi-uniform meshes in this paper and leave the 
case of non-quasi-uniform meshes to [23]. We note that our proof here might 
be used in other cases where the multiple finite element spaces are not naturally 
nested. For example, the author proved the optimal order of computation of the 
multigrid methods when applied to Hsieh-Clough-Tocher (macro), and several 
other C1 finite element equations (cf. [21]). The author learned, after finishing 
this paper, that Bramble, Pasciak, and Xu in [2], too, proved convergence of the 
multigrid method on loosely coupled grids, using their framework. However, 
they considered symmetric multigrid methods, i.e., the number of presmoothing 
and that of postsmoothing are the same. 

This paper is organized as follows. In the rest of ? 1, definitions and descrip- 
tions of nonnested multigrid methods will be given. In ?2, some auxiliary results 
will be proved in preparation of the proofs for the convergence of nonnested 
multigrid methods and for optimal-order work estimates, which will be given 
in ?3. In ?4, we will give some numerical results. 

The model problem to be solved is 

( 1. l ) -dX1 (al Ix1U) - aX2(a20x2U) + bu = f Vx E Qi, 
u=0 Vxe&Q, 
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where a < a1(x), a2(x) < a 0 < b(x) < b, for some positive constants 
a,a ,b ,and 

(1.2) fcE H (Q), a,, a2, E W (Q), b E L (Q) 
for some a E (0, 1]. Here, Q is a bounded polygonal domain. We use standard 
notations for Sobolev spaces and norms (cf. [1]). Finite element approximation 
problems for (1.1) can be stated as follows: Find Uk E Vk such that 

(1.3) a(uk, v) = (f, v) Vv E Vk, k = 1 2, .... 

where a(u ,v)=fQ (aluXv + a2uX v +buv)dx, (f,v)= ffvdx and 

def 
Vk = {V E CO(Q) I v IK is linear VK E 7k} C Ho' (). 

Here, {5k , k = 1, 2, ...} is a family of triangulations on Q. We assume that 
the triangulations {f7} are quasi-uniform: 

(1.4) hK >aOhk, 

(1.5) aK > K ' 

for any KEk , k = 1, 2, ..., where ao is a positive constant. Here, hK, 
aK, and hk denote, respectively, the diameter of K, the smallest angle of K 
and the maximum of all diameters of triangles in k . K is understood to be a 
closed triangle in this paper. We do not assume the nestedness of meshes, i.e., 
we can have -k I Sk. But we assume that ST can be finitely covered by 

k- I and by k+ 

sup{cardinality({K'E -1 IK' n K$0})}</,, k= 2, 3,... 

(1.6) KE Tk '7 IKn$}}/0 =12 
sup { cardinality( {K eE 9k+ I|K' n K 7&0 })}< 8,8, k = i1, 2, ..... 

KE Tk 

and we also assume that 

(1.7) alNk < Nk, aj hk < <2hk, k = 1, 2, ..., 

for some constants al > 2 and a2 > 1, where Nk def dim(Vk) - h-2. For 
nested meshes, f0 = 4 in (1.6), and al , 4, a2 - 2 in (1.7). 

As usual, we define the energy norm by Illulll = a(u,u) Vu e H(Q) 
which is equivalent to the H1 Sobolev norm in HO (Q). Further, in the finite- 
dimensional space (Vk, (., -)), the bilinear form a(-, *) defines a linear, sym- 
metric and positive definite operator Ak: a(v, w) = (v, Akw) VV, W e Vk. 
Then we can define the following discrete norms on Vk: 

(1.8) IIIVIIIs,k = (v, A Vv) Vv E Vk, s E R1. 

We note that iiiViiis,k is, generally speaking, defined only for v E Vk if s $ 
0, 1, while 

ilIVIIl,k = IIIVII I I Olvi1, k = IIVIIL2(Q) Vv E Ho (Q). 



26 SHANGYOU ZHANG 

By Lemma 1 of [1], we have 

CIIVIIHS(Q) < |||VHIIs k < CIIVIIHS(Q) VV C VkI, SC [0, 1]. 

Here and later, C denotes a generic constant. We use Ak to denote the largest 
eigenvalue of Ak . 

As the S are quasi-uniform, we have inverse inequalities (cf. [4]), 

(1.9) H||VWS|5,k < Chkslllvllltk Vv c Vk & Vk for s > t, 

and approximation properties (cf. [14] and the references in [1]): For any 
u c H+l (Q) n H (Q), there exists an Jku c Vk such that 

(1.10) |U JuL2(Q)+hkHuJgjuHH(Q) ?Ch < ChH+I (). 

In particular, Ik u can be taken as the Jku if u is continuous (cf. [14] and the 
proof of Proposition 2.2). Here, Ik is the standard nodal value interpolator: 

(.1) Iku(x) = E: u(nj)Vk i(X) VU E Co(Q) 

where A$k is the set of nodal points corresponding to the triangulation Sk and 

k( i(X) is the nodal basis (hat) function at the node ni of the triangulation 
Sk. We assume the following elliptic regularity for (1.1) (cf. [1],[5]) 

(1.12) |UHH(+1(Q) ? 

To finish this section, we define the multigrid schemes for solving (1.3). The 
multigrid method has two iterative processes (cf. [1]). The overall process 
involves solving (1.3) sequentially for k = 1, 2, ... to get uk Uk. To solve 
(1.3) on each level, k, we take the approximate solution of the ( k - 1 )st level to 
be the initial guess and then we use the second, recursive process several times 
to get Uk. The second process involves solving more general problems: Find 
Uk c Vk such that 

(1.13) a(uk, v) = F(V) Vv E Vk, 

where F is a linear functional on Vk and can be represented in (Vk, (-,-)) as 

f: F(v) = (f, v) Vv C Vk. 

Definition 1.1. (The kth-level scheme I.) 

(1) For k = 1, (1.3) or (1. 13) is solved by any method: 

(1.14) a(a1, v) = (f, v) or a(fi, v) = F(v) Vv E VJ. 

(2) For k > 1, a final guess wm1+ will be generated from an initial guess 
wo as follows. m steps of the so-called Jacobi-like smoothing iterations will be 
performed first: 

(w1-w, v)=A- (F(v)-a(w11,v)) (1.15) E k 

Vv C Vk 1=1,~2,.,m 
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To define wm+?I we need to construct a coarse-level residual problem: Find 
,f Vk_I, such that 

def- 
(1.16) a(f, v) = F(Ikv)-a(wm, Ikv) = F(v) Vv E Vk-l 

where Ik is defined in ( 1.1 1). Let E E Vk_ I be the approximation of e obtained 
by applying p iterations of the ( k - 1 )st-level scheme to the residual equation 
(1.16) starting with initial guess zero. Finally, we set 

(1.17) WM+ wm +Ike 

Remark 1.2. In generating the coarse-level residual problem, we have used IkV 

instead of v in (1.16) to save computational work. Otherwise, we have to 
compute a(-, *) and (-, *) between functions of two consecutive levels: 

def 
(1.18) a(f, v) =F(v)-a(wm, v) = F(v) Vv E VkJ1- 

Replacing (1. 16) by (1. 18), we can define another nonnested multigrid scheme: 

Definition 1.3. (The kth-level scheme II.) 
(1) If k = 1 , use (1.14). 
(2) If k > 1, use (1.15), (1.18) and (1.17). 

Remark 1.4. In correcting the approximate solution wm by the solution of the 
coarser-level residual problem (1.16) or (1.18), we have used Ike instead of e 
in (1.17) (here, wm+I = Wm + e would be understood as a sum of two linear 
functionals of Vk ). This is very important for implementation. Otherwise, we 
have to compute the representer Pke of e in Vk as a functional on Vk : Find 

PkC E Vk such that 

(1.19) a(Pke, v) = a(e, v) Vv E Vk- 

Here, Pk: Ho(Q) - Vk is the a(., *)-projection operator. If we can invert 
(1.19) to get Pke easily, we definitely should use: 

(1.20) Wm+ =Wm +Pke 

instead of (1. 17). Unfortunately, it is usually not practical to invert the problem 
(1.19) when Vk_1 ? Vk, except in a few cases (cf. [18]). In particular, if 

-Tk- I k, ( 1.19) is not feasible, since to solve it is the same as to solve ( 1.3). 
We note that when meshes are nested, (1.16) and (1.18) are identical, and so 
are (1.17) and (1.20). 

2. SOME AUXILIARY RESULTS 

In this section, we will show some approximation properties of the nodal 
value interpolation operator Ik when it transforms functions of Vk 1 to the 
finer-level space Vk . We then study the perturbation effects of the Ik in the 
coarse-level residual problem (1.16). 
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Lemma 2.1. Let { S } satisfy (1.5) and (1.6); then 

(2.1) IIIw - IkVIII < y0IIIw - vIII Vv E Vk-1 and Vw E Vk 

holds for some positive yo -independent of v, w and k, where Ik is the nodal 
interpolation operator defined in (1 .1 1). 

Proof. Let K be a triangle of ST and SK be the union of all triangles in Tk I 
which intersect K: 

SK= U{KE CA-1 I K' nK $ 0} 
There can be no more than /3& triangles in SK, where fJ0 is defined in (1.6). 
Noting that w - Ikv is linear on K, we have 

w -IkVIHI(K) = CI(w - Ikv)(nl) - (w - Ikv)(n2)I 

= CI(w - v)(n ) - (w - v)(n2)I2 

for some two vertices n1 and n2 of K. Let Ki be the triangle, having n1 
and n2 as its two vertices, on the other side of the line n1n2. Only when 
n I n2 c &Q, may K1 not exist. In this case, (w - v) (nl) and (w - v) (n2 ) are 
zero and the inequalities (2.2) below hold trivially. 

Since w - v is continuous and piecewise linear on the line nI n2, we can find 
a subinterval [ni, nl] c [nl, n2] such that 

l(w - v)(n') - (w - v)(n')l > l(w - v)(nl) - (w - v)(n2)I /flo 

where n j and n' are two intersection points between the line n n2 and some 
two mesh lines of 4 . Therefore, the line segment n'n' sits entirely inside 
some coarse-level triangle K'. By the minimal angle condition (1.5), it follows 
that we can draw a triangle KO, having n' and nl as its two vertices, such that 
its area is greater than C(distance(n , n'))2 and that 

I 
2 

KOcKnKK or KOcK1nK . 
Noting that both v and w are linear on KO, we obtain 

-2 Iw Ik VI (K) < CI(w - v)(nl) - (w - v)(n ) 2 
(2.2) ?W- 

IVI (K) 
- l K) cw 2 

< CIW - VIH1(K0) < CIW - VI H1(SK) 

Summing (2.2) over k, we obtain by (1.6) that 

Iw - IkVIHI(2) ? C E -VIH (SK) 

KETk 

< Cgo E W _V12 (' CIW _V IH2Q 
K'E5kHH 

Hence (2. 1) follows from the fact that the norms 11 IIH(Q I2 MH (Q), and 111*111 
are all equivalent in Ho (Q). ? 
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A different proof for Lemma 2.1 is originally given in [ 19], where an assump- 
tion, dominances of meshes, stronger than (1.6), is used. However, a stronger 
version of (2.2) is obtained: 

(2.3) 2wIsllK < Clw -VI 2ff (2.3) j~~~W - IkVIH (K) ? j VHI (K) 

Proposition 2.2. Let (1.4)-(1.7) hold. Then the following estimates hold: 

(2.4) IIV - IkVIIL2(50) < ChklIjVIII VV E VkK I 

(2.5) liV IkVChHI1c2) <Chklllvlll V E 

Proof. The estimates (2.4) and (2.5) (only (2.5) is needed later) may be con- 
sidered as being well known (cf. [2]), but we do still give a proof here since we 
cannot find any good reference. (2.4) could be proved directly (see [19]). But 
we use a result of the author in [22], which is generalized later by R. Scott and 
the author in [14]. We define a locally averaging Lagrange interpolation opera- 
tor Xk (cf. (2.13) in [14] ), Jk: Ho (Q) -* Vk. Here, if a node ni cAfk nOQ, 
the averaging is taken on a boundary edge of 4-l; if a node ni E lk n Q, 
supposing ni E K' for some K' e 4-l, we choose, inside K', the longest line 
segment among all containing ni for the averaging to obtain the nodal inter- 
polating value at ni . Since the averagings are taken on line segments of length 
Chkl l, by Theorem 4.1 in [14], we have 

lIU - UIIL2(Q) ? klu1H (Q), Vu E H' (Q). 

If we interpolate between (I -Jgk) (I is the identity) as a map from H (Q) 
to L 2(Q) and (I-Y-k) asamap from H (Q) to H(i(Q),weobtain 

||( 
g)U||HI-.t(0) 

< 
Ch`jjujj,,(Q 

Vu E H 1(Q). 

Noting that IkV -7Jkv Vv e Vk -,I the proposition is proved. El 

To conclude this section, we prove a lemma concerning the difference between 
two coarse-level residual problems, (1.16) and (1. 18). 

Lemma 2.3. Let (1.4)-(1.7), (1.9), (1. 10) and (1. 12) hold; then 

(2.6) 
illPk_IW - Qk IWIII < ChkW11wlll(?,+k VW E 

where Pk_ is defined as in (1. 19) and Qk I: Vk + Vk- I is defined by 

(2.7) a(Qk-Iw, v) = a(w, Ikv) VV Vk-lP 

Proof. We compare the definitions of Pk_ I and QkI- to get 

a(Pk-w- QkI,W v) = a(w, v-Ikv) Vv Vk e ,. 
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Noting Pk- I w, Qk- 1 W EVk_ 1, it follows by the Schwarz inequality that 

Pk-IW - Qk-IWIII = sup a(Pk_1w - Qk-I I V) 

= supa(w, v- Ikv) = supa(w, PkV - Ikv) 

(2.8) V V 

? SUP |||W||,+1 ,kIIIPkV - IkVIIIl-a,k 
V 

? CSUPIIWIIIWWq ,k(IIPkV -V|HH-.(Q) + HV -IkVIIH1-.(Q)) 

since III * 1Hi_-ck and 11 * HH'-(Q) are equivalent in Vk. To estimate 
llPkV- VIIHH(Q)I we can use a standard duality argument to get (cf. (3.14) 
in [1]) 

-l PkVIHH1-(k() < Ch|llv - Pkvlll < ChHlllvlll = ChJ' 

Using Proposition 2.2 in (2.8) yields (2.6). Eu 

3. CONVERGENCE AND WORK ESTIMATES OF NONNESTED 

MULTIGRID METHODS 

In this section, the main theorems of the paper, the convergence and the 
optimal computational order of the nonnested mesh multigrid methods, will be 
proved. The method is based on the principle of mathematical induction. The 
proof follows the ideas in the proof of Theorem 1 of Bank and Dupont [1]. 

Theorem 3.1. Let (1.4)-(1.7), (1.9), (1.10) and (1.12) hold and p > 1 be an 
integer. Then there exists a constant 0 < y < 1 and an integer m > 1, all 
independent of the level number k, such that, if 

(3.1) H11f -6111 < Yp?lIVIll, 

then 

(3.2) Huk-wm+iH ? Yluk w , 

where uk, Wi, c, and E are defined in Definition 1.1. 
Proof. Let the iterative errors be denoted by ei = uk - wi 0 < i < m + 1. By 
expanding the initial error as a linear combination of the eigenfunctions of A k, 

we get the well-known estimates for the Jacobi-like iteration (1.15) (cf. (3.8) 
and (3.13) in [1]) 

(3.3) llemlll < lle0lll, llem +lk < Chkam a/2 Ill 
Our aim is to estimate the final error em+? after one cycle of kth-level it- 

eration. By the definition (1.17), Lemma 2.1, the triangle inequality and the 
assumption (3.1), we get 

IIIe +1III = Illem - IkeI < yolllem - III < yolllem - II + yoIIf 111 

(3.4) < yo(l + y)IIIem - tll + yoy lllemll 

? Celem - Pk_emIII + CIlPk_lem - Qk-lemll + yoyPleml, 

where Qk- I em = E by (2.7) and (1.16). 
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For the first term on the right-hand side of (3.4), using the a(-, *)-projection 
property of Pk_, , we have 

Illem - Pk_emIII2= a(em -Pk_lem, em) = a(em - PkPk_lem, em) 

(3.5) < IIem -PkPk_lemIIIl -a,k IIIemIIIl+a,k. 

We note that due to nonnestedness the Schwarz inequality cannot be used di- 
rectly to a(em - Pk Iem, em) . We then use a duality argument with (1.12) and 

(1.1O): For any SO e Ha' (Q), let 02 Ha+l(Q) solve 

a(02, V) =(00 ,V) Vv E Ho(Q); 

then 

(00 em - PkPk_lem) =a(02 em - PkPk_lem) 
= a(02, em - Pk_lem) + a(02, Pk_lem - PkPk_lem) 

=a(62- )k-162, em -Pk 9em)?a(O2-JgO2, Pk_lem - PkPk-lem) 

< 11192 g-k-162111 llem - Pk_lemII 

+ 11102 - k02111 IIIPk_lem - PkPk_lemIII 

< Ch 
a 

lII2IIa+1(j)IIIem - Pkl 

+ Ch IIl2l,H+(Q)IIIPk_lem - PkPklemIII 

? Ch a,6o,,H i(n)(211lem - Pk_ emIII + IIIPk(em - Pk_lem)III) 

< 3Ch al0oIIHa-,(Q)IIIem - Pk_lemIIl, 

where hk hkli from (1.7) is used. Since 00 is arbitrary, it follows, by Lemma 
1 in [1], that 

(3.6) hllem - PkPk_iemhhj_,a,k < Chlem - PkPk_lemllHI-a(Q) 

< Ch 
a 

Ilem - Pk_jemIII. 

By (3.6) and (3.3), we get from (3.5) that 

(3.7) Illem - Pk_iemhII < Cma/2lleOIil. 

The second term on the right-hand side of (3.4) has been estimated in Lemma 
2.3. By (3.3), it follows that 

(3.8) lIlPk-lem - Qk-lemlil < ChalllemIll+a,k < 
Cm-a/2 lleOII. 

By (3.7), (3.8), and (3.3), the estimate (3.4) becomes 

(3.9) lIlem?1IhI < (Cm 
/2 + y0yV)Ie0111. 

To complete the proof, we can choose 0 < y < 1 small enough such that 

yPyo < y/2, since we have p > 1 . And then we can let m be large enough such 

that Cm 112 < y/2. We can see that the choices of y and m are independent 
of the level number k, since C and yo are independent of k. Using these 
bounds in (3.9), the assertion (3.2) follows. o 
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Corollary 3.2. Theorem 3.1 holds when "Definition 1. 1" is replaced by "Definition 
1.3". 

Proof. The inequalities (3.4) in the proof of Theorem 3.1 become, in this case, 

HIem?II ? -I<yolllem -Pk_emIII + yoIIf 111 

< Cllem - Pk_jemIII + yo/ylllemlll, 

since Pk Iem = E in the scheme II. Hence, by (3.7) and (3.3), the proof is 
completed. El 

In practice, we would like to use some other simpler inner product bk(, ) 
in the fine-level smoothing iteration (1.15) instead of the L 2-inner product 
there. In order to make Theorem 3.1 and the above corollary hold, we may 
choose bk(-, -) such that the norm induced by bk(-, ) is equivalent to the 

2 L -norm. As pointed out by Bank and Dupont in [1], there are many pos- 
sible choices for bk(., -). For example, we can let bk(-, -) be defined by 
the diagonal of the mass matrix if the standard nodal basis is used. Defin- 
ing Ak by a(v, w) = bk(Akv, w) Vv, w c Vk and defining HII * Ills,k,b by 

2Vkb = bk(Akv, W) Vv c Vk, we have the following equivalences of 
norms: 

1 IIIVIIIO k < IIVIIHOk,b < #IIIVIIIO,k 

H IIII,k<IIVIIII,k,b < HV1HVIIl k Vv E Vk 

for some positive constant fi. Now we can replace (1.15) by the following 
smoothing iteration: 

(3.10) bk(wI -w1 v) =Ak (F(v)-a(w1 v)) 
VV EVk 1= 12,..m, 

where Ak is the maximal eigenvalue of Ak . One iteration of (3.10) needs only 
O(Nk) computations. 

Corollary 3.3. Theorem 3.1 and Corollary 3.2 hold if the fine-level smoothing 
( 1. 1 5) is replaced by (3. 10) there. 

Proof. Repeating the proof of Theorem 3.1, we have the analogue of (3.5) as 

Hllem - Pk2lem < ?ll-em 
-PkPk_lemll-lkejHl?( 

kb, 

and the estimate of Illem H1 12 k will be changed similarly for Illemll 12, k, b , but 
with the right-hand constant C depending on the fi. The rest of the proof 
remains the same. E 

Theorem 3.4. Let the assumptions of Theorem 3.1 hold and let 2 < p < a1 (al1 
is defined in (1.7) ). There exists a constant r and a constant 3 > 0 such that if 

Illul - j'JII < 6Ch, 
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holds for some constant C, then 

(1) HIlUk - Ukll < 3Chk, k > 2 

(2) 11 ju - [iklll < (I + (5)Chk , k > 1, 
(3) the cost of computing Uk is bounded by CoNk, where C0 is independent 

of the level number k. 

Here, Uk is obtained by doing r "modified kth-level scheme I" defined by ( 1.14), 
(3.10), (1.16) and (1. 17) with Uk-l as initial guess, and h1 is obtained by solving 
(1.3) directly. 
Proof. Noting the sparseness of the transfer matrix associated with Ik, the 
proof is the same as the one for Theorem 2 of [1]. El 

Corollary 3.5. Theorem 3.4 holds if the "modified kth-level scheme I" is replaced 
by the "modified kth-level scheme II", definedby (1.14), (3.10), (1.18) and( 1.17). 

Proof. The difference in work estimate is only in evaluating inner products 
between the kth-level functions and nodal basis functions of Vk_l . Once a(-, ) 

and the L2 inner products between nodal basis functions of all two consecutive 
levels are computed, we need just order- Nk computations to evaluate those 
matrix vector products, since all matrices are sparse. E 

4. NUMERICAL EXPERIMENTS 

The numerical problems to be dealt with are continuous piecewise linear finite 
element equations arising from the Poisson equation 

f-Au = f Vx c Q = (0, 1) x (0, 1), 

u = 0 Vx c aQ. 
We have two sets of experiments on the two-level nonnested multigrid method 
defined in Definition 1.1. The fine triangulations are always uniform in the 
experiments, which have mesh sizes hf = 11/nf for 

nf = 4, 6, 8, 10, 12, 14, 16, 18, and 20, 

where nf is the number of intervals in each direction. In the first set of exper- 
iments, the coarse meshes are obtained by shifting the standard nested coarse 
mesh ( (a): shifted by I/fnf with one more grid point added in each direction, 
(b): no shifting, (c): shifted by 1/2ff and (d): shifted by I/f ). In the sec- 
ond set, the coarse meshes are again uniform, but with mesh sizes: 1/[nf/2- 1] 
(e), 1/[nf/2] (f) (the case of the standard nested-meshes), 1/[nf/2 + 1] (g) or 

11[nfl2+ 2] (h). We computed the spectral radii of the two-level nonnested 
multigrid iterative operators and plotted them in Figure 1. For detailed descrip- 
tions and data, we refer the reader to [ 19]. In the left graph, (al-h 1) denote the 
contractive radii of the method of one smoothing with one exact coarse-level 
correction on meshes (a-h). We can see that the rates of (al), (gl) and (hl) 
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FIGURE1 

Meshes and spectral radii of some two-level nonnested multigrid 
methods. 

are better than the rate in the case of nested meshes (b 1). In fact, in (a), (g), 
and (h), there are more grid points on the coarse level. On the other hand, 
(d ) in the right graph shows that one smoothing nonnested multigrid methods 
do not converge in general (see [9] for the case of nested-meshes). However, 
as predicted by our theorem, (d8), in the right graph, with eight smoothings, 
converges. 

The instability of the coarse-level correction in the nonnested multigrid meth- 
od (dl1) is caused by the perturbation of the Ik in (1.16) and (L1.7). By our 
previous analysis, we have 

IIIem?iIII = hlem - IkgIIh ? yohIlemn - Pk_jeinIjI + yoIIIPk_lei - Qk-lemillh 

< yoIIIemII + yo sup4 a(em~V -Ikv) 
1 yoIIIemII [1__+_v(1 + IPv-ii 

K (2yo + y0)IIIemIII = C(y0)IIIemjIj, 
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where C(y0) could be larger than one. But, when the meshes are nested, we 
have the a(., *) projection property for the coarse-level correction: 

|11em+?111 = Illem - Pk _emJ < Illemlll 

This instability could be reduced somewhat by modifying (1.17) to wm+? = 

wm +pIkc with small p . The (dl *) in the right graph is the radius for p = 0.25 . 
However, small p would reduce the rate of convergence of the iteration. In the 
right graph, we also plot the radii for eight smoothings (J8), and for the case of 
nested-meshes with eight smoothings (b8). 

Although the rates for (a), (g) and (h) are better than those in the case of 
nested meshes (b) and (f), we do not suggest using larger coarse-level spaces. 
There are two reasons for this. One is that fine coarse-meshes could cost more 
computations. The other is that unnecessarily fine coarse-meshes could cause 
Ik to be very degenerate ( Ikv = 0 for some 0 # E Vk_ Il ), which might make 
some effort of computing (1. 16) worthless and might also increase the instability 
(the fl0 in (1.6) increases). 

Finally, we note that in implementation of multigrid methods, no matter 
whether the meshes are nested or not, the codes are the "same", since the Ik 
is needed to transform the internal representations of coarse-level functions to 
the internal representations of them as fine-level functions in the case of nested 
meshes, too. 
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