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LINEAR COMBINATIONS OF ORTHOGONAL POLYNOMIALS
GENERATING POSITIVE QUADRATURE FORMULAS

FRANZ PEHERSTORFER

ABSTRACT. Let p,(x) = xk +---, ke N, , be the polynomials orthogonal on
[—1, +1] with respect to the positive measure do . We give sufficient condi-
tions on the real numbers u; ;> J=0,..., m, such that the linear combina-

tion of orthogonal polynomials 37 j=0 M Jpn has n simple zerosin (-1, +1)
and that the interpolatory quadrature formula whose nodes are the zeros of
Z;":O ;p,_; has positive weights.

1. INTRODUCTION

Let o be a positive measure on [—1, 1] such that the support of do contains
an infinite set of points. In this paper we consider interpolatory quadrature
formulas with positive weights, i.e., quadrature formulas of the form

(1.1) f(x do(x) Zc f(x;) + R,(f),

where -1 <x, <x,<---<x,<1,¢>0 for j=1,...,n,and R (f)=0
for feP,, ,_,, 0<m<n (P, denotes as usual the set of polynomials of
degree at most n). As in [6], such a quadrature formula is called a positive
(2n — 1 -m, n,do) quadrature formula. If o is absolutely continuous on
[-1, 1], with ¢'(x) = w(x), we write also (2n — 1 — m, n, w) instead of
(2n—1-m, n, do). Furthermore, we say that a polynomial ¢, € P, generates
a positive (2n —1—m, n, do) quadrature formula if ¢, has n simple zeros
X, < X, < -+ <Xx,in (=1,+1) and the interpolatory quadrature formula
based on the nodes X; is a positive (2n — 1 - m, n, do) quadrature formula.
Since the degree of exactness is 2n — 1 — m, we get with the help of (1.1)
the well-known fact that such a polynomial ¢, is orthogonal to P, ,  ~ with
respect to do, and hence is of the form

(12) tn(X)=Z,ujpn_j(X),
=0
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where u; € R and p(x) = P , k € N, , denotes the polynomial of degree
k orthogonal with respect to do . For that reason we are interested in condi-
tions on the numbers u ; such that ¢, generates a positive (2n—1-m, n, do)
quadrature formula. For small m, m =1, 2, 3, necessary and sufficient con-
ditions on the numbers u ; can be obtained from the general characterizations
of positive quadrature formulas given by the author in [7, 8] (see in particu-
lar [8, Theorem 2(b)]), by Sottas and Wanner [10] (note that the conditions
given there do not imply that the nodes are in (-1, +1)), and recently by
H. J. Schmid [9]. But for larger m the computational work increases rapidly,
and the conditions become very complex (see the examples given in [9, 10]).
Thus, the problem arises to find “simple and applicable” sufficient conditions on
the numbers ; such that Z;.":O K;p,_; generates a positive (2n—1-m, n, do)
quadrature formula. This problem is studied and partly solved in this paper by
giving first a general sufficient condition on the u ; ’s, from which simpler con-
ditions are derived.

2. PRELIMINARY RESULTS

In order to state our results, we need some known facts on polynomials or-
thogonal on [—1, 1], resp. orthogonal on the circumference of the unit circle

|z| = 1. Let us recall that the polynomials p, = x" 4+ .-+, neN, orthogonal
with respect to do on [—1, +1] satisfy a recurrence relation of the form
(2.1) p,(x)=(x-a,)p,_,(x)—4,p, ,(x) forneN,

where p_, =0, p,=1, o, € (=1, +1) for neN, and 4, >0 for n > 2.

p,(ll) , n € N, denotes the so-called associated polynomial, defined by

' (1 _ 1 +lpn+l(‘x)_pn+l(t)
22) P = g [ P do),

where d, = ff: do(t). Note that the p,(,l) ’s are polynomials of degree n with
leading coefficient one, which satisfy the following recurrence relation (see e.g.
[2, Chapter 3, §4])

23) P () =(x—a,, )y, (x) = 4,,,p 5 (x) forneN,
where the o, ’s and 4, ’s are determined by (2.1).

We are now ready to state the first simple characterization of positive quadra-
ture formulas.
Lemma 1. Let n, me€N,, n > m, and let /tjeRfor J=0,...,m, uy #0.
Then Z;":O I;p,_; generates a positive (2n—1-m, n, da) quadrature formula

if and only if Z;":O 1P, has n simple zeros in (-1, +1) and the zeros of

Z;":O u;p,_; and Z;.":O U jpil_)l_ j separate each other.

Proof. Setting

=N
I
=

~
I
(=]

m
m _ )
up,_; and ) =3 wp,’
=0
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we get for the weights ¢;, using relation (2.2),

+1 t (x t(l) X.
c. = ————'L),———da(x)=d (%) forj=1,
Podar (x=xp)n(x)) O 1(x))
J/nyJ n\"j
Hence the conditions ;> 0 for j =1, ..., n are equivalent to the interlacing
property of the zeros of t, and t(I ]
Next, denote by P,(z) = 2"+, ne N, , the polynomial orthogonal on

[0, 27] with respect to the positive measure

—a(cos¢) for ¢ €0, n],

(2.4) y(¢) = { o(cosd) for g€ (n, 2],

1.€.,

2n . :
| e p e du@) =0 fork=0,....n-1.
0

Note if ¢ is absolutely continuous on [—1, +1] and ¢'(x) = w(x), then v is
absolutely continuous with y'(¢) = w(cos¢)|sin$| for ¢ € [0, 2x]. It is well
known (polynomials orthogonal on the unit circle are studied extensively in [3])
that the P, ’s satisfy a recurrence relation of the type

(2.5) P(z)=zP,_|(z) - an_lP;_l(z) forne N,

where a, € (-1, +1) for n € N, and where P,(z) = z”Pn(z"l) denotes
the reciprocal polynomial of P,. The reason that the parameters a, are real
and have absolute value less than one consists in the facts that y is odd with
respect to m and that y has an infinite set of points of increase (see [3, p. 5]).
Furthermore, let Q ,(2) = z" 4+ ... be defined by the recurrence relation

(2.6) Q,(z)=2Q,_,(z)+a Q:_l(z) forn e N.

Q, is called the associated polynomial of P, . It is well known that both
polynomials P, and ,, n > 1, have all their zeros in the open unit disk
|z] < 1. The following relations hold between polynomials p, orthogonal on

[-1, 1] with respect to do and polynomials P, :

n—1

—n+1 —n+1 ’

(2.7) p,(x)=2"""Re{z7""P,,_,(2)},
(2.8) P (x)=2""" Im{z™"'Q,,_ (2)}/sing,
where x = $(z 4z~ Yy, z=¢", ¢ €[0, n]. The parameters (a,) are given
by [3, (31.4)]
2 UV, — U,
(2.9) a,_,=1-(u,+v,) and a, = voru,’
where

_pn+l(l) pn+1(—l)

and v, =—

= (1) " T,
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Moreover,

(2.10) a,,=0 forneN,, if o(x)=—-0(—x)a.e. on[-1, I].

For example, we obtain for the Jacobi polynomials pff”ﬂ )(x) =x" 4. which
are orthogonal on [—1, 1] with respect to the weight function w®? )(x) =
(1 —x)*(1 +x)?, a, B > —1, that the corresponding parameters aff”ﬂ ) ap-
pearing in the recurrence relation of P,s"’ﬂ )(z) =z" 4+ ... aregiven by

a+ f+1 (@,B) _ B—a

(@, B)
2.11 = = —  fi N, .
(2.10) &y, a+ft+an+3’ G atfintz OTTENo
Hence we get for the ultraspherical case p,(f)(x) = p,(f_l/ 2a-1 2)(x) and w® (x)

=(1-xH""2 that

@) A @)
(212) a1 =—m and a, =0 fOI'nENO,
and in particular for the Chebyshev case, i.e., for the case where A = 0 and
w(x) = (1 —xz)_l/2 , that
(2.13) a,=0 forneN,, Q,(z)=P/(z)=z" forneN,.
Finally, we shall need

Lemma 2. Let n € N and | € Z with 2|l| < n. Assume that the real polynomial
t,(z)=z"+--- has all its zeros in the open unit disk |z| < 1. Then the cosine-
polynomial Re{z‘ltn(z)}, resp. the sine-polynomial Im{z"tn(z)}, z=e",
¢ €[0, n], has n—1[ zeros ¢; in (0, m), resp. n—1[1-1 zeros y; in 0, m),
and their zeros separate each other, i.e, 0 < ¢, <y, < ¢, < - <Y, ;| <
¢, <T.

[

Proof. Since Re{z_ltn(z)} (respectively Im{z_’tn(z)}) is zero at z = €',

¢ € (0, 2m), if and only if
—2/ tn(Z

(z

~

z

=—1 (respectively + 1),

~
~—

n
which is equivalent to

- t
arg 2" 2y arg ﬁ(z) = (2k — 1)m (respectively 2kn),

NE)
k € N,, we get, taking into consideration the fact that argz, (ei¢) / t; (ei¢) in-
creases from 0 to 2nn if ¢ varies from O to 2x, that both Re{z_ltn(z)} and

Im{z_[tn(z)} have 2(n—1) zeros in [0, 27) and that their zeros separate each

other. Observing that Im{z_ltn(z)} has a zero at ¢ = 0 and ¢ = 7, the
assertion follows by the symmetry of trigonometric polynomials. O

3. MAIN RESULTS

First, let us introduce the following polynomials, which play a crucial role in
this paper.
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Definition. For given n € N let the polynomials QV,Zn—l(z) =z'+.-.,ve

{0, ..., 2n — 1}, be defined by the recurrence relation

3.1) Q) on-1(2) =20, 5,1(2) =y, Q) 2y
forv=1,...,2n-1,

where Q, ,,_, = 1 and the a,, ,_,’s are the parameters appearing in the

recurrence relation (2.5) of the P, ’s.
The polynomials Q, 2n1 have the following important properties.

Lemma 3. Let n € N. The following propositions hola’

(a) Hx o( - |az,,_2_,¢| tQ,, an—1( (2)] < HK -0 (I +lay,_H_ K|) Jor |z] <1,
where v € {0, ...,2n —1}. Moreover, Q, y,_y hasall zeros in |z| < 1.

(b) Let ue{O,...,n—1};then(z=ei4’,x=cos¢, ¢ €[0, n])

() =27 Re{z"1Q,, 0 1(2) Py, (2))
and ‘
p;l—)l(x) = 2—n+l Im{z_n+lQz,,,2,,_1(2)92(,,_,,)_1(2)}/ sing.

Proof. (a) follows immediately from (3.1) and [3, (26.6)].
(b) We first note that the recurrence relations (2.5), resp. (3.1), imply (see
[3, (3.6)]) that

(2.5") P (z)=P, (z)-a, zP,_(z) forneN,
and

* *
Q, m(2)=0,_, n—1(2) - Ap1-42Qy_1,2n-1(2)

3.1
( ) forv=1,...,2n-1.

With the help of all these recurrence relations it follows by induction arguments
that

ZP2n—l(z) +P2*n—l(z) = zQu,Zn—l(Z)PZn—l—u(z) +Q:,2n—l(Z)P;n—l—-u(Z)’

which, in view of (2.7) and taking into consideration the fact that for z = e

2Re{z P, _ (z Z)} =z "( m— (z )+P;n_|(z)),

gives the first relation.
Analogously as above, one demonstrates that

ZQZn—l(Z) - Q;n—l(z) = ZQu.Zn—l(Z)QZn—l—u(z) - Q:.Zn—l(z)Q;n—l—u(Z) ’

which in conjunction with (2.8) gives the second relation. O
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The main result is now the following
Theorem 1. Let n,m € Ny, m < n, uy, ..., u, € R and py, # 0. Then
E;.":O W;p,_; generates a positive (2n —1—m, n,dag) quadrature formula if

Z;’;O ﬁijsz-zj,z(n—j)—l(Z)’ where i, = 2j,uj, has all its zeros in the open
unit disk |z| < 1.
Proof. Putting

m m
1 1
()= up, (x) and {2 ()= wpl’ _(x),
j=0 =0

we get with the help of Lemma 3(b) that (z = e’ x = cos¢, ¢ €[0, n])
(3.2) t,(x) = 27" Re{z 7"y, (2)2”" " Py 1 (2))

and
t(l)

i) =27 m{z "y, (2) 27" TQy L 1(2)}/ sing,

where
m .

(33) q2m(z) = ZﬂjZJQZm—Zj,Z(n—j)—l(z)'
j=0

Assume now that ¢,, has all its zeros in |z| < 1. Since the same is true for
P2(n—m)—l , it follows from Lemma 2 that ¢, has n simple zeros in (-1, +1).

Thus, by Lemma 1, it remains to demonstrate that the zeros of ¢, and tf,lll
separate each other.
Using the relation

ReaReb + Imalmb = Re{abd},

where a, b € C, we get for z=¢"

o () Pyt my 1 (D} Rz V05, (2,1 (2)}
on(2) Py (22" 0y (2)Qy, (2}

= 1@y (D) Re{ Py 1 (2)0, (20}
=clgy,(2),  ceR",

Re{z~(""1)

+Im{z”""
(3.4)

where the last equality follows from the known relation [3, (5.6)]

Py my=1 (D)1 (2) + Ry 1 (D) Pa_y—1(2)

2n—-2m—1 ~ +
z"7M . where ¢eRT.

(o1}

Considering relation (3.4) at the zeros X, -l<x <x < <x, <1,
of ¢,(x) and taking into account that by Lemma 2 the zeros of ¢,(x) and

Foy(x) = Im{z"" Vg, (2)Py,_ 0 (2)}/sing, x = §(z+1/z), z = €,
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¢ € [0, ], separate each other, we obtain
)" (x)>0 forj=1,...,n,

n—1

which proves the interlacing property of ¢, and tﬁ,l_)l and thus the theorem. O

Remark 1. From the general characterization of positive quadrature formulas
given by the author in [7, Theorem 2] it follows with the help of relation (3.2)
that the sufficient condition of Theorem 1 is also necessary if 2m < n.

From Theorem 1 we obtain, using some ideas of Cauchy and Kojima on the
location of the zeros of polynomials (see [4, §30, in particular Exercise 6]), the
following sufficient conditions which are easy to verify.

Corollary 1. Let n,m € N,, m < n, py,..., 4, € R and p, # 0. Put

A0=|/‘0|:
I T U lay, D
(3.5) Aj=2]|,uj| g (=J=DK forj=1,...,m,
Hic:O (1- |a2(n—l)~rcl)
andlet j,€{0,1,...,m}, j,:=0<j, <---<j,. bethose indices for which
A, #0forv=1,... ,m" and A; =0 for je{l, ..., mN\{jo, Jis-rs Jp}-

Then each of the following two conditions is sufficient that Z}":O U;p,_; generates
a positive (2n—1—-m, n, do) quadrature formula:
(1) 32, 4; < 4.
(2) 4; >24; for v=0,...,m" -2 and 4,

>A, .
m- —1 jm'
Proof. First let us note that condition (2) implies condition (1). In fact, apply-
ing successively the inequalities given in (2), we obtain
A 2 A, +4; 24, +4, +4, > > Z{ A, +4;
v=
which is condition (1).
Next we show that condition (1) implies that
m
* — ~ _J* Y
42,,,(2) ’_Z#J’Z Q2m—2j,2(n—j)—l(z)’ ﬂj—Zﬂj,
j=0
has all zeros in |z| > 1, which is equivalent to the fact that

m

L
Z/‘jz Qom-2j.2(n-j)-1(2)
j=0

has all zeros in |z| < 1 and proves the corollary. Assume, to the contrary, that
q;m has a zero { in |z| £ 1. Then it follows, using from Lemma 3 the fact
that Q;m,Zn—l has no zero in |z| < 1, that

36 gl =[Sy ¢ 22 O Sy SRy
: j=1 Q2m.2n—l(C) i
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where the first inequality follows with the help of Lemma 3, which is a contra-
diction to (1). O

Let us give an illustrative
Example. Let n, m € Ny, n > m, and suppose that the parameters a, satisfy
O0<1l/y<l-]a,| forv=2(n-m)—1,...,2n-2.
Then we get by Corollary 1 that

Py lPps il <2277,
generates a positive (2n — 1 — m, n, do) quadrature formula, where because
of (2.10) the condition on |u,| can be replaced by |u,| < Q2y)™"™ if g is
odd. In particular, we obtain for the Jacobi weight by a rough estimate of the
parameters aff’”g ) from (2.11) that

a, a, -3
PP — Rl <27,
generates a positive (2n — 1 —m,n, (1 — x)*(1 + x)ﬁ ) quadrature formula
for each n > m + max{2,a+ f + | + 2|8 — a|}. In the ultraspherical case
a=f=4-1/2, A€ (-1/2, ), the conditions on |u,|, resp. n, can be
replaced by |u,,| < 272" and n > m + max{4, —34}.

Let us note in this connection that the conditions of Corollary 1 are in general
too rough to get the known results (see [1]) on the positivity of (n — 1, n,
(1 —x)*(1 + x)ﬁ) quadrature formulas generated by pfla’b) ,a,b>-1. But
this is not surprising because the proof of such results requires very special
properties of Jacobi polynomials.

In order to weaken the sufficient conditions of Corollary 1, a better estimate
for maxy_, ), IQ;‘m_zj’2("_1.)_l(e"”)/Q;m,Zn_l (¢'")| than that one used in (3.6)
would be needed.

In the following, let 7, , resp. U,, denote the Chebyshev polynomial of
the first, resp. second, kind of degree n and Tn (x) = 2! T, (x)= X",
resp. Un(x) = 2_"Un (x) = x"+--- . For the case of the Chebyshev distribution
do(x)=(1 —xz)_l/ 2dx we get in view of (2.13) particularly simple conditions,
which hold also for the distribution do(x) = (1 — xz)l/ 2dx.

Corollary 2. Let n,m € Ny, m < n, puy,..., 4, €R, uy # 0, and put
;= 2 ; for j=0, ..., m. Then the following propositions hold:

1/2)

(a) E;'n:o u.T . generates a positive 2n—1-m, n, (1 —x? ) quadrature

J n—J
Sformula if Z;.":O ﬂjz’"_j has all its zeros in the open unit disk |z| < 1. In
particular (besides conditions (1) and (2) of Corollary 1), the condition
(3) g>py>--->p, >0
is sufficient that Z;"ZO K 7’n_ ; enerates a positive 2n—1-m, n, (1-x
quadrature formula.

2)—]/2)
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(b) The sufficient conditions given in (a) (including conditions (1) and (2) of
Corollary 1 with a, = 0 for n € N,) are also sufficient for E;’;O w0, to

n—j
1/ 2) quadrature formula.

generate a positive 2n—1—-m,n, (1 — xz)
Proof. (a) The first statement follows immediately from Theorem 1. Since
by the Kakeya-Enestrdom Theorem (see, e.g., [4]) condition (3) implies that
Yo f;z" 7 has all zeros in |z| < 1, part (a) is proved.

(b) We shall demonstrate, independently from Theorem 1, that E;":O uw.U

Jjon—j
generates a positive (2n—1—m, n, (1 —xz)l/ 2 ) quadrature formula if E;'; ol

2™/ has all zeros in |z] < 1, which also implies all other statements of (b).
Setting

and

2"t,(x) = > ,U,_,(x) = Im{zr,(2)}/sing,
j=0

we obtain, since, as is well known, the associated polynomial of U, is Uk_l ,

k € N, , that the associated polynomial tftl_)l of ¢, with respect to (1 — xz)l/ 2

is of the form

2" x0) = Y iU, (x) = Im{r,(2)}/sin .
Jj=0
Observing that
I I
67 Relnen e - Refer, (e <

we deduce with the help of Lemma 2, by considering relation (3.7) at the »
zeros of ¢, , that ¢, and tﬁ,l_)l have interlacing zeros. In view of Lemma 1 the
assertion is proved. 0O

The sufficiency of condition (3) for the Chebyshev weight (1 — x*)™"/% is
due to C. A. Micchelli [5], who derived this result in order to demonstrate
that the ultraspherical polynomials pff) , 0 < 1 < 1, generate a positive
(n=1,n,(1- xz)_'/ 2 ) quadrature formula. Let us mention in this connec-
tion (for a different approach see [5]) that for —1/2 < 4 < 0 the positivity
can be demonstrated with the help of condition (1), using the simple fact that
T, (1) =1 for k € N,. Proceeding similarly as in the proof of Corollary 2(b),
it could also be demonstrated that Corollary 2(b) holds for the more general
weight (1 — x)*(1 +x)?, a, B € {-1/2, 1/2}, a result which has been given
by the author in [8, Corollary 2], using different methods.
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Using the fact that the sufficient condition of Theorem 1 is also necessary if
2m < n (see Remark 1), we get
Corollary 3. Let n,me Ny, 2m<n, uy, ..., u,, €R and u,, p, € R\{0}.
For ke {0, ..., m} put AY =2"|u,| and

C2m—1-2j
szo T(1+ 'az(n—j—l)—x‘)

(k) J . .
A7 =2, forj=0,...,m,j#k.
J J 2m—1-2k ) s s
I (1 =1y —k—1)=k)
If thereisa k € {1, ..., m} such that A}(k) > Z;.":O,#k A;k), then Z;"=Ouj-

Py does not generate a positive (2n —1—m, n, do) quadrature formula.
Proof. In view of Remark 1 it is sufficient to demonstrate that

m
* '_ - J A* _ J
4,,,(2) = § :,ujz sz_zj,z(n_j)_l(z), Hp= 2 Kjs
Jj=0

has at least one zero in |z| < 1. With the help of Lemma 3 we get on the
circumference |z| =1

X 2m—1-2k
2" Qo a2ty —1 (2] 2 1ty | H (1- |a2(n—k—l)—x|)
k=0
m 2m—1-2j
> Z ‘ﬂjl H (1 + 'aZ(n—.j—[)—K')
j=0 k=0
ik

m
> ZﬂijQ;m—Zj,Z(n—j)—l(z) .
J¢
Using the fact that Q;m—Zk, An—k)—1 has no zero in |z| < 1, this implies by
Rouché’s Theorem that q;m has k zeros in |z| < 1, which proves the asser-
tion. O

If one is interested only in such linear combinations of orthogonal polyno-
mials whose zeros are simple and are in (—1, +1), conditions (1) and (2) can
be weakened in the following way.

Theorem 2. Let n,m € Ny, m < n, uy,..., 4, € R and pu, # 0. Put
|By| = 1y ‘
) 2n-2
B =2/ [I (-lal) forj=1,....,m,

k=2(n—j)—1

andlet j,€{0,1,...,m}, j,:=0<j, <---<j,. bethose indices for which
B, #0forv=1,..., m” and B; =0 for je {1, ..., mN\{g> Jy» -+ s Jpm}-
Then each of the following two conditions is sufficient that Z;’;O 1D, has n
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simple zeros in (-1, 1):

(1) T, B, <B,.

2" B, >2B;, forv=0,....,m" ~1and B, >B .
Proof. Since by (2.7)

m m

—_ 1 ~ i
E yjpn_j(x)=2 """ Re E ,uijPZ(n_j)_l(Z) ’
j=0 Jj=0

where [, = 2u ;» we deduce with the help of Lemma 2 that E;”:O 1P, (%)
has n simple zeros in (—1, +1) if Y7, ujszz"(n_j)_l has all zeros in |z| > 1.
Observing that by relation (26.5) of [3]
Pz*(n—j)—l(z) 1

P i(2) | T ISt (1 = a])

the assertion can be proved in the same way as Corollary 1. 0O

orj=1,...,m,

lzI<1
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