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VISCOUS SPLITTING FOR THE UNBOUNDED PROBLEM 
OF THE NAVIER-STOKES EQUATIONS 

LUNG-AN YING 

ABSTRACT. The viscous splitting for the exterior initial-boundary value prob- 
lems of the Navier-Stokes equations is considered. It is proved that the ap- 
proximate solutions are uniformly bounded in the space L? (0, T; Hs+l ()) 
s< 2, and converge with a rate of 0(k) in the space L??(0, T; HI(Q)), 
where k is the length of the time steps. 

1. INTRODUCTION 

Let Q be a domain in the space R 2. An initial-boundary value problem of 
the Navier-Stokes equation is given as 

(1.1) at +(u.V)u+-Vp= vAu+f, xeQ, t>O, 

(1.2) V.u=O, x E Q, t > O, 

(1.3) UIxEaQ = ? 
(1.4) Ujt=0 = uO(x). 

If Q = R 2, then, the boundary condition (1.3) disappears and the problem 
reduces to a pure initial value problem. 

Beale and Majda [4] proved the convergence of a viscous splitting scheme 
for the initial value problem, where equation (1.1) was split in each time step 
into an Euler equation and a linear Stokes equation. This scheme was related to 
the vortex method [6], a numerical approach for high Reynold's number flow. 
Therefore, it is interesting to consider not only pure initial value problems, 
but also initial-boundary value problems. It is known that there is a boundary 
layer near the boundary, and that vortices are created and turbulence may de- 
velop. From the point of view of numerical analysis, the boundary condition 
for the Euler equation is different from that of the Navier-Stokes equation; the 
changing of the boundary condition in each time step creates singularities of 
the approximate solutions. 

Alessandrini, Douglis, and Fabes considered the viscous splitting of the ini- 
tial-boundary value problem in bounded domains [3], where the solutions of 

Received January 9, 1989; revised August 1, 1989. 
1980 Mathematics Subject Classification (1985 Revision). Primary 35Q(10, 76D05. 

(D) 1990 American Mathematical Society 
0025-5718/90 $1.00 + $.25 per page 

89 



90 LUNG-AN YING 

the Euler equation were replaced by polynomials. Cpnvergence was proved, but 
it is not known whether this scheme is numerically realizable. Benfatto and 
Pulvirenti proved the convergence of a scheme for the initial-boundary value 
problem in the half plane [5]. A distribution vortex sheet, whose support is just 
the boundary, was inserted as in the vortex method, and a Neumann condition 
for the vorticity was introduced to replace the velocity boundary condition. The 
combination of those two steps generated an approximate no-slip condition at 
the boundary. 

The author of this paper considered this problem in bounded domains [13]- 
[1 7]; a correction step was applied to maintain the no-slip condition too, but this 
operator was bounded in Hs+ 1, s > 0, the velocity boundary condition for the 
diffusion step was exact, and a nonhomogeneous term was added to the Stokes 
equation to neutralize the error of the above correction step. Convergence was 
proved. Numerical results have been obtained which will appear in a separate 
paper. 

The purpose of this paper is to study this problem for unbounded domains. 
For simplicity we assume that the boundary aQ of Q is sufficiently smooth, 
simply closed, and Q is its exterior. We also assume that flows tend to zero at 
infinity. The problem of the physically interesting case of flows having uniform 
velocity at infinity is still open. A simplification of the proof would suffice for 
the bounded case. 

We now briefly summarize our main results. Denote by x = (xl, x2) or 
2 

y = (YI, Y2) a point in R . The usual notations Hs(Q) and Wm'P(K2) for 
Sobolev spaces, and 11 Ils and 11 Ilm p for norms, are used throughout this pa- 

per. For the problems (1.1 )-(1.4), we assume that V. uo= 0, UO E (H (0))2 n 

(H (Q))2, f e L?o(O, T; (H 3(Q))2 ) n Wl ??"(0 T; (Hl (K2))2) ,and the sou 
tion U EL?(0 T; (H 4(Q))2) n W' ?(0, T; (H512(n))2), where T is a posi- 
tive constant. 

We construct a projection operator 

9: {u e (H'(0))2; V u=O, (u.n, l), =0}-* {ue (H(Q))2; V.u=0}, 

such that 

(1.5) IIEuIIv+? ? CIjuIS+f1 Vs > 0, 

where n is the unit outward normal vector, (, .)a is the inner product of 
L 2(Q), and C is a constant depending on s. We will give an example of 93 
in ?2. 

The following scheme is considered: We divide the interval [O, T] into equal 
subintervals with length k . Then we construct i4k(t), pk(t), uk(t), pk(t) on 
each interval [ik, (i+ 1)k), i = 0, 1, ... , according to the following procedure. 
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In the first step, we solve the following problem on the interval [ik, (i+1 )k): 

(1.6) ak + (ak V)fk + -VPlk = 
(9 t ~~p 

(1.7) V * uk = 0, 

(1.8) Ukfl'E4 (1.8) u~~~~~~k * nIXE,Q = ? 

(1.9) Uk(ik) = uk(ik - 0), 

where uk(-O) U0. 
In the second step-the projection-we construct eak((1 + 1)k - 0). 
In the third step, we solve the following problem on the interval [ik, (i+1 )k): 

(1.10) a uk + IVPk = VAUk + k(I -)Uk((i+ 1)k ) ) 

(1.1 1) V v Uk = O, 

( 1. 12) UklIxEaQ = a 

(1.13) Uk(ik) = EUk ((i + 1)k - 0), 
where I is the identity operator. In these formulas the spacial variable x is 
suppressed for simplicity. 

Our main result is the following: 

Theorem. If u is the solution of problem (I.1 )-(1.4), ik, Uk the solutions of 
problems (1.6)-(1.13), and if 0 < s < 3, then there is a constant ko > 0 such 2' 
that 

(1.14) s u<p (1 uk (t) 1s+ Il "lk (t) 11s+ ) < M 

(1.15) sup (I |u(t) - Uk (t) ||l I1 u(t) - Uk (t) 1l l) < MAk 
O<t<T 

for 0 < k < ko, where the constants ko, M, M' depend only on the domain Q2, 
the constants v, s, T, the operator e, the functions f, uo, and the solution 
u of(1.1)-(1.4). 

The existence and uniqueness of the solution uk is known [9, Chapter 4, 
Theorem 1 and ?2], and using an argument similar to [12], we can get the 
existence and uniqueness of iUk; the regularity of Uk, Uk is also obtained. 
Although the existence in [12] is merely local, we will show that the step length 
is independent of i. 

2. PRELIMINARIES 

In this paper we always denote by C a generic constant which depends only 
on the domain Q, the operator 8, and the constants v, s, T; by C0 a 
generic constant which depends only on the domain Q, the operator 8, the 
constants v , s, T, the known functions f, u0, and the solution u of (1. I)- 
(1.4); by Cl, C2, ... ., Mo, Ml, . ... some other constants which are determined 
according to special requirements. 
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Let E (Q) be a subset of L2 () such that w E E (Q) if and only if c E 
L 2(Q) and there is a u E (L2 ()) such that w = -VAu, where VA = 

(02, -01), Oi = 0/axi. We define a norm 

= 

(QI I ) 
in CO?) . Let E1 (Q) be the closure of CO? (Q) with respect to the norm 
and let Eo(Q) correspond to Co'(.Q). Letting weE E E(Q), we consider the 
boundary value problem 

(2.1) 
{ j = 

( FI4 = 0. 

The weak statement of (2.1) is: find ( E EEo (Q) such that 

(2.2) (VA(o, VANg) = (wi, yl) = (u, VAqg) Vi E E (Q) 
where w = -VAu. It is easy to see that 

(VA(o, VA?o) = [o]2 . 

By the Lax-Milgram theorem, (2.2) possesses a unique solution. Setting V = ( 
in (2.2), we get [(] 2 < julij0[(p]1 , hence 

(2.3) [o]P < ljullo 

If weE E E(Q) and ( is the solution of (2.2), we define a norm 

[w')]o = (II12o + [(]2)1/2 

in E? (Q). It is easy to see that E? (Q) is a Hilbert space. 
Let Dm be a differential operator of mth order, m > 0, Dm = Om/ox0x 2, 

i+] = m. We assume that wlE E (Q) n Hm(Q); then by the regularity of 
the solutions of elliptic equations [2], we have for the solution (0 of (2.2) that 

lomc+2(Q). From (2.2) we get 

(VA(o, VADmjiq/) = (w, Dmaigl) Vy/ E CO (Q). 

Integrating by parts, we obtain 

(2.4) (VADmOif(, VAV) = -(D MCo, aiv) 

We first assume wi E COo (Q); then ( is the solution of the Laplace equa- 
tion near infinity. From the expansion of o at infinity it is easy to see that 
VADmOi( E L2(Q), hence (2.4) also holds for V E El(Q) 

Let trace b = DmOj9I, n; then [1, Theorem 7.53] 

jIb ll12 a < CII(OIIm+2,n' 
where Q' is a neighborhood of OQ. By the Poincar6 inequality and the local 
estimate of the solution (, 

11911in+2,Q' < C(IIIlIm + [(011) 
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Let D mOi = (o1 + (02, where (p Ie EE E(Q) is the solution of 

(VA(?1, VA V) =-(Dm c)yi) Vy E( 

and 92 E El (Q) is the solution of 

(VA22, VA/) =O VV E El (Q), 

921I1 = b. 

92 is a bounded harmonic function, hence 11V(02110 < Cljbljjl/2,a. By (2.3), 

[(1]1 ?< jiDmwjlo. We have 

(2.5) [DmOiZ(]l < C(00jjjlm + [(P]) < C(IIWIIm + [C]oo) 

COOO(Q) is dense in E0(Q)); therefore (2.5) holds for all w E E0 (Q) n Hm(Q) . 
We define [9]m = IIV011m_l for m > 1; then 

[V?0]m+1 < C(j11jjljm + [cOb). 

By the interpolation theorem [10, Chapter 1, Theorem 5.1], we have 

(2.6) [V(P]5+1 < C(jjjijs + [W]0) Vs > 0. 

We denote by Eom(Q) the closure of Co?'(Q) with respect to the norm [*im. 

Now we give an example of an operator 9 which satisfies inequality (1.5). 
Construct X E Co' M() such that X 1 near the boundary Q. Let K' be a 
bounded domain whose boundary consists of simply closed curves F and OQ, 
where F is outside of 0 K, sufficiently smooth, and supp x c d . Let (0 be a 
stream function of u in KY. We consider the following biharmonic problem: 

2 A2? = O, 

(1)11 ~~~01 n 0(0 
An an 

Dir, = ?, A(Dir, = 

Let u' = VA(XD); then eu = u + u' is the desired operator. In fact, if 
uj0Q = 0, then 9oj, = 99J = 0, and 9u = u, so e is a projection. By the 
estimate of the elliptic problem and the trace theorem, 

IIIIs+2 < C (1111s+3/2,aQ + s|/2,dQ) < CIkIIIs+2 < CIIUIIs+i 
hence 

llu'jjs+l ' Cjjujs+1 

which proves (1.5). 
'D can be obtained by the Galerkin scheme. To show that, we give a weak 

formulation of the above biharmonic problem. Let -AD = V; then -AV = 0. 
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We take a test function v E H 1('), vlr = 0; then 'D E H'(Q'), (I, = 

-91an,a Dlr, = O, and 

(V(D, VV)Q/ - (D ,, V) = (V, OV)Qn. 

Let w = -VAu; then -A( = w, and 

(V(, Vv)Q/ - (,, v) =(w,V)Q/. 

Adding up these relations and noting the boundary condition, we have 

(2.7) (VD+V(o,Vv)Q =('+ w,v)QO Vv eH 1(), vlr=0. 

We take another test function v1 E Ho(Q'); then we have y E H' (Q'), V'Ir = 

0, and 

(2.8) (Vy, Vv1) = 0 Vv1 E HO(Q') 

(2.7), (2.8) is the desired weak formulation. 
Finally, we list the definitions and some properties of the Helmholtz operator 

P and Stokes operator A. It is known that (L2 ()) = X ED G, where X = 
closurein (L2 (a))2 of {u E (COo ())2 ;V.u = 0} and G = {Vp; p E E'(Q)}. 

P is the orthogonal projection P: (L 2())2 _ X; consequently, 

(2.9) IIPuIIO < IuIIuO Vu E (L2 ())2. 

If u E (Hs (Q))2, s > 1, then [9, Chapter 1, ?2.4] 

u=V(o+v, V.v=0, v n1I=0, 

and (0 is the solution of 
-AP = u-V , 

09 n = u* nI . 

Like (2.6), we can obtain 

(2.10) [Vo]5 < CIIUII5 Vs > 0, 

therefore P: (Hs(a))2 _ (Hs ())2 
We consider the Stokes equation 

D u 1 
(2.1 1) 0at + -Vp = vAu + f 

at p 

and conditions (1.2)-(1.4). Let u = evtv, p = evtq; then 

v +I Vq = v(Av -v)+evtf. 
at p 

The Stokes operator is defined as [7]: A = -PA + I, with domain D(A) = 

x n {u E (H2 ())2; uIlan = 0}. The solution v can be expressed as 
-' t 

e- vtA j e V(t-T)A Pe-VT f(T)dT, V=e u~0+ 
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hence 

(2.12) u = e ( )u + /e- (-)AIPf(T) dT 
0 

We have [7] 

(2.13) IAae -tA II < C a>o, t>O, 

(2.14) C IIU112 ? IIAauII ? C<uI2Aa Vu e D(A'a), a > 0. 

And if 0 < s < u E X n (Hs(Q))2, then u E D(As/2). if 1 < s < 3 

+2 2 u E D (A) n (Hs+'l (Q)) 2, then u E D(A (s+ 1 )/2 ) [ 15]. 

3. SOLUTIONS OF THE STOKES EQUATION 

In this section we consider problems (2.11), (1.2), (1.3), (1.4) and give some 
estimates. It is assumed that all functions appearing below belong to L 2(Q). 

Lemma 1. If u is the solution of (2.1 1), (1.2), (1.3), (1.4), then 

(3.1) IIu(t)IIo < et (iiuoii + j IIf(T)JI0dT) 

Proof. Taking the inner product of (2.1 1) with u, we get (u, ,u) = v (Au, u) + 

(f, u) . Integrating by parts, we obtain 7IIduII + v(Vu, Vu) = (f, u) . Thus, 

d7IIuII0 < IIuI0 + IIfII 2. By the Gronwall lemma, this gives (3.1). o 

Lemma 2. Let w = -VAu, and let u be the solution of (2.11), (1.2), (1.3), 
(1.4); then 

(3.2) d+IIw)(t)1<2? l<fII2 

Proof. We apply the operator -VA to equation (2.1 1) and obtain 

(3.3) 0ta -vAw - VAf. 

The stream function V is the solution of (2.1). Thus, the weak formulation is: 
find w eE'(Q) and V eEl(Q) such that 

d 
(3.4) -(w,v)+v(Vw, Vv)=-(VAf,v)=(f,VAv) VvE Eo(Q), 

(3.5) (7V, Vx) = (wl, X) VX E E() 

We take x E El(Q); then by (3.4) and (3.5), 

(v vx)= d(Vv, VX) = d+(w, X) =(f, VAX) - v(Vw, VX). 

Let X = /; then 

(3.6) (V at) - f, VA -v (VW, V ) 
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(3.5) also yields 

(v<94{vX)=(<iX) VX E E(Q). 

Set X = w ; then 

Substitute this into (3.6) to obtain 

v 2 
OWw>jf VA ) IfI2+ va 2 

||at lo+ IJ (at S (t)) = iVA OtW < 4 llfllo0 + at0 | 

Therefore, 
v d-ll)1<2?1 

2 I If 1 

which is (3.2). o 

Lemma 3. If uo E D(A) n (Hs+ l (Q))2 0 < s < f, f E L?O (O, T; (Hi (Q))2), 
and u is the solution of (2.11), (1.2), (1.3), (1.4), then 

(3.7) IIu(t)IIs+l < C (iiuoiiS+1 + SUP IIf(T)II) 

Proof. We estimate the terms of (2.12). According to the statement at the end 
of ?2, uo E D(A(s+ l)/2 ). By (2.13), (2.14), 

-vt(A -I) CA(s+l1)/2 -vtA vt CetAA(s+1)/2evtuoI Ile UoIIs+j < CIIA ) e- te tu ll = Clle-vt A e l)/2 v 

< CIIA(s+ )/2e vtuollo < Cllevtuolls+1 < Cll uolls+1 

Take a positive constant r such that s- I < r < 2; then Pf(T) E D(Ar/2) 
VT E [O, T], and 

ft e (tTT)(AI)Pf() dT < C f IIA(s+l)/2 e-V(t-T)(AI) Pf( ) 110 dT 

= t C (s+l -r)/2 -v(t-T)(A-I)Ar/2Pf( )|1odr 

< f (v(t -t-(s+l-r)/2 ev(t-T)Ar/2pf(lodz 

? c (V(t - T)) (s+ -r)/2 AIf( IlIdd 

< c sup Ilf(T)II, ? 
O<T<T 

Now we apply scheme (1.6)-(1.13) to problem (2.11), (1.2), (1.3), (1.4). 
Equation (1.6) reduces to 

(3.8) aUk +IVpk = f 
at + 
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Applying the operator P to (3.8), we obtain Ofik/lt = Pf, thus 

(3.9) ik (t) = Uk (ik -0) + /Pf(T) dT, ik < t < (i + I)k. 

By induction and (2.12), it can be proved that 

[t/k] i ) 
Uk (t) = e -vt(A-I) uo + Z e-v(t-ik)(A-I) j (fi+k P T 

i=O 

(3.10) + X 1 ev(tT)(AI) e ]( I - EJ)Pf(4') d4 dT 

i=o 
+ | e-V(t-T)(A_ I) 

' ([t/k]+1)k 
I ev TkA)](I - EJ)Pf(4') d4'd 

[tlk]k k [tlk]k 

where [] denotes the integral part of a number. 

Lemma 4. If u E D(A) n (Hs+' (Q))2, 0 < s < -, f E L?? (0, T; (Hl (Q))2), 
then 

Iu(jk - 0)jIs+j ? C Jjj+j +SUP IIf(T)IIi) l luk ( -)ll+l<C(llM s+ 
O<Tr<jk 

) 

Proof. We estimate the second term of (3.10); the estimate of other terms is 
similar. Let r be a positive constant such that s - 1 < r < 2; then 

j-1 (i+ 1)k 

Z ev(i j-i)k(A-I) k Pf() d| 

C || (+-'lE-(i)Pf(T-)r2l P) dT| 

i=o s+1 
j-1 (i+j1)k 

< C s A(s+l1)/2e (v(j-i)k(AI) E ePf(T) dT 
i=o 0 

< C p A(s+lr)/2ev (j i)k (AI)Ar/2 f EJPf(T)dT 
i=o 0 
j-1 ~~~~~(i+ 1)k Ie(ikr2P( 1 

O<T<jk ~ (sl-)1 Ojik 

< CZ(v(j - i)k) Ilev+ E P)T/2 ukd 
i=0 

i-1 

< C sup jjf(T)111 Z(vj -? 

O<T<jk 

< C SUP IlfQT)III. W 
0?<T<k 

Lemma 5. If uo E D(A) n (Hs+l (Q))2, 0 < s < -, f E Loo(O, T; (H3 (Q))2 n 
W ??(0, T; (Hl (a))2), u is the solution of problem (2.11), (1.2), (1.3), (1.4), 
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a9 E L?(O, T; (Hs+l (Q))2), and Uk, Uk are the solutions of problems (3.8), 
(1.7)-(1.13), then 

(3.11) SUp (U( - Uk(t)Ils+ H u(t) - uk(t)lls+1) < Cok. 
O<t<T 

Proof. By (2.12), (3.10) we have 

utlkI- 1 )U (i+l )k 
V(t-T)(A-I) -v(t-ik)(A-I) )9pfQr) d 

u(t)- uk (t)= 1 u (e - e EP T)d 
i=O I 

+ I (ev(t-T)(A-I) v e v(t-[t/k]k)(A-I)ePf( d 
[tlklk 

(3.12) - 1Ut/kl+ 1)k ev(t-[t/kIk)(A-I)epf(z) dr 

[t/k]-1 (i+1)k k V(t-T)(A-I) 

+ E ev(T(I 

__ r (i+1)k 

I J (I - E)P(f(T) - f(4)) d4 dT 

t 
-v(t-T)(A-I) 1 f([t/k]+ 1)k 

+ J e htkk (I - E9)P(f(T) - f(4C)) d4 dT. 
tltkk ktltklk 

We estimate the terms in (3.12). With regard to the first term, 
I (J)k (t-)(A-I) -(t-ik)(A-I) 

= ~~ ~~(e e OP T)d 

< c 
i 1)k 

A(s+ )/2e V(t r)(A- (I - e(v(T-ik)(A-I) )E9PfT) dT 

f~~~~~~~~~ 
C ||t( ) A(s+ 1)/2 A )-v(t-T)(A-I) 

- ev,(AI) d E ePf(T) dzT 

Taking a constant s, 3<51 <4, we get 

11?< C ||: j(i+ A(s s )/2 (A- tI)ev(-T)AA (s + el)2V(t-T) 

e-v(A-I) d4 E8Pf(T) dT 

< c j(i+l)k - )+(s s)/2 j T IIA('s ' +1)/2 EPf(T) 1 d4 dT 

ft 

< Ck sup II8f(T)115 1+1k o( 1(I)2d 
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With regard to the fourth term, we take a positive constant r, s - I < r < 2; 
then applying (2.13), (2.14), we get 

(i+1)k -v(t-T)(A-I) 1 (i+ 1)k 

4= , e T (I- 8)P(f(T) - f(C)) d4 dT 
i Jik k Jik s+l 

- l pz+1)k e(s+)/- v(-)(A-) -If)~~' fI - 8)f'j dc; dI43 f dz rd s+ 1 

pi+l)k j j(i+(1)kd 

i / I Ilk I 1(I- 8)P (I)IIr d d4' dz dT 

ki Jik 

ft dz1*maxif(i+k)T 

tC A(s+1-r)/2 Ilk(t 1j(I - ( P)Pf( )dr dd 

O z i~~~~k 

< Ck sup Iif4)i sIr 

The rest of the terms can be estimated in a similar way, and therefore we get 
the desired estimate of IIu(t) - uk(t)IIS+- 

Now we estimate jju(t) - ak(t)IIS+l . Since 11,t s+ iS bounded, we have 
jj u(t) - u( i ik)II+1 ? Cok, t E [1k, (i + 1)k) 

By (3.9), 
I IUk (t)-ukp( - O) l ? Ck sUp pIf(I) "s?1 

0<~~~~~~< T~~k<< 

Therefore, 

IIu(t) - Uk(t)IIS+l < Csk + IIu(ik) - Uk(ik - O)(iSl < C1k. o 

4. SOLUTIONS OF THE EULER EQUATION 

We consider 

(4.1) 5-t + (u * V)u + -Vp = f 

(4.2) V*u=O, 

(4.3) un *lIXE O = O 

(4.4) u_t = uO(x). 

The existence and uniqueness theorem has been proved by several authors. We 

apply the result of [12] here. Although only bounded domains were considered 

in [121, a slight modification of the proof will yield the result for unbounded 

domains. In brief, if uo E (Hm(2))2 fE L(O, T; (Hm(2))2), m > 3, then 

the local solution u E L?'(O, T; (H (Q))2) - 
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Lemma 6. If the integer m > max(3, s + 1), s > -1, IluOlim < ml, uO E X, 
then there exists a constant C > 0 such that if 

(4.5) ko c(Mi + SUPO<t<T llf(t)llm + 1) 

and 0 < t < ko, then the solution u of (4.1)-(4.4) satisfies 

(4.6) IIuII5+1 < C1(IIuOIIS+1 + 1), 

where the constant C1 depends only on the constant T and SUPO<t<T IIf(t)1m. 
Proof. From (4.1), (4.2) we get [ 12] 

IAp = V * f - V * ((u V)u), 
p 

= pff * n + 1u.u, 
O9n + 

1 oJ 

where qij are bounded functions. Analogously to the proof in [12], it can be 

proved that p E Em+ 1 (Q), and 

(4.7) IIVPI/M < C{lif(t)//r + IIu(t)112}. 

By (4.1), (4.7) we get 

a-t 11ullm < COI ulim + lif IIM) 

Therefore, //u(t)Jrm < y(t), where y(t) is the solution of the initial value prob- 
lem y' Cy2 + C//f(t)//r, y(0) = /luol /r. We take 

M=3(//u0//rn+ sup /1 f(t)//rn' 
0<t<T / 

and impose the restriction IYI < M. Then 

0 < y(t) < //uOrim + c IIf(T)JIm dT + CM y(T) dT. 

By the Gronwall lemma, 

(4.8) y(t) < eCMt (I/u/1M+C c tjf(T)/rmdT) 

Wetake t>0 such that t </(CM+C);then CMt< 1 and Ct< 1. (4.8) 
yields y(t) < M. Comparing the upper bound of t with (4.5), it will suffice 
that t < ko for a suitable constant C. 

We consider the auxiliary linear problem 

(4.9) -t 
+ (u V)u + Vit = f, V - = O, 
ii n IXEQ = 0, a/t=O = UO(x) 
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When ui = u0, f f, then by uniqueness ui = u. In a manner similar to 
[12], we get 

IIV7 (t)IIm < C(III(t)IIm + IIu(t)IIm IIu(t)IIm); 
then we can prove 

I d If1(t)II2 < C(IIf(t)IIm + IIU(t)IImIIa(t)IIm)IIa(t)IIm 

But IIu(t)IIm < M, and by Gronwall's lemma 

IIa(t)IIm < ecmt (iiaollm + Cko sup Ilf(T)IIm) 

By (4.5), 

(4.10) IIii(t)IIm < e lluollm + sup IIJ(TI)Im) 

under the restriction t < ko. Taking the inner product of ui with equation 
(4.9), we get (a, U) = (f, ii), hence 

IIa(t)l10 < ?IIioIIo + I iIf(T)I10 dT. 

The mapping (iyo f) -u i is linear, and by the interpolation theorem and 
(4.10), 

IIa(t)IIs+ < c 
(ii0iills+1 + SUp IIlf()IIS+j) 

Letting iuo = u0, f = f, one obtains (4.6). o 

Now, u is assumed to be an arbitrary vector function which belongs to 
L??(0, T; (W 2oo(a))2), and with u(., t) E X, uo E (Hl ())2 n X we let 
w be the solution of 

(4.11) -at + u* Vw =-VAf =_ F, wIt=0 = -VAuo=w) 0 

We denote by 4(y, t; T) the characteristic which satisfies 

a 

Let V E E~ (Q) be the stream function corresponding to uo, and 

T(y) = Vl(4(y, O; t)), 0 = -AT. 

Then we have the following lemma. 

Lemma 7. If uo E D(A), then 

(4.12) 110(t) - 0(t)110 < C2t1u0 111 + IIF(T)II0 dT, . 
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where the constant C2 depends only on the domain Q and the function u. 
Proof. We have 

2 1O~,7IVc1I12 + 
AT = alW V4 + 2ala2v * (aj4j * ak4 + MI4 * M22) + 02 117421 

+O1yi*Ac1 +O2yiAcX2, 

Mij = 6ij + 0(t), A4 = 0(t), 
hence 

(4.13) -AT = w0(c(y, O; t)) + RI, 
where 

(4.14) 11R1 110 = O(t)[Yi]2 

Integrating equation (4.1 1) along characteristics, we obtain 
rt 

w(x, t) =wo( ,(x, 0; t))+ F(l(x, '; t), )dC. 

Since the mapping x -(x, T; t) is measure-preserving, we get 
pt 

11)(t) - 0)0(4(,' O; WH)lO = |; (4, C; t) , C) dC 
0 

rt rt 
< J IIF(4(, C; t), C)Ilo dC = j IIF(C) llo dC. 

By (4.13), 0(t) = w(t) + R1 + R2, and 

rt 
(4.15) 1JR2110o < J IF(C)Illo dC - 

Then (4.14), (4.15) give (4.12). o 

5. SOME ESTIMATES FOR THE VISCOUS SPLITTING SCHEME 

In this section we give some estimates for the solutions of the scheme (1.6)- 
(1.13). We always denote by u, w the solution of problem (1.1)-(1.4), and 
by W)k I 6)k the vorticity corresponding to uk' I k . We recall that we assume 

UO ED(A)fn(H (Q))2, f E L??(O, T; (H 3(Q)) 2)nW (0, T; (H (Q)) ) and 
u E L O(0, T; (H 4(j))2) n Wl ??(0, T; (H 5/2(Q2))2) 

Lemma 8. If 1 <s< 2, and if there is a constant Mo such that 

(5.1) Iiuk(t)II1 < MO 0 < t < T 
and constants C1, ko > 0 such that 

(5.2) II1k(t)IIS+1 < Cl(IIk(ik)IIS+I + 1), ik < t < (i + 1)k, 
for 0 < k < ko, then 

(5.3) sup IIUk(t)IIS+I < M2 
O<t<T 
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for 0 < k < ko, where the constant M2 depends only on the domain Q, the 
operator e, the constants C1, MO, T, s, v, and the functions f, uo. 
Proof. We denote by C3 a generic constant depending only on the domain Q, 
the operator e, the constants C1, T, s, v, and the functions f, uo. Set 
fi (T) = f(T) - (ko V)"k; then by Lemma 4, 

IIuk (ik - 0)IIs+I <?C (IIuoIs+ +Sup IIfO(T)IIk) 

The norm of the nonlinear term has an upper bound 

IlkV)aklll ? C( IIk 1, 4 + IIuk IIlo ,11k112). 

We take a constant q, 1 < q < s. Then using the imbedding theorem [1, 
Theorem 7.57], 

Ilf1 (t)I 1 - IIf(t)II 1 + C(QIIikII3/2 + IIkIIqIIfUkII2) 

and by the interpolation inequality [10, Chapter 1, Remark 9.11, 

IIf (T)II1 < IIf(T)II1 + C(IIkII 1/s II IUkIIs+S 

1+ I Iii-(q- )s I (q-1)/2 1 -/ll s I/s) 

= fII"k + IUkII+ II/UkIIs+l +llIUkII )11k s+ 

Hence, 

(5.4) IIuk(jk - 0)IIs+I < C3 + C SUp ( 112|kI |s ",12qkls ll l+ ls 
0<T<jk 

By (5.2) and initial condition (1.9) we obtain 
sup (I 12"IIkIP- lu2-ll IIkIs+l) + Ci 

IIuk(t)IIs+l ? C3 + C3 s P ( l Uk I I1SII kIIS++S) + 1k q/s qs+ 

Taking the supremum of the left-hand side and applying (5.1), we get 

r + r (2-I/s I1/s supl llUks 
SUp IIkIIs5+l < C3 + C3 kM sup |lukIIs+1 + Mo Sup Ilfk S+ I + Cl 

0<t<T _<< _<t<T 

Then (5.3) follows. o 

If we replace (ak V)ak in equation (1.6) by (u V)u, then it becomes a 
linear equation 

(5-5) fit + pVPk 
= f-(uU*V)u. 

The solutions of problem (5.5), (1.7)-(1.13) are denoted by u*, p*, u, p. 
Let Co*&, w* be the associated vorticities. By Lemma 5, for any 0 < s' < 

(5.6) sup (Ilu(t) - u*(t)IIs,+i, Ilu(t) - u*(t)IIs,+I) < Cok- 
O<t<T 
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Lemma 9. If 1 < 5 < 4, /Uk/is+l < M3, then 

(5s7 Il( (3) u k)((i+1)k-?)II, < C4k (ik<T<(pil)kilU U)Tlt+k 

where the constant C4 depends only on the domain Q, the operator e, the 
constants s, v, T, M3, the functions f , uo, and the solution u of (1.1)- 
(1.4). 
Proof. We denote by C4 a generic constant which possesses the above property. 
By (5.5) and (1.6), 

+ u * Vc9 = F, k + Uk V = F. 

On subtracting the two equations, we obtain 

(5.8) k* ) u () k) = U * () -o)-(U-Uk) V6k 

By Lemma 7, 

Io- (o* - CXk)((i + 1)k - O)IIo 

(59) < C4kll(a4 - Uk) (ik) 11 I 
+ (i+1)k 

+ llu* (h - c -(-k) * VCk 11o dT 

where 0 = -AT', P(y) = y,((y, ik; (i+ I)k)), and yi is the stream function 
corresponding to (ii* - ik)(ik). 

We estimate the integrand. By (5.6), 

I/u * V( - w)1/0 < C41/& - U112 < C4k. 
Let p =2/(2 - s) and q = 2/(s - 1); then 

||(U - uk) * V6@kII0 (u l( -k)*VC0)kl dx) 

< (|n76jk 
i dx) (;u - iukiq dx) 

< //wjk//1,p//U uk/OW,q. 

Using the imbedding theorem and (5.6), 

||Ct)k || 1 ,p < ClII&)k lis' 

I/u - kI/O,q < ClIU - akill < C0(/U* -U-k/Il + k). 
Therefore, 

(5.10) I|U u V(c(* - w) - (u - k) * V6kII0 < C4(IIa* - Uk/Il + k). 

Substituting (5. 10) into (5.9), we obtain 

(5.11) //6(@* ))((i+ 1)k-0)//0 < C4k sup //* (T) - )k(T)//l + k 
iyk<T<(i? 1)k 
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On subtracting equations (5.5) and (1.6), we have 

(5.12) t + pV(p Pkk = (k V)ak -(u.V)u_5F, 

hence 

(U* - Uk)(t) - (U - uk)(ik) 

-- |V(p;* P k) dT + | dT 9 

<~ J i IIV(1 - Pk)IIO dT + J II||o1 dT. 

Similarly as in the proof of Lemma 6, it can be shown that pb* - 1 is the 
solution of 

-A(3 -Pk) =V , 
p 

O(P* -7k) 
O -ij((fk)i(fk)j-(UiUj) O9n xEaij\kIVk/ i'j 

i,j 
= ik1((f4)i(f4 - U)1 - (U -4)ij 

In weak formulation, 13* - 'El (Q), and 

(V(p* P3k)' Vv)n+ (EEij((i4k)i(ak -U)j- (U-k)iUj),V 
i,; A 

= P,VV)Q, VV E El1(Q) . 

We may assume that (p3* - 1k 1),9Q = 0; then 

1113 1kIIO,,9 < C[P Pk]Vl 

Taking v = p* Pk we get 

[P* - 13kIl ? ij ((k i(k- U) - (U -Uk) i Uj) IIP P1 k llO9 

+ IIpSIIO[ -Pk]1l 

thus 

[P* -Pk' < C E ij((Uk)i(Uk-U)j-(U -k)iUj) + IIPSIIO0 

By (5.6), 

(5.14) llIILo 
< 

II(u 
* V)(k - 

u)II0 
+ Il((k - u) * V)AklO 

< C4lauk - ulli < C4(Ila - Ukill + k), 
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and 

ij4((k)k (kU)j - (U - Uk)iUj) 

< C41Ik -Ullo,,Q < C411Uk-Ull?n < C4(II - Ukill + k). 

Therefore, 

(5.15) -'Pk]l < C4(11"* - Uklll + k). 
Substituting (5.14), (5.15) into (5.13), we obtain 

(5.16) lI(ua - Uk) (t) - - Uk k)(ik)llO < C4k ( sup -l fuk Il l +k 
\jik, (i+ 1)k) k 

Let U = VAT. By definition of the function ' we have 

~(i? 1)k d 
T(y) - I(y)= j kVO(4(y, t; (i+ I)k)) d-j(y, t; (i+ 1)k)dt 

(i+l)k 
= -/(+1 j 50 Vl((y, t; (i+ 1)k))uj(4(y, t; (i+ 1)k))dt. 

Since u, 01u, 02u, &1g, a2, are bounded, we get 

1117A(T- V)llo < COk[V121 

that is 

(5.17) IIU - (ua* - uk)(ik)Ijj < COkII(a - Uk)(ik)IIl 
By (5.16), (5.17) we have 

(5.18) II U-(f i -k) ((i + 1)k - O)IIo < C4k sup II) l* U k IIl +k" ([ik, (i+1I)k) 

Since 6 = -VAU, by (5.11), (5.18), and (2.6) we have 

-U (U - u/)((i + 1)k - O)II, < C4k spk<<(i +i (T) )kiiT) + k) 

Butweknowthat Ue(H (Q))2 V-U=O,hence (I-e)U=O. 8isa 
bounded operator, thus 

11(I - 0)(ui* - u-k)((i + 1)k - O)II1 
= I(I - E)(U - (u* - uk)((i + 1)k - 0))Ill 

< C4k sup I(T) 
- 

kkL(T)1 + k) . 5 
ik<r<(i+1)k 

k 

Lemma 10. If 1 < s < 4, k < 1, IIuk(t)I s+l<M2 for ik < t < (i + 1)k, then 

(5.19) IIUk(t)II3 < C5(t - ik)sl2-1 
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on the same interval, where the constant C5 depends only on the domain Q2, the 
operator e, the constants s, v, T, M2, thefunctions f, uo, and the solution 
u of (l.l)-(1.4). 

Proof. Let w = u uk /a t, If = aPk /a t . Differentiating equations (l. l0)-(l. 12) 
formally with respect to t, we obtain 

,9t +-V7r = VAw, V * w = O, Wxeqn = O, 

w(ik) = a t=i (A - I)E k ((i + l)k - 0) 
9 t=ik 

+ IP(I - e) k((i + l)k - 0). 

It was proved in [9, Chapter 4, ?2, Corollary 1] that auk/at is the weak solution 
of it. But the above problem possesses a strong solution 

w(t) e-v(t-ik)(A-I)w (ik); 

therefore, 

auk e- V(t-ik)(A-I) W(ik). 
at 

By (2.13), (2.14), 

||auk ||< CjA' /2e-v(t-ik)(A-I)w(ik) 10 

( 5.20)- CIIA -s/2 e-v(t-ik)(A-I)A(s-1)/2 (ik) 10 
K C(t - ik)s/2-1 IIA(s-1)/2ev(t-ik) w(ik)JII 

< C(t - ik)s/2-1 IIw(ik)Is 1 . 

Applying the operator P to equation (1. 1O), we obtain 

-u _v(A -I)uk + k P(I - 8) uk(( + I)k 0) at 

Consequently, 

IIuk 113 < CIIAuk lll 

uC +Uk+ P(Ie-)Uk((i + l)k - 0) _ 
I 

auk 

C uk(ik)+[auk dT +-P(I- E)auk((+ I)k0) _ 
I 

0Uk 
kik~( aT kv e)k(+lk? at 
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Then by (5.20), 

IIUkII3 < C Uk(ik) + k P(I-J)iik((i+ 1)k- 0) 

+ C(t - ik)sl2- 1 IIw(ik)1s1 

(5.21) ? CjjuVik)jj+ !lP(I - e)ak((i + 1)k - 0)1Il 

+ C(t -ik)sl2 -1 v(A - I)eik((i + 1)k - 0) 
1 

+kP(I - 8)uk((i + 1)k - 0)s- 

By Lemma 9 and (5.6), 

JJIP(I - 9)ak((i + 1)k - 0)jj 

< k IIP(I - E3)(u* - Uk)((i + 1)k - 0)II, 

+ -IIP(I - E)(u - a*)((i + 1)k - ?)II, 

< C5 (sup ||U (T)|| + SUp lfk (T)1 I + Co) < C5. 
ik <Tz<(i+l1)k ik < T< (i+l1)k 

Substituting this into (5.21), we obtain (5.19). o 

Lemma 11. If 1 <s< 5 II 2 kIIs < M3, then 

(5.22) sup (jju(t) - Uk(t)l I, IIu(t) - 1k(t)Il1) < C6k, 
O<t<T 

where the constant C6 depends only on the domain Q, the operator 8, the 
constants s, v, T, M3, the functions f, uO, and the solution u of (1.1)- 
( 1.4). 
Proof. We denote by C6 a generic constant which possesses the above property. 
Taking the inner product of (5.8) with Co* - C0k and noting that 

(U * V( W- -E)) Ct) 1 Z k) ? ol 

we obtain 

l dt 11* -* ?ll o<llu. V (6*-w)-(u-ak)k. -Vck llkll (OklIO. 

By (5.10), the right-hand side is bounded by 

C6 (114*-Uk 112 + k 2) + -1c -Ok 112 

By (5.12), (5.14) we get 

I d * - | < I (112?1 + I* - Ukllo) 

2dt kO - k ) 2 

? C6IIa~- 112 + k 2) + IPi* - UkI112 
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Thus we have 

[c) - 6ikIO < C6([&* - WlkI0 + k2). 
By the Gronwall lemma, 

(5.23) [(0* - * k) (t)]0 < eC6k([(&* - CL 0k)()iko + C6k) 

Using the triangle inequality, 

[(W* - (L)k)(ik)]o < [(&)* - &)k)((i + 1)k - 0)]o 

+ [(()* - (L)k)((l + 1)k - 0) - (o - (L)k)(ik)]o 
< [(6j* - (l)k)((i + 1)k - 0)]o 

+ II(I - E)(i - Uk)((i + 1)k - O)111 
hence, by Lemma 9, 

[(0) - 0L)k)(ik)]O < [(6b* - (6k)((i + 1)k - 0)]o 

+ C6k ( sup II(a* - k)(T)l +k) 
ik<T<(i+l1)k 

k 

By (5.23), 

[( - ) k)(ik)]o < [(6?* - ) k)((i + 1)k - 0)]o + C6k ([(&J) - k)(ik)]o + k). 

Taking the square of both sides of the above inequality and applying (5.23) 
again, we get 

[(a)* 
- C)k)(ik)]O 

(5.24) < [(wi - -)k)((i + 1)k - 0)]o + 2[(N* - W)((* + 1)k - 0)]o 

* C6k([(&i* - 0)(ik)]o + k) + C6k ([(s* - CL)k)(ik)]o + k2) 

< [(W - (-)k)((i + 1)k - 0)]2 + C6k([(6j* - &))(ik)]2 + k2). 

By (1.10)-(1.13), u - U P Pk is the solution of 

aO(u*uk) + V k tk+ _ 
7( p -Pk ) 

aOt p 

(5.25) = IvA(u* - uk) + k-(I - )(i* - ik)((i+ 1)k - O), 
V (u* - Uk) = O, 

(U -Uk)IXeaQ=O, 

(u* - Uk)(ik) = E(i* - Uk)((1 + 1)k - 0). 

By Lemmas 1 and 2, 

II(u* - Uk)(t)IIO ? e (IIu* - Uk)(ik)II 

+ i -'k(I - )(i* - ik)((i+ l)k-0) dT +f pI-)( a> 
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II(w)* - W)k)(t)IIo < jj(a). - wtk)(ik)IIo 

0 - 0~~~~~~~~~~~~~~~~ 
+ 2> -E |k(I - 0) (i* - 

U(i + 
1)k - dT.2 

Using Lemma 9, 

o ?)(t)]2 < e ([()* - wk)(ik)]O 

(ik<T<(i+l1)k)) 

By (5.23), 

( 5.26) [(oj* -C) )i (t)]2 < e k([ (0o - o )(ik)O+C (ci-Z) 
2 

k]2 +2k) ) (5.26)[(* - k)(tI ? ( - wk)(ik)IO + Ck(6*- 6j)i)0+k 
By (5.26), (5.24), (5.23) we obtain 

[(0) - 0jk)((i + 1)k - < (1 + C6k) - +k)(ik + C6k3* 

Using the initial condition (1.9), 

- )k)((' + 1)k - 0)]2 < (1 + C6k)[(j* - )(2k - O)] + C6k3- 

Therefore, by induction, 

[( (l)k)((i + 1)k - 0)]2 < C6k2eC6T 

hence 
* ~~ ~~~~2 2 

II(u - Uk)((i + 1)k - 0)II 1< C6k 
Applying (5.23), (5.24), (5.26), and (5.6), we obtain (5.22). o 

Lemma 12. If i > 0? O < s < 3, and II17k(t)IIs+I < M2 for ik < t < (i + 1)k, 
then II uk (t) IIs+1 ?< M on the same interval, where the constant M4 depends only 
on the domain Q, the operator e, the constants v, s, T, M2, the functions 
f, u0, and the solution u of problem ( 1.1)-(1.4). 

Proof. We apply Lemma 3 to the initial-boundary value problem (5.25) and 
obtain 

II(u* - Uk)(t)IIs+l < C (IIE(a* - ak)((i + 1)k - O)IIs+I 

k k(I e)(a - k)((* + 1)k - 0)III) 

It is known that Iii*IIs+L is bounded, and by Lemma 9 we can estimate the 
right-hand side. The upper bound of II (u* - uk) (t) IIs+ 1 is given, and IIu*IIs+l is 
also bounded; thus the desired upper bound of IIuk(t)IIs+l follows. o 

6. PROOF OF THE THEOREM 

We assume that 1 < s < 3 . Let MO = 2 maxO<t<TII(u(t)l* We take m=3 
and determine the constant C1 in Lemma 6; then we determine the constant 
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M2 in Lemma 8 and the constant C5 in Lemma 10. By Lemma 6, we take 
ko e (0, 1] such that 

(6.1 ) k? C(C5k> + supo<t< Tf li(t) 113 + 1) 

that is, 

c(C5k' +ko0sup IIf(t)3 + ko) < 1, 
0<t<T/ 

which always holds if ko is small enough. By (5.4) we set 

(6.2) M5 = C3 + CM2 /sMls +M 2 

where 1 < q < s. By Lemma 6 we set 

(6.3) M3 = max(CIM5 + C1, M2) 

We determine the constant C6 according to Lemma 11, and the constant M4 
according to Lemma 12, and reduce ko, if necessary, such that 

(6.4) l1uO113 < C5k? 
(6.5) C6ko < M0/2. 

With the constants so determined, we prove by induction that if 0 < k < ko?0 
then 

IIUk(t)I11 <M AO IIuk(t)I1 < MOA IIuk(t)IIs+I < A2 

IIu(t) - Uk(t)IIl < C6k , IIu(t) - Uk(t)IIl < C6kI. 

Two cases are considered simultaneously: (a) j = 0; (b) j > 0 and the above 
assertion is valid for 0 < t < jk. If j > 0, then by (5.4) and (6.2), 

(6.6) lIuk(jk - O)IIs+l < M5- 

(6.6) also holds for j = 0. If j > 0, then by Lemma 10, 

IIUk(jk - 0)113 < C5I2/1 ; 

by (6.4) this also holds for j = 0 . Using Lemma 6 and (6.1), (6.3), Iiuk(t)IIs+l < 

M3 for jk < t < (j + l)k. By Lemma 1 1, 

Ilu(t) - Uk(t)ll1, IIu(t) - Uk(t)IIl < C6k 

always holds for 0 < t < (j + l )k; by (6.5), |iuk(t)II1 < Mo, IUk(t)II I < Mo on 
the same interval. By Lemmas 6 and 8, iIak(t)IIls+ < M2 for 0 < t < (j + l)Ik . 
Thus the induction is complete. 

Applying Lemma 12, we obtain the upper bound of IIuk(t)IIs+1. o 

7. REMARK 

If the Euler equation possesses global solutions, then the conclusion of the 
theorem is also true for k > ko; since there are at most 1 + [T/ko] steps, the 
upper bounds in (1.14) and (1.15) are easily obtained. 
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A sufficient condition for global existence was given in [8, 11], namely the 
initial value u0 and body force f should satisfy, in addition, VAu0 E L' (Q) , 
VAf E L' (Q2 x (0, T)) . Under that restriction we can prove by induction global 
existence for problem (1.6)-(1.9), for any i. In fact, if Cwk(ik - 0) E L , then 
wik(t) E L' (Q) for t E [ik, (i + I )k) (see [ 1 1]). For the operator e4 given in ?2, 
(I-e)a k ((i+ l)k-0) has compact support, so ask(ik) = -VAeA k((i+ l)k-0) E 
LI (Q), and C0k satisfies 

k Ck 

ak = VAok -VA(I - 8)iik W+ 1)k -0) 

W)lt=ik = Wk(ik). 

Using the fundamental solution of the heat equation, it is easy to prove that 

wk(t) E Ll (Q) for t E [ik, (i + l)k) . 
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