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BOUNDEDNESS OF DISPERSIVE DIFFERENCE SCHEMES 

DONALD ESTEP, MICHAEL LOSS, AND JEFFREY RAUCH 

ABSTRACT. The pointwise behavior of dispersive difference schemes for the sim- 
ple wave equation in one dimension is analyzed. If the initial data are in certain 
Besov spaces, the scheme is shown to be pointwise unbounded. Boundedness 
is shown when the initial data are of bounded variation. 

1. INTRODUCTION 

This paper is concerned with the pointwise behavior of constant-coefficient, 
single-step finite difference approximations to the solution of the initial value 
problem 

Ut + Ux = 0, xER, 0< t < T, 

u(O, x) = v(x), x E R,9 

where v is chosen in LP(R) for some 1 < p < oo. (Hereafter, we assume 
that T = 1 , since all the results generalize from this.) The (weak) solution of 
this problem is simply a translation of the initial data and the problem is well 
posed in every LP(R) space. This problem is considered to be a test case for 
numerical methods for the approximation of solutions of hyperbolic equations. 

The approximant to the solution u(t, x) at time t = nk, where k denotes 
the time step, is called U(nk, x) . We let Ek denote the time stepping operator 
associated with the scheme. Thus, the operator Ekn is the operator marching 
through a time interval nk, and we have 

U(nk, x) = EkU((n - 1)k, x) = E v(x). 

In the case of an explicit scheme, such as the Lax-Friedrichs or Lax-Wendroff 
schemes, Ek will be a finite linear combination of powers of a translation 
operator Th, h c R, where (Tnf)(X) = f(x - h) (see ?5). An example of an 
implicit scheme for ut + uX = 0 is the Crank-Nicolson scheme. Its operator is 
defined by 

(1 + A1h - 4Th) EkU(t, X) + (-I + 
A 

_- T1h) U(t, X) = 0, 
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where h > 0 is the spatial mesh width and A := k/h is the mesh ratio. It 
is common to think of x as being restricted to one of the mesh points jh, 
j E Z. In this case, U(nk, jh) represents the approximation to the exact value 
u(nk, jh) and the difference scheme is written 

U((n + l)k, jh) - U(nk, jh) 
k 

1 U((n + 1)k, (j + l)h) - U((n + l)k, (I - 1)h) 
2 2h 

+ U(nk, (j + l)h) - U(nk, (j - I)h)} 0 
2h 

Remark. The term "difference" is used here in a general sense; many finite 
element approximation methods lead to time-stepping operators of this kind, 
and our discussion pertains to these schemes as well. 

The primary object of the classical analysis of such methods is to prove 
convergence and error estimates for the scheme in various Banach spaces. Ac- 
cording to the Lax Equivalence Theorem, the two principal ingredients are the 
consistency and stability of the scheme as measured in the norm of the space. 
Consistency is the requirement that the difference operator accurately model 
the solution operator of (1.1) and is expressed by 

k-lu(t + k, *)Eku(t, .)II = O(k"- ) as k O- , 
for all smooth solutions u, where , - 1 is the accuracy of the scheme. In 
what follows, we consider only difference schemes which are consistent with 
the equation in (1.1) in all Lp (R) norms. Stability is the requirement that the 
difference operator does not magnify error without bound. If 1 < p < 00, the 
difference scheme is said to be LP(R) stable if and only if there is a constant 
C > 0 such that for all v E LP(R) and nk < 1, 

IIEZV IILP(R) < CIIV IILP(R) 
The norms and spaces of initial data for which these two conditions are true vary 
from scheme to scheme and, in fact, a difference scheme is characterized exactly 
in this way. Of course, it is reasonable to require stability, hence convergence, in 
some space. We restrict this discussion to schemes which are stable in L 2(R). 

Actually, one can show that if a L 2(R) stable difference scheme with k/h 
constant is unstable in Lp (R) for some p > 1, p $ 2, then it is unstable in 
LP(R) for every p, p > 1, p $ 2 (see [6]). Therefore, there is a natural 
separation of schemes into those which are stable in LP(R) for all p > 1 and 
those which are stable only in L 2(R). The pointwise behavior of the former is 
well understood. An example is the Lax-Friedrichs method (see ?5) which is a 
dissipative scheme. It is characteristic of dissipative schemes that initial data 
consisting of a step function undergo smoothing as time progresses. 

We are interested in studying the pointwise behavior of schemes which are not 
L?' (R) stable, i.e., the dispersive schemes such as the Lax-Wendroff and Crank- 
Nicolson methods (see [6]). The characteristic oscillations of the approximant 
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FIGURE 1.1 

Plot of the Crank-Nicolson approximant computed on step data 
at t = 1, k = .01, A = .5. The dashes show the position 
of the true solution. The solid curve connects the points of the 
approximant. 

in the region of the discontinuity of the true solution distinguishes these schemes 
(see ?5). As an example, we present in Figure 1.1 the Crank-Nicolson scheme 
computed on the initial data J(x) := sign(x), the single step, using k = .01 
and A = .5. 

It is useful to introduce the Fourier transform at this point. The time-stepping 
operator Ek of a constant-coefficient finite difference scheme is a translation 
invariant operator of the form E, (D)v E v - ' l (Ek,(4)i(4)) where Y 
denotes the Fourier transform with respect to the measure dx := dx! 2i7. 
(This expression is to be interpreted in the sense of distributions for general 
v E LP(R), 1 < p < oo; see [6, Chapter 1].) In this notation, Ek(4) is the 
symbol of the time-stepping operator Ek(D) and our principal assumptions 
can be rephrased in terms of properties of the symbol of the scheme. First of 
all, consistency means that the symbol of the scheme satisfies 

(1.2) Ek(:) =e-ikE+o(kjj) as kjI O-*0 

(see [6, Chapter 5]). As for LP(R) stability, it is identical to the condition that 
the family {Ekn(D), nk < I} be bounded in Hom(Lp(R), Lp(R)) . 
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It is well known that the set of L2(R) stable operators a(D) consists precisely 
of those maps whose symbols are in L??(R) and that 

Ila(D)IIL2(R)>pL2(R) 
- IalILOO(R). 

In what follows, we assume that the symbol of a difference scheme is at least 
continuous in 4 . Thus, a necessary and sufficient condition for the stability of a 
difference scheme in L 2(R) is that there exists a C > 0 with IEk (4) I < 1 + Ck 
for all 4 E R, k E (0, 1). For example, the symbol of the Crank-Nicolson 
scheme is 

Ek (E,I) _1 
- iA sin(hc)/2 

Ek() - 1 + iA sin(h4)/2 

In this case, IEk(4)J 1, so Ek(D) is L 2(R) stable without condition. If A 
is constant, then it is known that Ek (D) is stable in Lp (R) only for p = 2. 
(Note that the "overshoot" to the left of the step shows that this scheme is not a 
contraction on L??(R), but we show below that the "overshoots" are bounded 
as k -0.) 

Since the 1960's, many authors have studied the stability of difference meth- 
ods and the conditions which make a scheme dissipative or dispersive, including 
Apelkrans, Brenner, Chin, Hedstrom, Peetre, Thomee [1, 4, 5, 6, 8, 9, 12, 13, 
18, 22], and Trefethen [23, 24], who presented a nice overview of the subject 
and in the case of dispersive schemes made a connection to the classical theory 
of dispersion, see Whitham [26]. 

The analysis of the pointwise behavior of difference approximants becomes 
interesting in the case of schemes which are only L 2(R) stable, and hence 
known only to converge in the L 2(R) norm, because they represent a pointwise 
approximation to the true solution. In particular, L??(R) instability implies, 
thanks to the uniform boundedness principle, that there is a v E L? (R) such 
that 

sup IIE (D)vIIL??(R) = 00 
nk< 1 

On the other hand, everyday experience does not seem to produce such v. 
In particular, if v is piecewise C', but possibly discontinuous, computations 
yield families which are uniformly bounded. 

The first result we present classifies more precisely the space of initial data 
upon which dispersive difference schemes are unbounded. We say that the 
difference approximants are uniformly pointwise bounded if 

sup IIEn(D)vIILoo(R) <C 
nk<l 

for some constant C. 
Our approach is suggested by the observation that an L 2(R) stable scheme is 

also stable in the Sobolev spaces Hs . We ask if taking data in Hs (R) n L? (R) 
suffices to ensure uniform pointwise boundedness of the approximants. The 
answer is positive if s is large enough since Hs c L? (R) for s > 1/2. Thus, 
it is sufficient to take the data v in some Hs, s > 1/2, to ensure that the 
approximants are bounded uniformly in Hs, hence in L??(R). 
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However, functions in Hs, for s > 1/2, are continuous, and so our motivat- 
ing example of a nonsmooth function, J(x), is not locally in Hs for s > 1/2. 
It is natural to ask if less regularity will still suffice, i.e., we ask if assuming 
that the pointwise bounded data is in Hs locally, for s < 1/2, is a sufficient 
condition to ensure that the approximants are uniformly pointwise bounded. 
Here, J(x) is locally in Hs n LO(R) for all s < 1/2. 

The first result shows that this is not so. The proof demonstrates that condi- 
tions made in the L 2(R) norm and regularity norms based on the L 2(R) norm 
have an inherent weakness in terms of forcing desired pointwise behavior of 
the approximants in situations in which dispersion is present. 

Theorem 1.1. Let Ek (D) be the operator of a dispersive constant-coefficient dif- 

ference scheme which is L2(R) stable and satisfies the consistency condition for 
ut + cux = 0, c E R, and suppose A = k/h is constant. Then, there exists a 
function v E Hs n L??(R) for all 0 < s < 1/2 such that 

Sup I Ek (D)v IIL?(R) = ??o 

Theorem 1.1 is a consequence of a more general theorem that is stated and 
proved in ?3. In particular, the assumption of a constant mesh ratio is not 
needed, and therefore choosing a very small time step size, for example k = 

O(h 2), does not help to force boundedness. The first part of this proof consists 
in showing that the uniform pointwise boundedness of the difference scheme 
operator implies that the operator whose symbol is exp(ib48), with ,u, b E R, 
,u > 2, ,u - 1 the accuracy of the scheme and b :& 0 a fixed constant, is a 
bounded operator in Hom(Hs nmL? (R), L??(R)). Then, we produce a function 
u E Hs n L??(R) such that 

Ile UIIL?(R) = 00. 

Again, thanks to the uniform boundedness principle, this implies that there is 
some function in Hs n L??(R) which causes the difference scheme operator 
itself to be unbounded in the same fashion (the function u may not do this). 
In ?5, we construct a sequence of functions depending on the step size which 
does appear to do this in the limit as the step size tends to zero. 

Returning to the computations made with the Crank-Nicolson scheme, the 
evidence suggests that dispersive schemes are uniformly pointwise bounded on 
the step function. Most of the authors mentioned above studied the bound- 
edness and convergence of schemes on step data. Such analysis began at least 
partly because (1.1) with step data is considered to be a test problem for nu- 
merical methods for nonlinear hyperbolic equations. Apelkrans [1], Brenner 
and Thomee [5], and Thomee [22], using similar methods, studied difference 
approximations to the solution of the equation ut + p(x)ux = 0, and proved 
convergence and gave bounds for the approximants everywhere except near the 
point of discontinuity, under the assumption that the schemes are LP(R) stable 
only for p = 2 and with a constant mesh ratio A = k/h (see [6]). Taking a 
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different approach for the same kind of schemes, Hedstrom [12, 13] studied 
convergence of finite difference approximants of the equation ut + uX = O and 
gave a precise description of their behavior. In the case of step data, under 
the additional assumption. that the scheme have some higher-order dissipative 
character (while remaining only L2 stable), he showed that the approximants 
are pointwise bounded. 

One conclusion that can be drawn from Hedstrom's result is that for par- 
tially dissipative schemes the assumption that the data be piecewise smooth is 
sufficient to ensure that the approximants are bounded in L??(R). We point 
out that this result has a wider significance because schemes which yield uni- 
formly pointwise bounded approximants on step data, in fact, yield uniformly 
pointwise bounded approximants on data chosen in BV. BV is the class of 
functions determined by the norm 

lIf IIBV lIf IIL (R) + IlDf IITV 
that is, BV is the class of L? (R) functions whose derivatives are bounded 
signed Borel measures. More precisely, let Ek(D) be a translation invariant, 
L 2(R) stable operator such that 

sup llE (D)J(.)lILoo(R) < C 

for some constant C. Then 

sup IIEk(D)v(.)IILo,(R) ? CjjV'jjV 
nk< 1 

for all v E BV. The proof is easy, but we present it for the reader's convenience 
in ?4. 

Hedstrom's proof of the uniform pointwise boundedness of dispersive 
schemes with higher-order dissipation makes explicit use of the dissipative term. 
This leaves open the question of uniform pointwise boundedness of purely dis- 
persive schemes like the Crank-Nicolson scheme. Our next result shows that 
these schemes are bounded, as well. We recall that the characteristic function of 
a difference scheme is the function e(<) := Ek(4/h). 

Theorem 1.2. Let Ek(D) be the difference operator of a constant-coefficientfinite 
difference scheme which satisfies the consistency condition for (1.1) and whose 
symbol has the property that JEk(4) I 1. Assume further that the characteristic 
function of Ek(D) is independent of h and that k/h is constant. Then the 
difference scheme is uniformly pointwise bounded on the step function. 

There are three points to be made. First, by Theorem 5.2.1 of Brenner et al. 
(6], if Ek(D) is not a simple translation operator, then it is unstable in LP(R) 
for all p $ 2. Second, schemes satisfying the conditions of Theorem 1.2 are 
therefore uniformly pointwise bounded on data in BV. We do not demonstrate 
that dispersive difference schemes are bounded in Hom(BV, BV), and in fact 
they are not in general. Last, the method used to prove Theorem 1.2 gives more 
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information about the difference approximants of a purely dispersive difference 
scheme computed on step data. As an example, our analysis indicates at what 
speed the oscillations collapse towards the position of the discontinuity and their 
limiting height as the step size tends to zero. In ?5, we confirm our predictions 
with the observed performance of the Crank-Nicolson scheme. 

A basic ingredient of the proof is the fact that the behavior of the difference 
scheme is determined on two regions. One region is a fixed number of mesh 
widths from the discontinuity, and the other range is the complement. We show 
that in the limit of the step size tending to zero, the range of lattice points on 
the order of h0' )/si from the discontinuity carries much of the important in- 
formation about the difference approximant. For 4 in the corresponding range 
in Fourier space, we construct a normal form for the symbol of the difference 
operator using the Malgrange Division Theorem and ideas from the analysis of 
singularities of maps and oscillatory integrals (see Arnol'd [2, 3] as well as [7, 11, 
15, 17, 28]). This normal form is readily analyzed by stationary/nonstationary 
phase arguments like those of Stein [21] and Wainger [25]. 

The outline of the paper is as follows. We start in ?2 with the proof of 
Theorem 1.2. Section 3 contains the proof of Theorem 1.1. The proof of 
the claim made about BV above is in '?4. In ?5 we present the results of 
the experiments mentioned above, together with some samples and discussion. 
Finally, the appendix contains the technical proof of the construction of the 
normal form. 

2. PROOF OF THEOREM 1.2 

Theorem 1.2 is a consequence of 

Theorem 2.1. Let Ek(D) be a translation invariant, L 2(R) stable finite differ- 
ence operator with e(,) := Ek(4/h) satisfying 

(2.1) e(4) is independent of k; 
(2.2) e(4) is periodic and analytic in a strip around the real axis; 

(2.3) je( )=1; 
(2.4) log(e(4)) = -iA4 + o(lX1) as -* 0; 

(2.5) e(4) = e(-4); 

where h := Ak, A a fixed real constant. Then, 

(2.6) sup sup P. V. e x ()E < x 
nk< I x 

Proof of Theorem 1.2. It is clear that the conclusion of Theorem 1.2 is precisely 
(2.6). The properties (2.1), (2.2) and (2.3) follow immediately from the as- 
sumption that k/h is constant, the assumptions made on Ek(D) and the fact 
that Ek(D) is the operator of a finite difference scheme which implies that e(4) 
is a rational trigonometric function. (2.5) is true because e(4) is the ratio of two 
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polynomial functions of e ih in which the polynomials have real coefficients. 
(2.5) implies that loge(4) is an odd function. o 

Remark. Assumption (2.2) is a natural condition to make on the symbol of a 
translation invariant finite difference scheme. In fact, we only need analyticity to 
guarantee that log(e(Q)) has a finite number of zeros in one period. Otherwise, 
it would suffice to assume that e(4) is C? . 

The rest of this section is devoted to the proof of Theorem 2.1 and to dis- 
cussing some of its consequences. Since the proof is trivial when Ek(D) is a 
simple translation operator, we now assume that Ek(D) is truly dispersive, i.e., 
not a simple translation operator. The difference scheme approximant com- 
puted from the step data is given by the oscillatory integral 

(2.7) P.V. e eXEn(:, d 

We show that this integral is uniformly pointwise bounded and describe its 
behavior for x in the vicinity of the discontinuity of the true solution. 

Consider first the formula 

(2.8) J(x) = P.V. eixX d 

The principal value interpretation of this integral is used to make sense of the 
integrand for 4 near zero and to yield convergence of the integral over R. A 
dispersive difference scheme introduces oscillations whose frequencies increase 
with n. The question is: How do the oscillations affect the convergence of the 
principal-value integral? 

As for (2.8), there are two natural scales (whose precise ranges are determined 
by the difference scheme) in (2.7), 4 very large and 4 close to zero, resp. the 
very fine behavior and the coarser behavior of the approximant in x. We use 
different techniques to deal with these two contributions. Write (2.7) as 

(2.9) P.V. L ei E, Q)-+ P.V. / e E (4)-? 
1 11<elh 4 141 >elh k 

where e > 0 is small and fixed. We treat each of the integrals in (2.9) separately. 

Remark. In x space, the second integral is the major contributor to the am- 
plitude of the difference approximant for x within h of the discontinuity and 
the first integral is the major contributor for x further away. We show below 
that in fact the largest oscillation of the Crank-Nicolson scheme occurs roughly 
at a distance of 1.95h2/3 away from the discontinuity. This suggests that the 
first integral in (2.9) represents the difference scheme in the limit as h 0. 

Rewrite (2.9) as 

P.V.t ex en(h4)d-+ P.V.t eix4en(h4) d, 

and change variables, using the fact that An = An, to get 

(2.10) P.V.fe 'e (e) + P.V.j e Xe (e)?? 
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We treat the second integral first. Start by considering the oscillatory integral 

(2.11) I(w)(x) := P.V. e w (@) d= lim fe Xw(,) d, 
II >27r M4OOJ l<J1<Mir 

where w (4) is locally integrable and periodic with period 2n . 

Lemma 2.2. For the integral in (2.1 1) we have 

(2.12) I(w)(x) = h(x)J eix w(G:) d, - eix w(;)f(x,) d, 
_7r -11 

where h (x) is the periodic function with period 1 whose restriction to the interval 
[-1/2, 1/2] is given by 

[x+1/2, -1/2 < x <0, 

h(x)= 0 ? =O, 
x x-1/2, O < x < 1/2, 

and 
00 

f(x, e) ' 27rm)27rm 
m=-00 

where the prime on the summation symbol indicates that the term with index 
zero is omitted. Moreover, f(x, 4) is uniformly boundedfor -x' < x < oo and 

E [-7T, 7T] 

In particular, 

sup P. V. e'w d|< C I w() I d, 

with a constant C which is independent of x and w(4). 

Proof of Lemma 2.2. For periodic g with period 27 , 

g(4) d4 = E> g(4 + 27m) d'; 
z<1XI<mn ImI<M Z 

thus the integral on the right in (2.1 1) is equal to 

( E'e2ime 27)m eI w(4) d f e w(4)fM(x, 4) dx 

with 

(2.13) AM(x ): ' e27rimx 

lml<M 
27m2m 

Note that 
efl 27imx 1 h(x) as M -- 00 

ImI<M 

pointwise for every x, and the sums are uniformly bounded. Also, fM(x, 4) 
converges uniformly to the continuous function f(x, 4) as M - oo0. oI 
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Now consider the characteristic function e(4) of a difference scheme satisfy- 
ing the hypotheses of Theorem 1.2. Without loss of generality, we may assume 
that e(4) is periodic with smallest period equal to 27 . We can arrange this with 
a simple change of variables in 4, using the unique smallest positive period of 
e(4), and since the estimates will be uniform in x, the change to the exponent 
of e in the integral in (2.10) can be absorbed into x . Similarly, A also can be 
absorbed into x. Hence, we can apply Lemma 2.2 to find that 

P.V.j e iAxxn en(, d| < C 

for all x, A and n. Since for fixed E > 0, 

e eiAxxnen (4, d4 
E<141<7 4 

is obviously uniformly bounded by (2.3), it remains to consider 

(2. 14) P.V. ein(Ax4+O(,,) dX 

where 0(4) denotes the real analytic function which satisfies 

e'(4) = ie(4)O'(4), 0(0) = 0. 

It is easy to see that 0(27) = m2r for some integer m and that e(4) = ei() . 
Moreover, (2.4) and (2.5) imply that 0 is an odd function and therefore 0(t) = 
-AX+?c,,l48 + , where ,u is an odd integer greater than one and c, $: 0. (,u - I 
is the accuracy of the difference scheme, which we have assumed is not a simple 
translation operator.) 

A is a fixed real number, so replacing n by nA and 0 by OIA eliminates 
A from the integrand in (2.14). Our first aim is to show that this expression is 
bounded in magnitude uniformly in n and x. The following lemma is the basic 
ingredient for what follows. It applies to a symbol satisfying the hypotheses of 
Theorem 2.1 with v := (,u - 1)/2. 

Lemma 2.3. Let F( , y) = Qy + (0(t) +?), where y x - 1 and (0(t) +?) = 

O(2,2+l ) as 0 O, v > 1 . There is an open neighborhood 0 of the origin, 
B1E C (0) and E> 0 such that P(E, y) = 2v?+l +Z 1 -B1(y)2j+ satisfies 

(2.15) sup P.V. / einF(Y) _pV einP( y)dX < C 
yEO 11< 4 E 

for some E > 0. 

Remark. P(,, y) is not uniquely determined. 

Proof of Lemma 2.3. By Theorem Al (see the appendix), for 4 and y suffi- 
ciently small, there exist smooth functions B1(y), B1(y) = 0(y) as y -- 0, 
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j = 0, ...,v - 1, and E(4, y) odd in 4, such that 
V- 1 

F(, Y)y) =E + E Bj(y)E =:P(E,y). 
j=o 

Hence, 

p.v. J einP(E( Y) Y)dx = py d einP(_E(,y),y) (I - 

(2.16) \j 
+P.V. /einP(4,y) d 

where E' = O.E/O, and the oddness of E was used. Hence, it suffices to show 
that 

1 E' 
(2.17) 

is bounded uniformly for 4 and y sufficiently small. Since E(-4, y) = 

_(,y), 
3 

E(4, Y) - 4E(4,y) = 0(3) 

as 4 - 0, and by (A-2) in the appendix, 

(2.18) E(:,Y) - 0(1) 

as 4 0. Therefore, (2.17) is 0(1m1) as 4 - 0, and (2.15) holds with ' = 

(c, y). o 

Proof of Theorem 2.1. First consider the case when x is taken in a small, fixed 
neighborhood around one. By Lemma 2.3 and the estimates made on the second 
integral in (2.10), the uniform pointwise boundedness of (2.7) for such x is 
reduced to the boundedness of 

(2. 19) P.V. XeinB4B3 4> E 

for some 1. Since the coefficients BO, ..., B- depend on y in an uncon- 
trollable fashion, it is crucial to get a bound on (2.19) which depends on v but 
not on Bo, . . ., BV-1 . Such a result was obtained by Stein and Wainger. The 
proof, from [21] and [25], is repeated here for the sake of completeness. 

By the definition of P.V., the result follows if the integral 

I i(co4+c I 3+. ..+Cv4 
2v+ 

Id4 

is shown to be bounded uniformly in co, ...,c,, I and e. Using the scale 
invariance of dE,/ , we may assume that cV = +1 . By partial integration, 
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where 

I(4) :=| e(?+ 4+' d: 

An application of Van der Corput's lemma (stated below) with j = 2v + 1 
shows that I(4) is bounded in magnitude by a constant C(v), and therefore 
so is the integral on the left-hand side of (2.20) independently of I/c. 

On the other hand, 

i(~+ +C^- ,2v- 
I 

2v+1) d P Xi(co+ 2+Cv 2v-I) d| 

e<W4<1 <4< 

< | 2v+1 dX < CM, 

independent of e. Thus, by using induction, the problem is reduced to the case 
when 2v + 1 = 1 , which is a standard result. o 

Van der Corput's Lemma. Let u Ez Cj(R') be real with IV()(j)j > 3 > 0 on 
[a, b]. Then 

jbeid4|< C, 

with C independent of a and b. 

This lemma is proved using the same lemmas of Stein that were used above. 
Stein proves the following related proposition in [21]. 

"Proposition 2". Suppose that X is real-valued and smooth in [a, b]. If Iq$(j) (x) I 
> 1, then 

lb einb(x) dx < cjn-11j 

holds when (i) j > 2 or (ii) j = 1, if in addition it is assumed that 0'(x) is 
monotonic. 

"Corollary". Under these assumptions on q, we can conclude that 

||e M/ (x) dx| < cj n Ij { 1(b)| + I | W(x)|I dx} 

where yi is any smooth complex-valued function. 

Remark. That (2.14) is bounded uniformly for x outside of a small neighbor- 
hood of one is easier to show. In this case, (AxX + 0(t))' = A(x - 1) + o(kXI) 
is uniformly bounded away from zero for 4 in a small neighborhood of zero. 
Therefore, one can construct a map E(, x - 1) with 

xiE(4, x-l) + O(4, x - 1)) = (x - l)A3 + B + 

for some real constant B, by the implicit function theorem. Then, one proceeds 
as above. Of course, it is necessary for Ix - 11 to be bounded away from zero, 
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the boundedness of the integral with the transformed variable will depend on 

Ix - 1I-,. 
Next we prove 

Theorem 2.4. For x sufficiently close to 1, 

00 
iAn~x n (,) dinP(~, x- i__d lim P.V j_ e e _p e l)d4|=0. 

In other words, in the vicinity of the discontinuity of the true solution, the 
behavior of the difference scheme is determined by the normal form P(4, x- 1). 

Proof of Theorem 2.4. Thanks to Lemma 2.3, it suffices to show that the second 
integral in (2.10) and the first integral on the right of (2.16) tend to zero as 
n x-+ 0, uniformly in A.x. Consider the former integral. Once again, we let x 
replace Ax and assume that e(4) is periodic with smallest period 27r; thus we 
consider 

P.V. f e ixnen() 

Returning to (2.12), we analyze this expression with w(4) = en(4), using 
stationary and nonstationary phase methods. The stationary phase points of 
eixXe(4) are given by the zeros of the function 

e(V) ix +e((s) = ix + iS 4) 

It follows from the assumptions made on e(4) that 0"(4) is not identically zero 
on any subinterval of [-7r, 7r], and because 0 is analytic in a strip around the 
real axis, 0"(4) has only a finite number of zeros, M, in [-7r, 7r]. Call these 
zeros lI ... , Xm with multiplicities yuI - 1, ... , UM - 1 . Choose 3 positive 
so that 0"(4) has only one zero in each neighborhood N1 = {f I - XjI < d} 
of X., j = 1, ... , M, and furthermore, so that there exists a constant c = c(a) 

such that 10('i)(4)I > c for 4 E Nj, j = 1, ..., M, and 1"(4)I > c for 

, E [-yr, 7r]\ UNj. Since (Oj/i9j)(xX + O(Q)) = 0(j), j > 2, these bounds also 
hold for xX + 0(t), independent of x. 

In view of (2.12) and (2.13), consider two terms. First, 

|+7 in(x4+O(O) )(n )d 

(2.21) -r 
[+ 7tin(x4+O(4)) < 27rimx 4 d (. = f+~~~ ~ E T"e2iX d~. 
- 
J_ 

(4 + 27rm)27rm 

Using Fubini's theorem, we can switch the order of summation and integration. 
Thus, it suffices to treat 

27rimx 
+ 7t 

in(x4+O(c)) d, m#0, 
e 

r 
e' + 27rm)27rm 
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separately and then sum the results. We decompose this integral as 
M 

. f in(in( x40() )d 
e~IN( + 27rm)27rm 

(2.22) j=1 

+ j 
7]\UNj e'+x+() 27rmn)2irmd. 

Since 6" is of constant sign on each component of [-7r, 7r]\ U N1, we can use 
the corollary to Proposition 2 of Stein [211 to conclude that the second integral 
is bounded in magnitude by 

(2.23) cn-12 1 
m 

By the same corollary, each integral in the sum in (2.22) is bounded in magni- 
tude by 

(2.24) cn- l(j+ ) 
m2 

Summing (2.23) and (2.24) in m, we see that the integral in (2.21) can be made 
as small as we like by choosing n large. 

The other term in (2.12) is 

h (x) e exnn;E dX 
7t 

This can be handled in the same fashion as were the integrals in the sum in 
(2.21), now using Proposition 2 of Stein [21] directly, yielding the same asymp- 
totic bounds. 

Using arguments similar to those used to bound the integrals in (2.22), it is 
easy to see that the contributions to the second integral in (2.10), 

<1 1<7re 
e (4) 

T 
also tend to 0 as n -x oc at the same asymptotic rate uniformly in x and 
A for any fixed e > 0. Hence, we conclude that in the limit of the step size 
tending to zero, the difference scheme solution is described by the first integral 
in (2. 1 0) with an error like O(n 1 /(P+ 1)), ft = max fi . 

Now, we look at the first term on the right of (2.16), 

JfeinF(4'Y) (y - ) dX, 

where 1 /- E'/E is a smooth function of 4 and y. Arguments similar to 
those above show that this term tends to zero as n -x oc uniformly for x in a 
neighborhood of 1. El 

The normal form can be used now to analyze some of the oscillations ap- 
pearing in the difference approximant around the discontinuity of the solution. 
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Since for fixed y :$ 0 the scheme converges to the actual solution, one might 
be tempted to ask how quickly the peaks of the oscillations move towards the 
discontinuity and how large these peaks can be. In other words, how to choose 
x(n), x(n) -* 1 as n -x cc, such that the expression (2.14) deviates substan- 
tially from the true solution of the differential equation. The following result 
shows that for difference schemes with normal form P the approximate solu- 
tion U(l, 1 +ah2vl(2v+l)) is roughly independent of h as h -- 0. This suggests 
the rate at which peaks collapse towards the discontinuity and gives a formula 
which can be used to estimate the heights of the peaks (see ?5B). 

Theorem 2.5. Let y(n) = an2v/(21+l) Then, 

(2.25) lirm P. V. f P y a 
i(caf dX 

where 
dB _(O 

c:= O(?) 0(, ( ) 0. 

Proof. Since B13(y) = 0(y), j = 0, ...v, - 1, changing variables 4 - 

n- 1/(2v+ l ) 

Qn(, a) = nP(n- l/(2v+ ) y(n)) 
IJ-1 

(2.26) =2v+ E B (y(n))n l-(2]+l)/(2v+l)J2j+1 

i=O 
2v+I + B1(n22v'/(2v+l) a)n2v/(2v+l) + (), 

which establishes the result provided the interchange of the limit with the prin- 
ciple value integral is justified. Obviously, the zeros of (2.26) for a fixed, all 
stay bounded inside a circle of radius say R, uniformly in n. Now 

lim fP.v./ eiQ,(, a) da _ P.Vf ed(ca,?2+') d 0 
n-oo \ -R R 

by the dominated convergence theorem, observing that Sn(4) := e'Qn(4(,a) - 

e i(ca4+2 )-= O(,) uniformly in n and Sn(4) -- 0 pointwise as n xc. 
To treat 

f Q (~, a) d~ 
P.V. e',' 

J4>R 

rewrite it as 

(2.27) Jlj>R 2v + l Q(,a) J 

+ P.V. LX R eiQn(4,a) 1 Qn, a) 
whh il2v n a)li 

which is allowed since all of the zeros of Q~ n(, a) lie inside {~j j~1 < R}. 
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To interchange limit and integral in (2.27), observe that 

|Q( a) - I 
1Q(4, a)< c 

I Wn(4' a) 1- gi,3 

for some fixed constant C and that the integrand converges pointwise to 

(2.28) I 
ei(ca?+_2v+_I_) 

ca 
2v + I ~ 2v+I+ ca~ 

and use dominated convergence. The change of variables 4 = Qn(4, a) in the 
second integral of (2.27) yields 

2v + 1I llln( ) 
which converges to 

12 + I- J>I?fR2v+I+caRI d 
(2.29) 1 p i( 2v+ I+cao) (2v + 1)4Th + ca 

- P.V.I e d~. 
2v + 1 JI>I?R e 2v?+1 +caQ 

Adding (2.28) and (2.29) yields the result. o 

3. PROOF OF THEOREM 1.1 

Theorem 1.1 follows once we have proved Theorem 3.1 given below. This 
theorem is stated in terms of the Besov spaces Bs` q rather than the Hs spaces 
because the Besov spaces are finer. 

First, we recall the definition of the Besov spaces. 

Definition: Besov spaces Bs`, I < q < o?o, O < s. Let {q(j), j > O} be a 
set of nonnegative functions with 

y/o E Cr?(f{ 141 < 2}), qlj Ez Co({ 2j- < 141 < 2j+1}) 
and Ej Ig(4) . Then, v E L2(R) is in Bs2 ` if and only if 

2IV||Bs,q 
= 11f2 (VIjf))HL2(R)}HI(Z+)< 

where lq(Z+) is the space of sequences {{c}, Ij E Z, j > O} with the usual 
norm. 

We note that 1 (qi) is the "part" of v with frequency close to +2j, 

and that the Besov norm measures the growth of these parts as j -o 00. 

Example 3.1. The integral J(x) in (2.8) is locally in B1/2,, if and only if 
q = oo. 

We call these spaces finer because the following inclusions hold: 

U Hs C Bl 2,1 c Bl/2c C q HS 

s> 1/2 s< 1/2 
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for all q E [1, oo). We note that Hs = B'2 . By interpolation, it follows that 
L2(R) stable difference schemes will be stable in the spaces B"12 q as well. The 2 

sharp Sobolev theorem (see [ 15]) asserts that functions in B"2,' 1 are continuous 2 
and pointwise bounded. Taking our data in this space suffices to ensure that the 
approximants are uniformly bounded in this space, hence in L??(R), and it is 
natural to ask whether taking the data in BI1/2' l? n L? (R) is sufficient to ensure 
uniform pointwise boundedness of the approximants. B"/2' n L?*(R) is a 2 
small Banach space that allows step discontinuities and is contained in L? (R). 

Recall that along with an assumption of L2(R) stability in the difference 
schemes, the previous works cited have in common the assumption of a constant 
mesh ratio. However, there are schemes for which it is efficient or even necessary 
to assume a different relationship between k and h. For example, in the Lax- 
Wendroff scheme, we could take k = h 2, and satisfy the CFL condition. One 
might ask if sacrificing efficiency in this way will result in a scheme which is 
L??(R) stable. This is not answered in the existing literature. (See ?5 for more 
examples.) We state the theorem in a general fashion to widen its applicability 
to schemes like these. In particular, we do not assume that there is a constant 
mesh ratio. We let X denote the space Bl/2,' o? n L?? (R). 

2 

Theorem 3.1. Let {Ek(D), 0 < k < I} be a family of translation invariant, 
L2(R) stable operators. Assume that the symbols {Ek(4)} belong to C (R) 
and further that there exists a ,O such that 

(3.1) tEk(4o)l 1 

(3.2) Ek(? +O ) = Ek(@O) exp{iaok? + ibok '+4 + kpo(k )}, 
where ao, bo, y and ,u are real, y > 0 and j > 2; po is a continuous function 
with p0(0, )=po(k, 0) = 0 and 

lim0 po(k , k Y/1%) = , 

uniformly for 4 in compact sets. 
Then, there exists a u E X such that 

sup IE n(D)u||L?(R) = 00. 
nk<1I 

Remark. Thus, the family of operators {Ek(D), nk < 1} is unbounded in 
Hom(iq, L??) and therefore in Hom(Hs n L?Q, L??) for s E [0, 1/2). 

Example 3.2. For the Lax-Wendroff scheme with k = h2, the expansion at 
4=0 is 

Ek(4) = exp{-iXk + i: k2+ kpo(k, 4)}, 

where po(k, 4) satisfies the hypothesis of the theorem. 

The proof of Theorem 3.1 is by contradiction. The following theorem is the 
first step. 
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Theorem 3.2. Let {Ek(D), 0 < k < 1} be the family of operators from the 
statement of Theorem 3.1. If there exists a C' > 0 such that 

II E(D) IIL??L(R) < C for all nk < 1, k E (O, 1), 

then exp{ibonkDl} E Hom(Q, L?) for all nk < 1, k E (0, 1), andfurther, 
there is a C = C(g0) > 0 with 

11 exp{ibOnkD-}IIV ,Lc(R) < C for all nk < 1, k E (0, 1). 

Assuming Theorem 3.2, we conclude that if the family of operators from the 
statement of Theorem 3.1 is uniformly bounded in Hom(q, L?), then the 
family of operators {exp{ib0tD#}, t = nk < 1, 0 < k < 1}, where bo E R\{O} 
is constant, is uniformly pointwise bounded on data in q. Theorem 3.2 is a 
partial analogue of Theorem 5.2.1 of Brenner, Thomee and Wahlbin (see [6, 
Chapter 5]). In particular, fix n, t = nk, and set b := bot; then the theorem 
implies that the operator exp{ ibD'} is in Hom(,q, L?). After the proof of 
Theorem 3.2, we show that the function u, 

u(x) := s- e- ib4P K )) 

whereK(g)eC', O<K<1, K_O forg<1 and K- 1 for >2,is inS 
and is mapped by exp{ibD'} into Y (K(g)/g) ? L?(R), thereby proving 
Theorem 3.1. 

Proof of Theorem 3.2. By the assumed expansion of Ek(g) at gO, we have 

Ek (4o + ) = Ek (4O) exp{iaOtg + ibotky$g + tpo(k, g)}, 

where t = nk < 1, 0 < k < 1. We define 

Ek, t(4 (Ek (go)) exp -iao gE (go +) 

Using some simple estimates, the boundedness assumption on Ek and the fol- 
lowing lemma with l(x, g) = exp(ixg), we conclude that 

IIEk,t(D)II_1V-L?(R) _ C 

for all k E (0, 1), t = nk < 1, where C C(IQ01) is some constant. 

Lemma 3.3. Suppose the function l(x, g) has a continuous derivative in x and 
is continuous in g, andfurther, for each g E R, there is a C' = C'(g) such that 

max{II/(x, 4)IIL?(R ) ' IIx/(X 4IIL?(RX)} < C 

Then, g(x) E q implies l(x, g)g(x) E R for each E E R, and further, there 
is a C = C(g) such that 
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In addition, C may be chosen to be a monotonically increasing function of 11, 
so that C is uniformly bounded on bounded subsets of R. 

This lemma follows immediately from Theorem 2.1 of Peetre and Thom&e 
[18]. We now set 

Ek, t(4) := Ek ,t(k 4) 4 

and use 

Lemma 3.4. If A(D) E Hom(,, L"'(R)), then for any constant c > 1, 

IIA(cD) |, f jA(D)<1-q--,)t 0(R) 

This lemma implies that 

(3.3) IIE (D)L ( < C for every k e (0, 1), nk = t < 1. 

The proof of Lemma 3.4 is postponed for the moment. We need two other 
2 facts, as well. First, note that by the assumed L (R) stability of Ek , 

(3.4) JEk t(Q)I < C for every 4 e R, 

for some C. Next, 

(3.5) 8(nk, ) = X(t, 4) := exp{ibot<"} = lim Ek,t(4) 
nk=t 

uniformly for x in compact sets. By taking the Fourier transform of both sides 
and using (3.2) and (3.3), one can show that 

F (t,D)v=S'-limEk (D)v forveS. 
nk=t 

Therefore, for Vt E S, with fIV/I I= 1, using (3.1), we have 

| (X(t , D)v, V/) | < Cll vil _a 

so by the converse to H6lder's inequality, F(t, D)v E Lt(R) and 

(3.6) Ij'(t, D)vIIL0(R) ? C||v|,J 

forall VeS and t= nk < 1, ke (0, 1). 
However, S is not dense in R7 (see [6, p. 44]), so the usual completion 

argument does not suffice to prove the theorem. Nevertheless, .' is the dual 
of a Banach space, namely, 

,q (B 1/2,1 U L I(R))'. 

Furthermore, S is weak star dense in R. In fact, it is not hard to show that 
if j(x) E CQ (-I, 1), j(0) = 1, j > 0, and f jdx = 1, then for u E 5, 
Un := (nj(xn)) * (j(x/n)u(x)) converges weak star to u as n - oo, and 

||u||jZ = lim l ljun11 
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Given u E R, we estimate 

||F(t5 D)U11L-(R) 

by choosing un e , as above. Then ?'(t, D)ung -+ '(t, D)u in S', so that 

jj?(t 5 D)U11L??(R) < lim jj?(t 5 D) unILOo(R) < Climjjunll,| 

using (3.4). Since the right-hand side equals CI!uI, , the proof of Theorem 3.2 
is complete. o 

Proof of Lemma 3.4. We set g = cX and compute to find that for u E X, 

1jA(cD)U11L??(R) 

< C IlA(D)IIll7L-(R) (11-5U (C1.);;/2 + I1z (C -(IIL'(R)) 

We first evaluate the Besov norm on the right, by using an (equivalent) definition 

(see [6]): 

|| L U(C l )1|| I/2 0 

(3.7) = || U(C 1.)H L2(R) 

+ sup t'1/2 SUP fY(C-i Ic)(X + Y) - f U(C )(X)IIL2(R) 
t>O yI<jt 

To calculate the first term on the right-hand side, use Plancherel's theorem and 
set q = c 1, to obtain 

1 1/2 
|IS 

U~(C 1.) L2(R) = C IIUIIL2(R) 

For the second term, setting g = c -, we find that 

1 Y i(c * 1 /2 1 i(e'yc) 1-1 C1 1 1L2 = (e - 1 ) U () IIL2(Rg) 

Thus, we get for the supremum in (3.7), using in order the substitutions z = cy 
and t = c- s and also using Plancherel's theorem, 

c sup t sup ||(e - I)cug |WL2(R ) = sups sup IIu(x + y) - u(x)IIL2(R) 
t>O IyI?t S>0 IyI?<s 

Since c > 1 , we conclude that 

1| U~(C 1.)IB2 < C 1/2 -)12 2 I - 1UIIB2;/2o 

To complete the estimate for 11S- 
1 
u(c- ) jl je, we set g = c and estimate 

' U-(C )IILOO(R) = C11UH1L(R). 

Finally, 

IIA(cD)uIIL?(R) < c-1 IA(D)||3'L?(R) {C IIUIIB2/2.0 + C1IU1Loo(R)} 

< i i t(D) d i ? 
This is the desired inequality. Eo 
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Proof of Theorem 3.1. As remarked after the statement of Theorem 3.2, it 
suffices to show that the distribution u E S'(R) whose Fourier transform is 

ei Kc(4)/g, ,u > 2, satisfies u E qi. That u E B 1/2', is immediate. It re- 2 
mains to show that u E L? (R) . 

We interpret this distribution as a principal-value integral, finding that 

u(x) = P.V. f eiX4eij K( d = lim e i(x4+4A) K(4) dX. 
R--*oo 

We analyze the last integral by the same methods used in the previous section. 
Since Kc()/I is a smooth function, we can apply the corollary to Proposition 2 
of Stein [21] with j = j to find that 

R 

ei (X 
+ 

/') K)d,: -< C 
R 

K(4) d4) 

where C is independent of R. Taking the limit as R -+ oo shows the result. 0 

4. BOUNDEDNESS OF FUNCTIONS IN BV 

This section contains the proof of the claim concerning the step function and 
BV made in the introduction. Our assumptions imply, first, that Ek is uni- 
formly pointwise bounded on the characteristic function x(x) := X((-??, x]) 
and, second, that it suffices to show that the claim holds for all functions 
v E NBV (the class of functions which are of bounded variation and nor- 
malized in the sense that they are left continuous at every point of R and have 
a limit of zero at -oo). In this case, v E NBV can be written 

V(X) =x dyv 

where y, is a signed Borel measure with fI dp, I = IIVIITV < x 

Choose ,v E S with f IV I = 1 and consider the definition of Ekn(D)v as an 
element in S': 

(E, (D)v, qi) = (v, Ej,(-D)yi) = (Jx dyt,, E,(-D)/V(x)) 

Using Fubini's theorem to switch the order of integration, 

IEk(D)v,V?>)l dy 7) d(%xx <E(- D)V)| ! CIIV IITV? 

which proves the result by the converse to Holder's inequality. 0 

5. EXPERIMENTS, EXAMPLES AND DISCUSSION 

In this section, we present the results of some numerical experiments and 
examples which illustrate some of our results. 
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A. A computation suggested by Theorem 1.1. The following experiment shows 
initial data bounded in $ for which the Crank-Nicolson scheme for ut +uX = 0 
yields unbounded approximants as h -- 0 while t and A remain fixed. For k 
and n fixed, Ek (D), being smooth and having a periodic symbol, is a bounded 
operator from L?'?(R) into itself. In particular, Theorem 5.3.1 of Brenner et 
al. [6] shows that 

IE, (D)IILOo(R))L??(R) = O(n 1) 

On the other hand, the dispersive character of the Crank-Nicolson scheme 
yields the inequality 

11 n 
i>/2. (5.1) iEk(D) lL??(R)- pL(R) >cn 

Trefethen presents a nice explanation of this in [23, 24]. He argues that a 
carefully constructed spike function Vh (X) with height 1 and width O(1/h) is 
sent by the backward Crank-Nicolson scheme with symbol 

Ek (-D) = Ek (D) =E (D) 

(note that Ek(D) is L (R) unitary) to a wave packet that is uniformly dis- 
tributed over an interval of width O(t) . Thus, there is an increase in width of 
O(n), and since the L 2(R) norm is preserved, the height suffers a decrease of 
O(n" 12) . Taking the resulting functions as initial data for the forward scheme 
yields (5.1). 

We have to be a little more careful in order to show that 

|Ek (D) IIL(R 
Start with the simple spike function 

lx/h+ 1, -h< x < 0, 
Vh(X): j -x/h+1, 0<x<h, 

0, IxI > h, 
with (ignoring multiplicative constants) 

vh)= 1 - cos(hg) 

It is easy to verify that vh and Ek (-D)Vh are bounded below in the B2' 
norm, and so in the 7 norm, independently of h. Thus, taking the functions 
Ek (-D)Vh as initial data does not suffice to show that 

||Ek (D) |. L?? (R) 

is unbounded as k -- 0. 
To get around this, truncate the Fourier transform of vh by setting wh(X) 

1(Vh(f)h ( ))X xg) = X(4, h), X e C (R) x Co(R), X(g)-1 for I4t < 
I //h5 and X(g) 0 for IgI > 1/h 5 + 8, for some e > 0. It is easy to see that 

IIEk(-D)whIIB/2, o = IIWhIIBI2, = O(h /2) 
2 2 
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FIGURE 5.1 
Plot of the initial data Uhk 

h=27 A=.5 t=0. 

as h 0. Next, set 

u (X 
Ek (-D)Wh (x) 

uh is bounded in ?7 independently of h, and since 11E'(-D)WhILoc(R) = 

0(h1/2), it follows that 

11uh(X)16,0= 1 + 0(h1/2). 

Therefore, uk will produce the desired behavior in the approximants. 
Unfortunately, uh(x) is not the regularly shaped wave packet (see Figure 

5.1) that Trefethen's argument requires. Thus, we might expect that the forward 
Crank-Nicolson scheme used on the data uh produces a height increase of only 
0(n') for some a < 1/2. This appears to be the case. For the numerical 
experiments, we approximate the integrals defining Wh(X) for h = 24-, i = 

1, 2, ... , 6, by the fast Fourier transform, and use the result to compute uh by 
the formula above. We use the Crank-Nicolson scheme with periodic boundary 
conditions at x = ?2. 

Figures 5.1 and 5.2 contain plots of the functions Uh and E: (D)uh versus 
x computed at time t = nk. The focussing of the wave train into a spike is 
clear. 
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FIGURE 5.2 
Plot of the Crank-Nicolson approximant computed on the initial 
data Uh. 

3 

h=27, 
7 

A=.5, t=1. 

Since we expect that 

lIE, (D)U, uloo = O(hya), 

we have computed a least squares line fit using as data the log of the ratio of the 
maximum heights of the functions to the height of the function with the largest 
step size 2 5 versus the log of the ratio of the corresponding steps. The result 
suggests that a - .331 with a correlation factor of .994. See Figure 5.3. 

It is clear how to construct such a set of functions for some other purely 
dispersive scheme. Partially dissipative schemes like the Lax-Wendroff schemes 
are another matter, however. The higher-order dissipative effect limits the range 
of x over which dispersion is dominant. However, it can be shown that this 
range increases in size as h tends to zero, and this fact can be used to construct 
examples which show unbounded behavior as for the Crank-Nicolson scheme. 
B. Experiments suggested by Theorem 1.2 and the material in ?2. Next, we 
present three experiments which suggest the usefulness of the normal form for 
predicting the behavior of the difference scheme. In particular, for the Crank- 
Nicolson scheme discussed above, we use the normal form to give estimates 
of: (1) the speed at which the largest peak moves toward the position of the 
discontinuity as h -+ 0; (2) the limiting height of the approximants; and (3) 
the height of the approximate solution at the point of discontinuity. 
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FIGURE 5.3 
Plot relating the logarithm of the increase in height of the ap- 
proximant from t = 0 to t = 1 to the logarithm of the step 
size. The diamonds represent the measured points. The dashes 
represent the least squares fitted line. 

We use Theorem 2.5 as the basis for our predictions. By that theorem, if 
x- 1 = 0(h2/3), then in the limit as h -+ 0 the difference scheme approximant 
will differ significantly from the true solution. The first result we present in 
Figure 5.4 compares the distance of the largest peak to the position of the 
discontinuity of the true solution to the step size. Since we expect that the 
distance goes like ahlfl, we plot the log of the distance versus the log of the step 
size for h = .2, .1, .08, ... .02,.01,.0085 ..., .002. We have computed a 
least squares line fit for this data and found that IaI I 1.95 and ,B .67 with a 
correlation of .998. Note that the true peak can be located only to an accuracy 
of ?h for a given step size. 

From Theorem 2.5, the limiting height of points which satisfy (x - 1) -ah2/3 
will be given by the integral 

(5.2) 5'(c, a) 2. d?Sin(Ca4+3)d 

where c is a constant generated in the construction of the normal form. If we 
consider v as a function of ac, then it is equal to a primitive of the Airy 
function Ai(x): S 1(e'X /3) evaluated at ac, and therefore the maxima and 
minima of v occur at the values of ac which are zeros of the Airy function. 
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FIGURE 5.4 
Plot relating the logarithm of the distance of the largest peak of 
the approximant to the position x = 1 to the logarithm of the 
step size. The diamonds represent the measured values. The 
dashes represent the least squares fitted line. 

These zeros are located along the negative part of the axis at well-spaced inter- 
vals (see [1 5]), and therefore the oscillations in the approximant located on a 
scale of h213 will be more or less regularly spaced and their limiting height can 
be obtained from v. 

When the symbol is analytic (which is true of the difference schemes con- 
sidered), one can construct a normal form which is obtained by an analytic 
map and which is unique. In the C? category, though the normal form is 
not unique, the coefficients B1(y) do have unique Taylor series and thus the 
constant c above is uniquely determined. In the analytic case, the normal form 
can be constructed by different means (see Arnol'd [3]); the alternative method 
yields precise information about the final normal form immediately. For exam- 
ple, the symbol of the Crank-Nicolson operator has the Taylor expansion 

(5.3) E (,) ei2 33 for ) 2' 

and the relevant part of the analytic normal form on the scale of h 2/3 is given 

by e . This gives c = (32)1/3 
We substituted the values a = -1.95 measured directly from the approxi- 

mants computed above and this c into (5.2) and then approximated the integral 
using Romberg integration over a range of [O, 10] and obtained the number 
-1.54. (We checked that the truncated range was sufficiently large by comput- 
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ing over intervals with right-hand points ranging from 5 to 10 and obtained 
the same result to three places each time.) Below, we list the heights at the 
peaks for the values of h used to determine the speed of the peaks: 

step size h height of the largest 
peak 

.2 -1.64 

.1 -1.60 

.08 -1.56 

.06 -1.58 

.04 -1.58 

.02 -1.55 

.01 -1.55 

.008 -1.55 

.006 -1.55 

.004 -1.55 

.002 -1.55 

The data support the conjecture that if xn is the measured value of the 
location of the largest peak of the approximant and a comes from the analytic 
normal form then 

Xn 2l- 1, n -oo. 

Another prediction that is easy to make is the height at which the approximant 
crosses the point of discontinuity. We take the limit as a -+ 0 from above in 
Theorem 2.5 and are left with computing the oscillatory integral 

1 i dX 2 sin('3) 1 2 ! sin(Q) I 
-P.V. e ~dc =- - ()d 
7r Jo 3 7r iq 3 

The last equality is true because the integral on the right is just the value of the 
limit of the translated step function as x I 1 . For comparison, we present a 
chart of the crossing points for the approximants computed above. 

step size h height at x = 1 
.2 .36 
.01 .35 
.08 .35 
.06 .35 
.04 .18 
.02 .22 
.01 .24 
.008 .34 
.006 .34 
.004 .34 
.002 .33 
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FIGURE 5.5 
Plot of the Lax-Friedrichs approximant computed on step data at 
t = 1 . k = .01, A = .5. The dashes show the position of the true 
solution. The solid curve connects the points of the approximant. 

Again, there seems to be good agreement between these data and the predicted 
height. (As for all of the results, the actual location of the crossing point is 
determined only to within ?h, and all of the values above fall well into the 
range of heights associated with this error.) 

C. Some examples of difference schemes. Finally, we present some examples of 
difference schemes. 

Example 5.1. The Lax-Friedrichs scheme for ut + uX = 0 is given by 

U((n + l)k, jh) - (U(nk, (j + l)h) + U(nk, (j - 1)h))/2 
k 

+ U(nk, (1 + 1)h) - U(nk, (j- l)h) 0 
2h=O. 

The corresponding time stepping operator is 

T2 -h+ 2 Th, with A := . 

The operator Ek of the Lax-Friedrichs scheme is a contraction in L (R), for 
1 < p < oo, provided the Courant-Friedrichs-Lewy (CFL) condition k/h < 1 
is satisfied. The associated maximum principle is visible in the results of a 
computation presented in Figure 5.5 with k = .01 and A = .5. 
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FIGURE 5.6 
Plot of the Lax- Wendroff approximant computed on step data at 
t = 1 . k = .01, A = .5. The dashes show the position of the true 
solution. The solid curve connects the points of the approximant. 

Example 5.2. The Lax-Wendroff scheme for ut + uX = 0 is given by 

U((n + 1)k, jh) - U(nk, jh) U(nk, (j + 1)h) - U(nk, (j - 1)h) 
k 2h 

k U(nk, (j + 1)h) - 2U(nk, jh) + U(nk, (j - 1)h) 
2~~~~~~~~~~ 2 h2 

and its operator is 

Ek = (I -A 2I + ( 2 )T_h + )( ) 2 )Th 

The symbol of the Lax-Wendroff scheme is 

Ek(Q) = 1 -A 2(1 - cos(4h)) - iAsin(,h). 

The Lax-Wendroff scheme is stable in L 2(R) provided A < 1. If A is assumed 
constant, then it can be shown that Ek(D) is stable in LP(R) only for p = 2. 
In Figure 5.6, we use the Lax-Wendroff scheme on a single step with k = .01 
and A)=.5. 

Example 5.3. The following schemes are examples of methods which have a 
nonlinear relationship between h and k. First, if we take the equation ut + 

Ux = 0, and apply the difference scheme which uses a forward time difference 
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and a centered x difference: 

U((n + l)k, jh) - U(nk, jh) + U(nk, (j + l)h) - U(nk, (j - l)h) - 

k 2h 

then its symbol is Ek(4) = 1 - ik sin(4h) . A simple computation shows that we 
need to assume that k < ch2 to have L 2(R) stability. For this scheme, with 
k = h2, the expansion at 40 = O is 

EkQ4) = exp{-icik + 63k + kpo(k, 4)}, 

where po(k, x) satisfies the hypotheses of Theorem 3.1. Another example: in 
the Crank-Nicolson scheme, we can take k > h, say k = h 112 and still have 
L2(R) stability. The expansion at 40 = 0 for this method is 

Ek(j) = exp{-iXk + I524 k + kpo(k, 4)}, 

where po(k, 4) satisfies the hypotheses of Theorem 3.1. 

All computations were performed on an IBM PS/2 50 with a math coproces- 
sor using Microsoft FORTRAN 4.0, HGRAPH graphics library and MATHCAD 
2.0. 

APPENDIX A. REDUCTION TO NORMAL FORM 

In this section, we prove the main technical result which is used to bring the 
phase function into a simple form called the normal form. We follow the proof 
given in H6rmander [15]. 

Theorem Al. Let F(4, y) = 2f( 2, y), where f(j, y) is Coo in a neighbor- 
hood of the origin in R x R. Assume that 

f(P, 0) = f(1) 
where f(O) > 0. Then there exist functions -(,j, y) and Bj(y), j = 0,..., 
v - 1, C? in a neighborhood of the origin, such that 

v-1 

F G,y) =_2+ 1+ZE B(_2j 
j=O 

with the properties that Bj(y) = O(y) as y -+, 0 (, y) is odd in X, i.e., 
-(-4 y) = -E(4, y), andfurthermore 

E(0,0)=0 and ,(0,0)>0. 

Remark. This theorem was proved for the analytic case by Levinson [17], 
Chester et al. [7] and Arnol'd [2, 3]. The above result is a consequence of the 
Malgrange Division Theorem and is due essentially to Mather (see [15, 28]). 
We state the Malgrange Division Theorem without proof. 
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Theorem A2 (Malgrange Division Theorem). Let h(q, y) be a real-valued C? 
function in a neighborhood of zero in R x Rn . Assume that 

ah a vl1h avh 
h(,0) =-(0 0)?) = = (0, 0) = 0 and :$ 0. 

Let g(q, y) be any real C? function. Then there exist functions q(q, y), 
p1(y), i = 1, ... , v - 1, all C? in a neighborhood of zero, such that 

v-1 

g(i, y) = q(ij, y)h(q1, y) + Epj(y)qj. 
j=0 

Corollary A3. Let H(c,, y) = h(Q,2 y), where h satisfies the assumptions of the 
theorem above. Let G( ,5 y) = ,g( ,2, y), where g can be any C? function. 
Then there are functions Q(E,, y) = ,q(E,2, y) and pj(y), =0,..., v- 1, all 
C??, such that 

v-1 

G(4, y) = Q(4, y)H(4, y) + E p (y) 2j+I 

j=O 

Remark. The main interest of this corollary is that Q(E,, y) is odd in 4. 

Proof of Corollary A3. An application of Theorem A2 to the pair of functions 
g(ii, y) and h(, y) yields 

v-1 

g(tl, y) = q(q , y)h(q, y) + Epy)qj 
i=0 

for C? functions q and pj, j = 0,..., v - I. Replacing 1 by ,2 and 
multiplying by 4 yields the result. o 

= p ~~~~~2v+1 Proof of Theorem Al. Assume that f(q, 0) = v, i.e., F(4, 0) = , ; this 
can be arranged by a smooth change of variables. The aim is to find functions 
4(y) and b(y) (b (bo, ..., bv,1)) of y in a neighborhood of zero, such 
that 

v-1 

(A-1) F(,, y) + E bjj 
j=0 

is constant. To construct them, differentiate (A-1) with respect to y to get 

( Jv-1 v-1 
(A-2) F( + Z(2j + 1)bj 2|) + F +ZE bl52j+ 1 

k 1j=0 j=0 

(the prime denotes differentiation with respect to y ). By assumption, the first 
.2 bracket is an even function of X, i.e., of the form h(4 , y, b), for some smooth 

h. Likewise, Fy = ,g( ,25 y, b) for some smooth g. Applying Corollary 
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A3 to this pair of functions, we find Q(Q, y, b) smooth and pj(y, b), j = 
0, ..., -1, smooth such that 

v M1 \ I-1 

Fy =Q . F + E(2j + 1)bjg 
2i + Epj(y, b)42j+1 

j=O j=O 

where Q is odd in 4: Q(-4, y, b) = -Q(4, y, b). Inserting this formula into 
(A-2), the desideratum is achieved, provided that 4 and b are chosen to be 
solutions of the differential equation 

4' = Q(4,y, b), b' -p(y, b)- 

Since Q and p are smooth in a neighborhood of the origin, there exist smooth 
solutions 4(E, y, B) and b(B, y) having E resp. B as initial data, i.e., 

(A-3) 4(E, 0, B) = _and b(B, 0) = B. 

By (A-3), '9b (B, 0) = 1. Therefore, by the implicit function theorem, there 
exists a smooth function B(y) such that 

(A-4) b(B(y), y) = 0 

for y in a neighborhood of zero. Obviously, B(0) = 0. This, together with 
(A-1), yields 

i'+1 

(A-5) F(4_ y, B (y)), y) = 2+1 EB ()2+ 
1=0 

We also used that F(_, 0) = W. 

Finally observe that by (A-3), again using the implicit function theorem, 
4(_, y, B(y)) can be inverted to yield _(g, y, B(y)), depending smoothly on 
y in a neighborhood of zero. Since Q is odd in X, -4(-E, y, B) is also a 
solution with the same initial data and hence ( y, B) = - y, B) in 
the whole neighborhood of existence. Therefore, 

- _(-4,y, B(y)) =-(,y, B(y)). 

Since 4(E, 0, 0) = 1, ,(0, 0, 0) = 1 as well; this, together with (A-5), 
yields the desired result. o 
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