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CONVERGENCE PROPERTIES 
OF A CLASS OF PRODUCT FORMULAS 

FOR WEAKLY SINGULAR INTEGRAL EQUATIONS 

GIULIANA CRISCUOLO, GIUSEPPE MASTROIANNI, AND GIOVANNI MONEGATO 

ABSTRACT. We examine the convergence of product quadrature formulas of 
interpolatory type, based on the zeros of certain generalized Jacobi polynomials, 
for the discretization of integrals of the type 

f K(x,y)f(x)dx, -l?<<1, 

where the kernel K(x, y) is weakly singular and the function f (x) has singu- 
larities only at the endpoints ? 1 . In particular, when K(x, y) = log lx - yI, 
K(x, y) = Ix - yIV', v > -1 , and f (x) has algebraic singularities of the form 
(1 ? x)a, a > -1 , we prove that the uniform rate of convergence of the rules 
is O(m - log2 m) in the case of the first kernel, and O(m - 2-a2v logim) 

if v < 0, or O(m 2-2a logim) if v > 0, for the second, where m is the 
number of points in the quadrature rule. 

1. INTRODUCTION 

The numerical solution of linear Fredholm integral equations of the second 
kind, 

b 

(1.1) u(Y) K(Ix - yl)u(x) dx + h(y), 0 < y < b < oo, 

with weakly singular kernels K(I x - yI) containing terms like log Ix - yI or 
Ix - y v > -1 , has attracted the attention of several authors; see for instance 
[2, 10, 18, 22]. For this type of equation, the following theoretical result on the 
degree of smoothness of the unknown u(x) has been proved in [21]; see also 
[7, 15, 17, 18]. 

Theorem. In (1.1), assume h E Cn[0, b], K E Cn I(0, b], for some n > 1, 
and 

IK(')(t)l < yit-P-o for O < t < b and i = 0,1, ... n - 1 

IK(" (t) I > yi?t po i for O < t < to and i = O, 1, ... n- 1, 
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where p and po are real constants such that 0 < p < 1 and p - (1 - p) < po < 
0 p, and yi, y? , to are some positive constants. Then, when the homogeneous 

equation corresponding to (1.1) has only the trivial solution in C[O, b], we have 

ue C[O, b]nCn(0 b] 

and furthermore, 

|u (k) (x)l < const[x Pkl + (b _X-px) ], O < x < b, k = 0, I, . .., n . 

As a consequence of this theorem, if we want, for example, to solve (1.1) 
using a numerical procedure of Nystrom type,' then we have to be able to deal 
efficiently with integrals of the form 

(1.2) K(Ix - yl)f(x) dx, 

where f(x) contains only endpoint singularities of the type (1 ? x)' or 
(1 ? xf log(1 ? x), since it is well known (see [19]) that the rate of conver- 
gence of the numerical method coincides with that of the basic quadrature rule 
we choose to discretize (1.2). 

One possible approach to (1.2) is to use the so-called composite product 
integration formulas on graded meshes (see [18]); for these rules, optimal con- 
vergence results have been given in [18]. 

In [10], the third author has used whole interval product integration rules 
of interpolatory type, based on the zeros of Legendre polynomials, to construct 
a numerical scheme for the linear transport equation; furthermore, in [11] he 
has presented a general procedure for constructing interpolatory product rules 
based on any set of distinct knots. For quadratures of this type, the only known 
general convergence results refer to functions f(x) in (1.2) of class Cn [-1, 1] 
(see also [13]); however, these results appear, as confirmed by the case examined 
in [ 10], to be very pessimistic when we apply them to functions f(x) which are 
smooth everywhere in (-1, 1) except at the endpoints, where they have mild 
singularities. 

In this paper we consider product rules 
1 ~~~m 

(1.3) f K(x, y)f(x) dx EWm, i(Y)f(XM d 
* ~~~~~~~i=l1 

with K(x, y) = Ix -y, Iv > -1, or K(x, y) = logIx - yj, of interpola- 
tory type, based on the zeros of some classes of generalized Jacobi orthogonal 
polynomials. For these we derive convergence estimates which are essential if, 
for example, we want to know the rate of convergence of the corresponding 
Nystrom type method for (1.1). Further, we extend these estimates to prod- 
uct rules which include among their nodes also the endpoints + 1 . Our results 
of ?3 generalize some of those presented in [3, 4, 8, 9], and can be used, for 

IThis procedure is often called product integration; see [18]. 
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example, to obtain convergence estimates for quadrature rules of type (1.3) ap- 
plied to functions f(x) admitting asymptotic expansions with singular terms 
like (1 ? x)f plus a sufficiently smooth remainder. 

2. CONSTRUCTION OF SOME WEIGHTED L1-APPROXIMATION POLYNOMIALS 

FOR THE FUNCTION (1 -X 

Throughout this paper, the symbol "const" stands for a positive constant 
taking on different values on different occurrences. 

The following lemmas are necessary to prove our main theorems. 

Lemma 1. The integral 

Fi(y) = VT71x+r) jx-yl dx, 

with -1 < a < 1, A < 0, v > -1 and IYI < 1, admits the following bounds: 

- If1 if)A/2+v+ 1>0, 

(2.1) F1(y) < const logm ifA/2+v+1 =0, 

tm -2-2v if A/2 + v + 1<0. 

Moreover, when -1 <y<b< I and A/2+v+1 <0, wehave 

(2.2) F1(y) < constm 2n . 

Proof. The proof of the lemma requires standard calculations; a sketch of the 
proof is given here. We consider first the case v = 0, and set d = 1 - a and 
t = m V . When A =-1 we have 

F~() 
2 mA dt =0 Fi )=!jtm dt= (1), 

while for A = -2 

FI(y) = 2 ( t )2 dt < const log (mV +1) 

In the remaining cases, i.e., A # -1, -2, we obtain 

F, (y) < 2m-2A;W + l ) td t 

2-2-A (m@v + 1) (m@vd+ 1) + 1 ] 
L A+ 2 A +1 + 

(2+ 1)(2.+ 2) J 

Thus (2.1) is proved when v = 0, hence also when v > 0 since in this latter 
case, Ix - yIv < 2' . Next we examine the case -1 < v < 0. In particular, we 

-2 -2 consider first 1 - m y< 1 and then -1 < y < 1- 
For 1 - m2 < y < 1 , we split F1 (y) as follows: 

F , -( + m 1x+m') |x-Ylvdx 
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with c > 1, and write 

F1(y) < f (1 -x) (y-x)vdx+m m2 jx ylvdx 

1 1-c2 1 i.e., 

F, (y) < t (y _ x Ax2+) dx + m-A -I - ylv dx 
a 1-~~~~~~~cm-2 

From this last bound we derive (2.1). 
When a < y < 1 - M-2,2 we proceed differently: 

F1(y) {j Y+j} (I 7 +m I) Ix yl dx 

< ja( -x)A /(y -x)v dx+J (v 7+ m 1)(x -y)vdx. 

For the first integral in the last line we obtain 

jY(1 -x)2/ (y-x)vdx =- 1 j(l x)A2 d(y-x)v+l 

1 v+1 2~~/2 - )LfY 
< (y - a)v' ) 2(v +l ) (I - )A 

v 
dx, 

hence upper bounds similar to (2.1). 
The integral 

I(y) =jVY,/ + m')I (x -y)V dx 

needs some more care. When A/2 + v + 1 > 0 we have 
I 

x (A/2 x - 

dx 
= - 

)A/2+v+l | t2(1 
t)2 

d 0(1) fY) </ - / Y)vdx= y (1f - dt = 

When A/2 + v + 1 < 0 we write 

i(y) < | (I -x) A/2 (x_ Y)v dx 
2 m /2 ~M 2 /2 

+(Jjm2)Mf1 (VTi+m')2 dx 

_____ fY+m2 
< 1 - (I x)212d(x - y)v+I 

i' + 1 

+ FM-2vf1 (.2+m dx, 

and easily obtain the bound 0(m-2-A-2v 
The proof of (2.2) is not difficult; one needs only to consider a point c, 

b < c < 1, and break the integral over (-1, 1) into the sum of two integrals: 

2The case -1 < y < a is simpler and we omit it. 
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one over (-1, c) and the other over (c, 1). Since (vT7x + m ')2 < const 
for -1 < x < c and Ix - yI' < const for c < x < 1, (2.2) follows easily. o 

We omit the proof of the following lemma, since it is very similar to that of 
Lemma 1. 

Lemma 2. The integral 

F2(y)=f (VT m ')I loglx-ylIdx, 
with -1 < a < 1, A < 0 and IYI < 1, admits the following bounds: 

I ifA> -2, 

F2(y) < const{ logo2m if = -2, 
m m-2-Alog m ifA <-2. 

Moreover, when -1 < y < b < 1, we have 
I ifA >-29 

F2(y)<const{ logm if =-29 
m-2-A ifA < -2. 

Lemma 3 (see [16]). Given any function f E Cr[-_, 1], r > 0, there exists a 
polynomial Tm of degree m > 2r + 1 such that for x E [-1, 1] 

(2.3) I Tm (x) f (x)0 < const ( ) 9 X (f(r); 1 

k=O, 19,...,r, 

where wo(f;*) denotes the modulus of continuity of the function f in [-1, 1], 
and 

(k) r-k (r) 
(2.4) JTm (x)I < const[Am(x)] c(f ; Am(x)) A k > r + 1, 
where Am (x) = max{m' 1x2 m2} 

Theorem 1. Let a and v be real numbers, with a, v > - 1, a + v > - 1 and a 
not an integer. Given any positive integer s, there exists an algebraic polynomial 
tm of degree m such that 

(2.5) 1(1 - x) - tm(x)Il <? 
cost 

(1 - X)af/2-(s+1)/2 (I + )712+(s+ 1)/2 

-1 <x< 1, 

-2,7 -2 
(2.6) Itm(x)I < constm , 1 -im <x <1; 
moreover 

1(1- x) - tm(x)l Ix - ylv dx 

(2.7) m -2a-2-2v if IyI <1, v < 0, 

<const m -2a-2 iflyl<1 v>0 

2a 2 or-1 <y < b < 1, V > - 

where const is independent of y and m. 
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Proof. Choose an integer s > 1 . Then, consider the function 

g(x)=(l-x) , 

L~ ,i,s = s[o~ il3 wtg(S') 
4 i ' +1 which is of class Csl[-, 1], s'=s+[a+1],3with g ELip a', a a+I- 

[a + 1], and let Tm+s+1 be the polynomial defined by Lemma 3 corresponding 
to the function g. Recalling (2.3), we derive T(k+) (l)=0, k=O, 1,...,s'; 
hence, the polynomial tm(x) := (1 - x) -s Tm+s+i (x) has degree m. Applying 
(2.3) with k =O and r = s', we have 

x) 
CT t jg(x) - Tm+S+ I(x)I 

(1 -X) -tm(X)I = X( )s+l( 

___ _ St (g (SI); (1 _X2)/M ) 

< const (/ (; <x) 

hence (2.5) follows. 
Furthermore, from the Taylor expansion of Tm+s+l about the point x = 1 

we obtain 

Tm+s+I(X) _ 1 (1x)s+ ts'+ ) 
(1 - x)S+l (s' + 1)! (1-x)S+l TM+S+2 I 1 

Inserting the bound (2.4), with r = s' and k = s' + 1, into this last relation, 
we derive (2.6). 

Next, consider the integral 

i1 

|1(i -x _f tm(x)l Ix -ylv dx 
-1 i2-i 1(1 2 

(2.8) = {jlym2 + } 1(1 - x)f - tm(x)l Ix - ylv dx 

A1(y) + A2(y), 

with jyjI 1. The inequalities (2.5), with s > a + 2v + 1, and 1 - x > 

1/4(1-x+ m 1) , -1 < x < 1 - m2, together with Lemma 1, allow us to 
write 

A ( ) < 
const 

-m ( a/2 (s+1)/2 x ylvdx m y)< s+a+l I (Il-) - xyId 

(2.9) const f1 + m1ff-(S+I) - lv d 

< const m-2a-2v-2 

3[a] = integer part of a . 
4 Lip a' is the classical Lipschitz space of order a' . 
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On the other hand, for A2(y) we have 

(2.10) A2(y) < 2(I -x)a Ix - YI dx + X tM(x)1 lx-Ylv dx, 

hence, recalling (2.6), the upper bound 

-2a -2,7-2v-2 
const m 

2 
| IX - ylv dx < const m 

1 - m-2 

if a > 0. When a < 0, we need to examine three different cases: 1 - m-2 < 
-2 < 2 -2 

y < 1, l - 2m ?Y?l- , Y -2m , to derive for A2(y) the 

upper bound constm 2a 2-2v . Bound (2.7) for the cases IYI < 1, v > 0 and 
-l < y b< 1 ,a > -l, is derived in a similar way. o 

Remark. If in (2.9) we choose s < a + 2v + 1, from Lemma 1 we obtain the 
bounds 

const I 1 if s<a + 2v + 1, 
AY)m+c+ login ifs=a+2v+l, 

for IYI < 1, which are worse than the bound of AI (y) obtained for s > a + 
2v + 1. 

The proof of the next theorem is very similar to that of Theorem 1; we need 
only use Lemma 2 instead of Lemma 1. 

Theorem 2. Let a > -1 be not an integer. There exists an algebraic polynomial 
tm of degree m such that 

lI17 * t -2a-2 lg fjj<1 

( - x) m t(x)l l logox - yl I dx < const l fyl< 1 

where const is independent of y and m. 

The following lemma, which is a straightforward consequence of Statements 
4.2, 5.4 and 5.5 in [6], is necessary to prove our subsequent results. 

Lemma 4. Let r, i, m be positive integers with m > max{4(r + 1), r + i}. 
Given any function f E Cr[-1, 1], there exists a polynomial Qm of degree m 
such that for XE [-1, 1] 

(2.11) Q(k) (?l) f(k) (? ) I k = 0, 1, ... , r, 

k=0, l,...,r-i, 
(k) (k) 

X X 
I Qm (x) -f (x)jIcntc 

(2.13) <const [ +?2jrkO, (f(; _ +-?) 
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where oi(f; 3) = SUPO<h< IIAhgllj- 1, Il-ih] 5 > 0, is the ith modulus of con- 
tinuity. 

Theorem 3. Let g(x) = (1 - x)p log( 1 - x), with p > 0 an integer. Given any 
integer s > 1, there exists an algebraic polynomial qm of degree m such that 

(2.14) ig(x) - qm(x)l < 
m2o+s (1- X)[s/2(1 + x)P+sl2, -< x <, 

and 

(2.15) ig(x) - qm(x)l < constm-2p m-2 < X < 

moreover, 

(1 - x)p log(l - x) - qm(x)l Ix - ylV dx 

(2.16) m 2p-2-2v if IYI<1, -1< v<0, 
< constt m2p-2 iflyl <? v>O, 

1. or -1<y<b< 1, > -19 
where const is independent of y and m. 
Proof. Having fixed an integer s > 1, consider the functions 

y(x) = (1 _x)2P+S log(, -x) 

and 
g(x) = (1 -x)p log(1 -x) = (1 -x)7PSy(x). 

Notice that the function y is of class C2P+s [[-I, 1], with cW2(y(2P+s l); )< 
const6, 3>0. 

Let Qr+p+s be the polynomial defined by Lemma 4 corresponding to the 

function y. Recalling (2.11), wehave Q(k)p(1) = ) (k)(1) = 0, k =0, 1,..., 

2p + s - 1; hence the polynomial qm(x) = (1 - x)PSQm+p+s(x) has degree 
m. 

Next, define Pm = Y - Qm+p+s and use (2.12) with r = 2p + s - 1, k = 0, 
i = 2. We have 

jg(x) - qm(x)l 1Pm (X)I 
(1 -x)P+S 

[ \,] 2p+s- 12 ( V/ -X 

-1 < x <1; 

hence (2.14) follows. 
Furthermore, from the Taylor expansion of Pm about the point x = 1 we 

derive 
(X - 1)2p+s-l (2p+s-1) 

By A/g-=\Ag(x) we denote the ith finite difference with step h at the point x . 
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Recalling (2.13), with k = r = 2p + s - 1 and i = 2, from this last relation we 
obtain 

(1 - x)P' (2p +s - 1) 
l(x) -qm(x)l < (2p + s - 1)! IPM (4x) I 

< const(I - x) 'w2 ( ? 1 m + ) 

1-rn <x<1. 

From this last bound we deduce (2.15). 
Now we are ready to examine the integral 

f g(x) - qm(x)l Ix - ylv dx 

(2.1 7) = {ji m2 +11 } lg(x) - qm(x)l Ix - ylv dx 

B1 (y) + B2(y) . 

To bound B1(y), we use (2.14): 

1 m 2 

B ( ) < const (Im 2 X)-s2jX - ylv dx i(Y) < 1- < 2p yI d 
(2.18) m 

< const 1 +m 
-S 

Ix -ylvdx. 2p+s V77 mySx 
m J 

Recalling (2.15), for B2(y) we have 

(2.19) B2(y)const f _x - ylv dx. 

Finally, inserting (2.18) and (2.19) in (2.17) and applying Lemma 1, we deduce 
(2.16). 0 

In a very similar way, with Lemma 1 replaced by Lemma 2, we can prove 
the following result. 

Theorem 4. Let p > 0 be an integer. There exists an algebraic polynomial qm 
of degree m such that 

11( - x)p log( 1-x)-q* (x)I I log Ix-yl I dx 

m -2p-2 log if jy 1 < , < const1 m2p-2 i-ly b 
- 2- if - I < y < b < 1, 

where const is independent of y and m. 

Remark. To our knowledge, the existence of polynomials tm9 t, qm and q* 
which satisfy the bounds given in Theorems 1-4 is new. Furthermore, when 
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in Theorems 1 and 3 above we set v = 0 we obtain that the Li -errors of tm 
and qm are of the same order as the L1-errors associated with the correspond- 
ing best Li-approximation polynomial (see [1, 3]). Notice, however, that our 
polynomials tm and q., which in general are not the best Li -approximations, 
satisfy the extra properties (2.5), (2.6), (2.14) and (2.15), which are essential in 
our proofs of the following Theorems 5-8. 

We are now ready to prove our main convergence results. 

3. CONVERGENCE ESTIMATES FOR PRODUCT RULES (1.3) 

Let w be a generalized smooth Jacobi weight (w E GJB), that is, 

(3.1) (= (x)(1 - x)a (1 + x), -1 <x< 1, 

where a, > -1, ( > 0 is continuous and the modulus of continuity wo of 
p satisfies fg' w((; 3>' d3 <00. Let {Xm,k(W), k = 1, ..., m} denote the 
m zeros of the mth-degree generalized Jacobi orthogonal polynomial 

Pm(W; x) = am(W)Xm + lower-degree terms, am(w) > 0, 

and let Am, k(w), i = 1, ..., m, be the corresponding Christoffel constants. 
For a given weight w E GJB and a bounded function f, the corresponding 
Lagrange interpolating polynomial is denoted by Lm (w; f) and is given by the 
expression 

m 

Lm(W; f; X) = f(Xm k)'m k(W; X), 
k=1 

where for the fundamental polynomials 'm k (W) we have (see [12]) 

(3.2) m, k(W; X) = ami(w) m k(W)Pm-I (W; Xm k(W)) PM (W x) 
am(w) m, X 

Xm,k(w) 

Furthermore, we denote by L(' j) (w; f; x) , i, j E {0, 1 }, the interpolating 
polynomial of degree at most m + i + j - 1 which satisfies 

(3.3) Lm I(W; f; XmIk(W)) = f(Xmk(W)) 1-i < k < m +j, 

where xm0 (w) =-1, Xm m+I(w) = 1. 

The polynomial L('j)(w; f) can be explicitly represented in the form 
m 

L"I) (W; f;x)= E f(xm k(w))hm,k(w;X)+31,Jf(- )hm0(w; x) 
k=1 

+ 1iif(1)hmm+I(w; x), 

where 

hm,k(w; X) 

(3.4) =(1- x)1(l +x)(I -Xm,k(W))Y(l + Xm,k(W))l m,k(w; X) 

for I <k <m 
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hm o(w; x) = 2p (w; P)Pm(W; x), 

hm m+i (W; x) = 2p( ; pm (W; x), 

and 3r,s denotes the Kronecker symbol. The quadrature sum of type (1.3) can 
now be defined as follows: 

Im(f; Y) = XK(x, )m'j(;;)d f1 

m 
= SWm k(Y)f(Xm k(W)) +ljWm,(Y)f( 1) 

k=1 

+ 61, iwm, m+ I (Y)f(1), 

with 

Wmk(Y) LfK(x,Y)hm k(W;X) dx, l-i<k < m +j. 

Practical algorithms to construct the weights {wm k(y) } efficiently are presented 
in [11]. 

Consider the error term of (1.3), i.e., 

(3.5) RMV; Y) K K(x, y)f(x) dx - Im (f ;y). 

Since the weights {wm k(y)} satisfy (see [19, 20]) the relation 

m+1 p 

lim Wm, k (Y)I = K(x, Y)| dx < x , 

which, recalling [13], holds even uniformly with respect to y, we have that 
Rm(f) = O(m-n) whenever f E Cn[-l, 1]. Thus, in the following we may 
assume, without any loss of generality, f(x) = (1 - x) a > - I, and examine 
the behavior of Rm(f)* 

In (3.5) we have Rm(f) = 0 whenever f is a polynomial of degree m - 1; 
hence, given any polynomial Pm_ I of degree m - 1, we can write 

Rm(f; y) = f K(x, y)[f(x) - Pm_ I (x)] dx 

- f K(x, y)[L('j)(f- Pm_1; x)]dx. 

By a proper choice of the sequence of polynomials {Pm 1 }, we will be able, at 
least in the two common cases K(x, y) = Ix - ylv and K(x, y) = log Ix - yl, 
to derive upper bounds for the two terms 

Rm (f; Y) = IK(x, y)I If(x) - Pm I(x)I dx, 
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m (f; Y) = fl K(x, y)I IL ( - ; x)l dxf 

Before proceeding any further, we need another preliminary result. 
For any x E (-1, 1), m E N, we denote by XC(m)(W) = Xm,c(W) the knot 

closest to x, defined by 

xm (w)= {Xm, d (w) if x - Xmd(w) < xm,d+l(w)- x, 

xm,d+l(w) if X Xm,d(W) >Xm,d+l(W)VX, 

where Xm,d(W) 
< x < Xm,d+l(W) for some d E {O, 1,..., m}. Then we 

introduce the function 

m (I1-x m,k(W))O 
m 1 mix-Xm k(W)I 

k$c 

and recall (see [5]) the following lemma. 

Lemma 5. If the weight function w E GJB is defined by (3.1), then for every 
xE [-1, 1] 

m-2p-1 (I' IT + m-I2 

+ (~-~ + m- l2p Ilog m if p 2, 
(3.6) Sp (w; x) < const (2pp 

(VTx+ m-')2p logim if - 1/2 < p < 1/2, 

(JF7+m-)2pl logrm+1 if p> 1/2. 

Theorem 5. Let f(x) = (1 - xf, a > -1 (not an integer) and v > -1, with 
a + v > -1, and assume i, j E {O, 1} in (3.3). When the indices a, JJ of the 
weight w E GJB satisfy the condition 

(3.7) a > -1/2 + 2i, -1 < 8 < 2j + 3/2, 

and a > 0 if i = 1, we have 

f If(x) - LU' (w; f; x)l Ix - ylv dx 

-2-2l-2ogi ifIYI?1, V<0g, 
< const { -2-2a log m if IyI < v> V ,0 

or-1 < y < b < V > -1, 

where const is independent of y and mi. 
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Proof. Let tmi 1 be the polynomial of Theorem 1 and consider the inequality 

P If(x)-Lm"i (w; f; x)lIx-ylvdx 

< f jf(x)-tm 1(x)j Jx _yJVdx 

+ JjL(j (w; f- tm_l ; x)l Ix - yjLdx 

I1 (y) + I2(y). 

The integral I,(y) can be bounded using (2.7), while for I2(y) we need some 
more calculation. First we set rm- I = f - tm_ and recall that rm_ (1) = 0, 
when a > 0, and r 1(-1) = 0; then, since we can take i = 1 only if a > 0, 
we write 

Lm'); rM-; X)j < Ihm,c(w; x)l Jrm_j(xm,c(w))j 
m 

+ hhm, k(W; x)l Irm-l(Xm,k(W))I I 
k=1 
k:lc 

where c is the index corresponding to the closest knot to x. 
Notice that (see [12, proof of Theorem 33, p. 171]) 

limc,(W; x)j < const, -1 < x < 1; 

furthermore, relation (3.2), together with inequalities (1), (14) and (20) in [14, 
pp. 671, 673, 674], gives us 

Ilm,k(W; x)l 

( Xm k(W)) (1 + X (W)) IP+W4kx) 
< conAst mix - xmk(w)I k$Ac. 

Thus, taking into account (3.4), by (2.5) we deduce 

IL(i J() ; Lm'(; rml; X) 

J 

(1xm 
- 

(717) )/2 ( -x)i(1 + X)jlpm(ul; x)| 
(3.8) < const Xmc(+S + ma+s 

M (I Xm k('W1)) ((+a)12+3I4 s/2 I(I + Xmk ()) 12+314+sl2-j 

k=l mIx-xm,k(717)} 
k#c 

for any integer s > 1. Since 

1 -Axm ,(w)>const( l-x+m') 

and 

IP,n(W; x) I C const t-x +m(VTm ( + m)-, 
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(see [14, inequalities (11), (15), p. 673]), inequality (3.8) can be rewritten as 
follows: 

IL"'j)(w; rm_l; x) 

const {'' m 1r) +( 1 + )2i-a-1/2 

(3.9) 

(~/i7ii7+ m') 
M 

(1 - ())(a+ar)/2+3/4-s/2-i 

k=c1 mix Xmkk(W)I 

where 71=2j-J8-1/2. 
Assuming that condition (3.7) is satisfied and i = 0, we apply the first in- 

equality in (3.6) for s > a + a + 5/2; we obtain 

L?')(w; rm-l ; x)i 

< const mS+U 

1 
~~~~+ 

( 1- x + m-)U log m 
[ ma+a+512-s + ( 3 - 

hence 

const 1 0 ~ ~ -' l 
I2 (y) ' {Ma++5g2-s m I 1 +x+m ) Ix-y dx 

+ ca+a+5/2-s J _ 1 -Mx -5/2 yl" d 

+logm 1 x +xm )U ix_ylKdx}. 

Finally, recalling that a > -1/2 and that the condition JJ < 2j + 3/2 implies 
q > -2, the assertion follows by Lemma 1. 
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On the other hand, if i = 1 (a > 0), then (3.9) becomes 

i L0(1 }) (w ; rm _x Cntt(/ + m ) m 'r-i; - MS k ? 

\/ -1 ) 3/2-a \ -1)? + (V'YZ~x+m' 2 V I+mj 

( -xmk (W) )(a+)/2-1/4-s/2 

k= mx xm k(w) I 
k.ic 

that is, using Lemma 5, 

(1O ) ILmr' (w; rm-l; x)l 

( 

r 1- x ? m 'V _ ___ ___ ___ __ 

< const 
S+ a+a+1/ 

+ (vT xm )S logm] 

Also in this case, the proof of the theorem follows by Lemma 1 and the assump- 
tions on a and j. 

Theorem 6. Let g(x) = (1 - x)p log( 1 - x) with p > 0 an integer, and assume 
i, j E {0, 1} in (3.3). When the indices a, fi of the weight w E GJB satisfy 
the condition 

a > -1/2+2i, -1 <,8 < 2j1+3/2, 

we have 

Ig(x) - L("J)(w; g; x)I Ix - ylv dx 

(3.10) m-2P-2-2vlogm if IYI < , -1 <i v<0, 

< const{ m-2P-2logm iflyl < 1, v > 0, 

or- <y < b <1, v > -1, 

where const is independent of y and m. 

Proof. Choosing the polynomial qm 1 of Theorem 3, and proceeding as in the 

proof of the previous theorem, we derive (3.10). O 

We also omit the proofs of the following theorems, since they are very similar 
to those of Theorems 5 and 6, making use of the polynomials t*1 and qm_ 
of Theorems 2 and 4. 
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Theorem 7. Let f(x) = (1 - x)6, a > - 1 (not an integer) and assume i, j E 
{,0 1} in (3.3). When the indices a, fi of the weight w E GJB satisfy the 
condition 

a >-1/2+2i, -1 <,B<2j1+3/2, 

and a > 0 if i =1, we have 

(i,Ij) 
JIf(x)-Lm (w;f;x)lIlogIx-ylIdx 

m - logm iflyl<?' 
< const2 

m-2a-2 logm if-1<y?b<1, 
where const is independent of y and m. 

Theorem 8. Let g(x) = (1 - x)f log(1 - x) with p > 0 an integer, and assume 
i, j E {0, 1} in (3.3). When the indices a, /B of the weight w E GJB satisfy 
the condition 

a>-1/2+2i, -1 <f?2j1+3/2, 

we have 
1.1 

~~(i 
) 

j Ig(x)-L,s (w; g;x)ljlogjx-yjjdx 

(m m 2log2m iflyl?1, 
< 

m-2P-22logm if - 1 < y < b < 1, 

where const is independent of y and m. 

Finally, we observe that all previous results remain true with the term (1 +x)O 
instead of (1 .X)a, or with the term (1 - x2)t ; however, in these cases the 
condition -1 < y < b < 1 should be replaced by -1 < b < y < 1 and 
IYI < b < 1, respectively. 

Remark. In (1.3), we could also assume f(x) = (1 -x)O(1 +x7f0(x), fo(x) = 

(1 - x)f, and consider product rules of type 
1 ~~~~~~~m 

j(I - x)P(I + x)TK(x, y)fo(x) dx Wm i(y)f0(Xm di) 

i.e., introduce the weight function (1 -x)P(1 +x)T in the integrals of Theorems 
1 through 8. The modifications of all our results are straightforward. We find 
that our bounds are not affected by the introduction of the weight function 
above. For example, in Theorems 1 and 5 we have 

- x)(1 + x)I(l x tm(X) Ix - Idx 

m_2p-2a-2-2v if IYI < 1, V < 0, 

< const m-2p-2a2-2 if IyI < 1, v > 0 

1. or -l<y?b<1, v>-l, 
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and 

J - x)"(l + x)Tfo(x) - L(i'j)(w; fo; x)l Ix - ylv dx 

m-2-2r-2(mv 2 +(m2Plogm) if lyl < 1, V < O, 

< const m22 (m T + m2, logiM) if ly l < 1, v> O 

or- y < b < 1, 
iv> -1, 

6. 
respectively. This means that as long as a is not an integer, i.e., our function 
f(x) in (1.3) is indeed of the form (1 - x)O(l ?x7f(x) with p, T known 
and fo(x) sufficiently smooth in [-1, 1], there are no improvements in our 
bounds by interpolating fo(x) instead of f(x). 
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