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QUADRATIC POLYNOMIALS WHICH HAVE 
A HIGH DENSITY OF PRIME VALUES 

G. W. FUNG AND H. C. WILLIAMS 

ABSTRACT. The University of Manitoba Sieve Unit is used to find several values 
of A (> 0) such that the quadratic polynomial x2 + x + A will have a large 
asymptotic density of prime values. The Hardy-Littlewood constants which 
characterize this density are also evaluated. 

1. INTRODUCTION 

Let fA(x) =-X + x + A (A E Z, A > 0) and let PA(n) represent the 
number of prime values assumed by fA(x) for x = 0, 1, ... , n. In 1772 Euler 

2 discovered that P41(39) =40. Indeed, the polynomial x +x+41 is well known 
to all students of number theory because of this remarkable property. Consider, 
however, the much less famous polynomial x 2+x+27941 discovered, according 
to Karst [4], by Beeger in 1938. Here P27941(39) = 30; but, P27941(1000000) = 

286128, whereas P41(1000000) = 261080. It appears, then, that while f4l(x) 
starts off very well in the production of primes, the rather more modest f27941 (x) 
begins to better its famous rival as the values of x become large. 

This phenomenon could have been predicted from Hardy and Littlewood's [3] 
Conjecture F. For the case of polynomials of the form fA(x) this conjecture 
can be given as 

(I1. 1 ) PA (n) -C(D)L A(n), 

where D=1 - 4A, L (n)=2f dx/ log fA(x, and 

(1.2) C(D) = J7 (1 - (D/p)/(p - 1)). 
p>3 

The product in ( 1.2) is taken over all the odd primes p, and by (-/p) we denote 
the Legendre symbol. Shanks [14] has computed C(-163) = 3.3197732 and 
C(-1 11763) = 3.6319998. Thus, on the basis of Conjecture F one would 
expect that for sufficiently large values of n, P27941(n) would exceed P41(n), 
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and this is what we have observed. Indeed, to five significant figures 

P41 (100000)/L41 (1000000) = 3.3203, 

P27941 (1000000)/L27941 (1000000) = 3.6397, 

both of which are quite close to their respective C(D)-values. 
The purpose of this note is to find other polynomials fA (x) which have a high 

asymptotic density of prime values. We will do this by determining those values 
of D for which the Hardy-Littlewood constant C(D) should be large, and then 
evaluating C(D) to eight significant figures. If Conjecture F is true, then the 
corresponding values of A should provide us with the desired polynomials. We 
point out here that all previous numerical tests of Conjecture F have tended 
to confirm its truth (see Shanks [9-11]). 

2. STRATEGY FOR FINDING VALUES QF D 

We first note that since we want fA(x) to assume prime values, then A 
must be odd; hence, -D = 4A - 1 -3 (mod 8). In order to maximize the 
asymptotic value of PA(n), we can maximize C(D). According to (1.2) this 
means that we would want (D/p) = -1 for as many of the small primes p 
as possible. As noted by Lehmer [5], we can also look at this from the point 
of view of restricting the number of possible small prime divisors of fA (x). 
If (D/p) = -1, then p cannot divide fA(x) for any value of x; thus, if 
(D/p) = -1 for many small primes p, then the composite values that fA (x) 
can assume are considerably restricted. It follows that fA (x) should frequently 
be a prime. 

If we let Nr denote the least positive integer such that Nr 3 (mod 8) and 
(Nr/p) = -(- I/p) for all odd primes p < p, , where Pr is the rth prime, then 
-Nr should be a good candidate for the kind of D-value that we are seeking. 
This was the strategy used in [5] to find values for D. In Table 2.1 we give all 
the values of Nr up to r = 42. 

The values of Nr for r < 28 are given in [5]; the values of Nr for r < 38 
are given in Lehmer, Lehmer, and Shanks [6]; and the values of Nr for r = 39, 
40, 41, 42 were found by D. H. Lehmer but have not been previously published, 
except for N42 which appears in Shanks [15]. 

To find all these values of Nr, Lehmer made use of mechanized or elec- 
tronic number sieving devices. Such specialized machines are small, fast, and 
much less expensive than general purpose computers. In the production of the 
numbers presented in this paper we made use of the University of Manitoba 
Sieve Unit (UMSU) [8]. This device solves systems of linear congruences at a 
trial rate of 133,000,000 numbers per second. Thus, in about three months of 
continuous use, we were able to examine numbers up to 1015. 
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TABLE 2.1 

r_|_Pr N r Nr 

2 3 19 23 83 114148483 
3 5 43 24 89 269497867 
4 7 43 25 97 269497867 
5 11 67 26 101 269497867 
6 13 67 27 103 269497867 
7 17 163 28 107 585811843 
8 19 163 29 109 52947440683 
9 23 163 30 113 52947440683 

10 29 163 31 127 71837718283 
11 31 163 32 131 229565917267 
12 37 163 33 137 229565917267 
13 41 77683 34 139 575528148427 
14 43 77683 35 149 1432817816347 
15 47 1333963 36 151 1432817816347 
16 53 2404147 37 157 1432817816347 
17 59 2404147 38 163 1432817816347 
18 61 20950603 39 167 6778817202523 
19 67 36254563 40 173 16501779755323 
20 71 51599563 41 179 30059924764123 
21 73 96295483 42 181 30059924764123 
22 79 96295483 _ 

Note that Beeger's number, 111763, is not in Table 2.1, yet it has a better 
C(D)-value than C(-77683) = 3.3003388 < C(-163).' If we put Nr I = Nr 
above and define Nr i (i > 1) as the least integer greater than Nri such 
that Nr 3 (mod8) and (Nr i/P) = -1 for all odd primes p < PrI then 
111763= N Thus, instead of attempting simply to tabulate more Nr 43,2 'r 

values than those given in Table 2.1, we used UMSU to compute Nr,i for 
r < 40 and i < 10. For r = 41 we let UMSU continue to find values of 

15 
Nr i until these values exceeded 10 . We were thus able to find all N41, i for 
i < 15. Having these candidates for D, the next problem is to determine those 
that yield the largest C(D) values. Unfortunately, the product (1.2) converges 
very slowly; hence, we must develop an alternative method of computing C(D), 
especially for large values of D. 

3. COMPUTATION OF C(D) 

Efficient methods for evaluating C(D) have been developed by Shanks [10, 
11, 14]. In [10, 11] he discovered a method of finding C(D) which appears 
to work well when D is fairly small, and in [14] he provided a method of de- 
termining C(D) to high accuracy, which will work when D is larger. Indeed, 
he provides values for C(-163), C(-77683), C(-111763), C(-289963), 
C(-991027), the latter value being 4.1237067, the largest C-value known 

IShanks [14] gets 3.2999354... for C(-77683); however, we evaluated this number in two 
different ways and still got 3.3003388. Thus we feel that some minor error crept into Shanks' 
evaluation of C(-77683) . Our results agree with all of Shanks' other evaluations. 
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until now. If we put 

00 

L(s, x) = Ex(n)n-s = rf(l - (p)lps)-l 
n=1 p 

where x(n) = (D/n) and (./n) is the Kronecker symbol, then all of these 
methods require that L(s, X) be computed for various values of s. If h is 
the class number of dl(v/D), the value of L(s, x) can be determined fairly 
readily when the values of h Epstein zeta functions are known. As Shanks 
[14] can rapidly evaluate these Epstein zeta functions to high accuracy, he can 
then accurately compute C(D). However, if h is large, this method can be 
quite slow. It is, however, the best method to use when C(D) is needed to 
great accuracy. Also, this technique, unlike the one we will discuss below is 
unconditional. 

As it was necessary for us to calculate C(D) for many D-values, some of 
which were very large, we needed to develop a faster method to compute C(D) . 
We also assumed that evaluating C(D) to eight significant figures would be 
adequate for the purposes of this note. 

We first point out that if we use an idea in [10], it is a simple matter to show 
that 

C(D)L(1 , X)L(2, x) I 1 f \ ( 2 \ 

C(4) =2 pID p4 ) >( q(q - l1)2) 

where the first product on the right is taken over all the primes p which divide 
D and the second is taken over all primes q such that (D/q) = 1. Since 
C(4) = 7 4/90 and 

(3.1) 7rh/v'FIT = L(1, X), 

we get 

(3.2) C(D) 180h L (2,Z1) p 
I 1II( Il2 

pjD q?3 /( 

Put 

F, (Q) = 
rj lp P(-X(P)), T, (Q)-rI PI/(P -X(P)), 
p<Q P>Q 

F2(Q) = rj P/(P - x(P)), T2(Q) = fP /(P - 
P<Q P>Q 

F3(Q)= H (1-(q 12)2 T3(Q)= J(1-q(q -)2)* 

By examining (3.1) and (3.2), we see that two problems arise in computing 
C(D): (1) evaluate L(1, X) to sufficient accuracy to determine h, (2) find Q 
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such that 

180h F2 (Q) p4D (iP$) 

approximates C(D) to eight significant figures. 
It is a simple matter to show that 

log T2(Q), + I logT3(Q) = X(p)/P2 + 
p>Q 

where 1311 < 2/Q2 (Q > 10). Also, 

I Og TI(Q)| I/(P) IP + 12' 
p>Q 

where 1621 < 1/Q. If we set 

B(Q) = log IDI log Q (log Q) ) 
7r log Q (log Q)2 ~~~~~7r 

then by using the method of Cornell and Washington [2], we get 

(3.4) 1 log T2(Q)l + I log T3(Q)l < B(Q)(8 + 13log Q)/(9Q312) + 2/Q2 

and 

(3.5) 1log T1(Q)l < B(Q)(4 + 3 logQ)/Q"/2 + 1/Q = A(Q). 

It is important to note that the proof of these inequalities requires the truth of 
the Riemann Hypbthesis on L(s, X). Thus, the method that we develop here 
for finding C(D) is contingent on the Extended Riemann Hypothesis. 

Now if 
I log T2(Q)I + I log T3(Q)l < b, 

then (3.3) will approximate C(D) to r significant figures if b < log((1 + 
12+ 4k)/2), where k = 101-r/2. Hence, by (3.4), if D 1015, then Q = 106 

in (3.3) will yield C(D) to eight figures. Of course, for smaller values of D, 
smaller values of Q can be used in (3.3). To test this, we evaluated (3.3) for 

6 6 
the largest D-values we found with Q = 10 and Q = 5 10 . In every case, 
both computations agreed to eight significant figures. 

There remains the problem of determining h. For this problem we used a 
modification of the idea of Lenstra [7]. If, for a fixed Q, we put 

7r B = DI-F1 (Q) exp(A(Q)), h = Ne( DD1F1 (Q)/7r), 

k = DjF1(Q)/1r -h, B2 = lkl + B1 - F(Q)/2, 

then by (3.1) and (3.5) we have 

h < B I, h-hl < B2. 
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Here, by Ne(x) we denote the nearest integer to x. Now if we know a divisor 
hi of h such that 

(3.6) h/hl - B2/h, - [B2/h, + h/hl] > -1, 

then h2 = [B2/hI + h/hI] is the only integer in the interval I given by 

h/hl - B2/h1 < x < [B2/h1 + h/hl]. 

Since lh/hl - h/hl I < B2/h1 , we see that h/hl must be in I. It follows that 
h = h1h2 when (3.6) holds. 

If (3.6) does not hold for h1 = 1, we can use the baby step-giant step method 
of Shanks [12] to find a divisor hi of h such that hi > 1. In fact, since most 
of the class groups of Q(vKDi) are cyclic or close to it (see Cohen and Lenstra 
[1]), this technique rapidly provides a value of h1 which is close to h in value; 
hence, (3.6) is usually satisfied very quickly. 

4. NUMERICAL RESULTS 

The method described in ?3 was programmed in FORTRAN with some as- 
sembly language subroutines and run on an Amdahl 5870 computer. For a given 
D, a value of Q was determined which would guarantee eight figures of accu- 
racy for C(D) by (3.3). The values of F1(Q), F2(Q), F3(Q) were evaluated 
simultaneously in double precision by the assembly language subroutines. 

The C(D)-values for the 192 numbers found by UMSU were computed in a 
total of about three CPU minutes. Denote by q(D) the least prime such that 
(D/q(D)) : -1. In Table 4.1 we give all the numbers D found by UMSU 
with q(D) > 163. We also provide the corresponding values of h, C(D), and 
q(D). 

Notice that 110587910656507 allows us to extend Table 2.1. In fact, this 
number is N43, N44, and N45. It is rather unfortunate that (-N43/199) = 1 
because (-N43/p) = -1 for p = 211, 223, 227, 229, and 223. Thus, if it were 
not for the value of the Legendre symbol for 199 we would have N51 = N43. 
As it is, the best that we can say here is that N46 > 10i5 

In Table 4.2 we give those values of D from among the 192 such that C(D) > 
C(D') for all the D', among the 192, which are less than D. We also give the 
corresponding value of PA (1000000) and PA (1000000)/LA (1000000) (written 
as P(1000000) and P/L, respectively), where A = (1 - D)/4. Also, since the 
C(D)-values are roughly inversely proportional to the respective L( 1, X)-values, 
we provide these values as L(D) = L_D(1) = 3L( 1, X) in order to permit com- 
parison with the results of Shanks [13]. Notice that PA(1000000)/LA(1000000) 

and C(D) are quite close, providing yet further confirmation of Conjecture F. 
Let D' denote the last D-value in Table 4.2 (D' = -531 ... ) . As we would 

expect, for D = -N43 we get a quite large C(D)-value. What appears, at 
first, to be somewhat remarkable is that this C(D)-value is less than C(D'); 
however, even though q(-N43) > q(D'), beyond q(D') we get a higher density 
of nonresidues for D' than for -N43, hence the larger C(D)-value for D'. 



QUADRATIC POLYNOMIALS 351 

TABLE 4.1 
D h C(D) q(D) 

-1432817816347 70877 4.4163429 167 
-5066580103267 131930 4.4616823 163 
-6626709638707 148069 4.5468709 163 
-6778817202523 149460 4.5565681 173 
-8547099746707 176959 4.3197166 163 
-8903633500507 168563 4.6296715 163 
-9275311526083 179187 4.4443528 163 

-15159061903507 225866 4.5075910 163 
-16501779755323 223574 4.7524812 179 
-17542900082563 240468 4.5549908 163 
-30059924764123 296475 4.8379057 191 
-37221595794667 328170 4.8634109 179 
-50923056589267 423835 4.4030138 179 
-58212094833523 427986 4.6627278 167 
-58369246601803 429990 4.6472033 173 
-64279195020307 454960 4.6086679 173 
-65569185073723 444070 4.7692730 167 
-69298004348827 474064 4.5926958 173 
-74210430269347 454842 4.9548401 181 
-82973459224363 530640 4.4889020 173 
-87934318851787 528770 4.6380011 181 
-88795060352923 519882 4.7412369 179 

-110587910656507 553436 4.9711959 199 
-126620398458283 640888 4.5916614 179 
-138411891537187 655794 4.6925243 179 
-307568240581123 949638 4.8308250 181 
-378486993318883 1082408 4.7014317 193 
-404210888356867 1123425 4.6808868 191 
-414286790833987 1158810 4.5940080 181 
-531497118115723 1185668 5.0870883 181 
-696687486054883 1410630 4.8947820 191 
-772147706149747 1529796 4.7510872 181 
-792933985668883 1578348 4.6664594 181 
-799705726392763 1554144 4.7590191 181 
-850229380873387 1596966 4.7756941 191 
-998727466696243 1789388 4.6191771 181 

To further illustrate this phenomenon, we give in Table 4.3 some more C(D)- 
values. The D-values in this table are taken from the latter part of Shanks' table 
of Lochamps (Table 3) in [1 3]. We have only selected those D-values which 
are not already in Table 4.2 and are congruent to 5 modulo 8. We have also 
reproduced the L(D)-values given in Shanks' table. 

Notice that for D = -991027 and D = -3416131987 we get larger C(D)- 
values than those given in Table 4.2 for D-values of comparable size. Thus, 
there may be more numbers < 1015 with C(D)-values in excess of C(-N43). 
What we can say here is that if Conjecture F holds, then 

x2 + x + 132874279528931 
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TABLE 4.2 
D P(1000000) C(D) P/L L(D) 

-163 261080 3.3197732 3.3203421 0.3691028 
-85507 272102 3.4643422 3.4612190 0.3545382 

-111763 286128 3.6319998 3.6396821 0.3383011 
-222643 293169 3.7289570 3.7293962 0.3295722 

-1333963 300001 3.8123997 3.8169182 0.3223267 
-9471067 312436 3.9760501 3.9764927 0.3093093 

-10560643 315542 4.0194873 4.0161335 0.3059697 
-60408307 318250 4.0501092 4.0531570 0.3037600 

-171583003 320126 4.0815068 4.0796515 0.3014727 
-269497867 322488 4.1092157 4.1112637 0.2996843 
-398158363 325782 4.1579113 4.1548155 0.2961493 
-643338763 335224 4.2716019 4.2775772 0.2883454 

-1408126003 334712 4.2771747 4.2759778 0.2879549 
-1595514187 341572 4.3616794 4.3645752 0.2824327 
-4067175907 346057 4.4324788 4.4309683 0.2779060 

-71837718283 354875 4.6097143 4.6090901 0.2673146 
-85702502803 361841 4.7073044 4.7067227 0.2617208 

-16501779755323 326605 4.7524812 4.7559512 0.2593564 
-30059924764123 326392 4.8379057 4.8453809 0.2548210 
-37221595794667 325086 4.8634109 4.8594354 0.2534793 
-74210430269347 323289 4.9548401 4.9413604 0.2488108 

-110587910656507 321488 4.9711959 4.9770300 0.2480017 
-531497118115723 312975 5.0870883 5.0894316 0.2423560 

TABLE 4.3 

D P(1000000) C(D) P/L L(D) 

-546067 297046 3.7775732 3.7789730 .32523 
-991027 324001 4.1237067 4.1221307 .29822 

-1970364883 339556 4.3367305 4.3405407 .28398 
-2426489587 343914 4.4024373 4.3981264 .27982 
-3416131987 353395 4.5247200 4.5229186 .27227 
-8864190043 355373 4.5655590 4.5612380 .26983 

is a quadratic polynomial which has a higher asymptotic density of prime values 
than any other such polynomial known to date. 
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