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BOUNDARY INTEGRAL EQUATION METHODS 
FOR SOLVING LAPLACE'S EQUATION 

WITH NONLINEAR BOUNDARY CONDITIONS: 
THE SMOOTH BOUNDARY CASE 

KENDALL E. ATKINSON AND GRAEME CHANDLER 

ABSTRACT. A nonlinear boundary value problem for Laplace's equation is 
solved numerically by using a reformulation as a nonlinear boundary integral 
equation. Two numerical methods are proposed and analyzed for discretizing 
the integral equation, both using product integration to approximate the singu- 
lar integrals in the equation. The first method uses the product Simpson's rule, 
and the second is based on trigonometric interpolation. Iterative methods (in- 
cluding two-grid methods) for solving the resulting nonlinear systems are also 
discussed extensively. Numerical examples are included. 

1. INTRODUCTION 

Consider solving the nonlinear boundary value problem 

(1.) AU(P) = 0, PED, 

(1.2) PeF(p) = -g(P =U(P)) + f=(P) P E I = AD. 
anp 

We study the numerical solution of a nonlinear boundary integral equation 
reformulation of this problem, a reformulation that has been studied recently 
in Ruotsalainen and Wendland [8]. In (1.1), we assume D is a bounded, simply 
connected open region in R2 with a smooth boundary F, and we seek a solution 
u E C 2(D) n C1 (D) . Our numerical methods generalize to other problems, for 
example exterior problems, but these are not considered here. Also in (1.2), np 
denotes the exterior unit normal to F at P, and the function f is assumed 
given and continuous on F. The function g(P, v) is assumed to be continuous 
for (P, v) E F x iR, although this can be relaxed. Further assumptions on g 
are given later. 
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Using Green's representation formula for harmonic functions, the function 
u satisfies 

u(P)= f u(Q) [logjP - Qj] da(Q) 

(1.3) F (Q) 
-7z fiL jn ~logIP - Q1 da(Q) 

for all P E D. Letting P tend to a point on F, and using the boundary 
condition in (1.2), we obtain 

u(P) - I fu(Q) Q [logIP - Q1] da(Q) 

(1.4) - 7- g(Q, u(Q)) logIP - Q1 da(Q) 

= - IfX f(Q) logIP - Q1 da(Q), P E F. 7r 

This can be solved for u on F, the normal derivative can then be obtained 
from (1.2), and finally the representation (1.3) gives u(P) for P E D. One 
very important requirement for the use of (1.3)-(1.4) is that the transfinite 
diameter of F, denoted by Cr, cannot be equal to 1. If Cr = 1 in a problem, 
then (1 .1 )-(1.2) can be redefined on a rescaled region D in such a way that the 
new Cri $ 1 . For a more extensive discussion of transfinite diameter, see Yan 
and Sloan [9]. 

Our development follows that of Ruotsalainen and Wendland [8], who give 
results on both the theoretical solvability of (1.4) and on its numerical analysis. 
We do not examine the solvability of (1.4), but simply assume it is uniquely 
solvable in a suitable sense; the precise assumptions are given later in ?2. Ruot- 
salainen and Wendland [8, Theorem 1] show unique solvability of (1.4) under 
the additional assumption that 

(1.5) O<I< <l ag(P,v)<L<oo, Pe F, vesR, 

for some constants 1, L. Other existence proofs can be based on contractive 
mapping arguments, under other suitable assumptions on g and f . 

In ?2, we define a numerical approximation of (1.4) by using the trapezoidal 
rule to approximate the double layer integral in (1.4), and product integration 
with piecewise polynomial interpolation to approximate the single layer integral. 
An error analysis is given using the general framework of Atkinson [2], and 
the ideas are illustrated numerically with a product Simpson's rule. In ?3, we 
consider some two-grid iteration methods for solving the nonlinear system of 
equations that arises in the discretizations of ?2. These generalize methods 
introduced in Atkinson [3]. 

To take maximum advantage of the smoothness of the boundary F, we in- 
troduce another approximation in ?4. It is based on approximating the single 
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layer integral operator in (1.4) by product integration with trigonometric inter- 
polation. The error analysis is slightly more difficult than that for the piecewise 
polynomial product integration of ?2, but the convergence is much faster, as is 
illustrated in the numerical examples. 

2. PIECEWISE POLYNOMIAL PRODUCT INTEGRATION 

We discretize the nonlinear integral equation (1.4) by approximating the inte- 
grals in it and then reduce the equation to a finite system of nonlinear equations. 
This system must be solved by iteration, and we discuss some two-grid iteration 
methods in ?3. We begin by introducing some operator notation. 

Let X denote the double layer integral operator 

(2.1) Xfv)(P) = jv(Q)0 [logIP-QJ]da(Q), Pe P, 

and let 9' denote the single layer integral operator 

(2.2) (592v)(P) =- v(Q) logIP - Q da(Q), P e I. 

Also introduce the nonlinear operator 

(2.3) ('v)(P) = g(P, v(P)), P E I. 

We assume this is well defined from C(F) into C(F), with additional assump- 
tions given later. The assumption that S' is defined on all of C(F) can be 
relaxed without any essential difficulty, but we do not consider this here. See 
Krasnoselskii [6, pp. 20-32] for a more formal discussion of such operators S . 

The integral equation (1.4) can now be written symbolically as 

(2.4) u - 5u + 55(u) = 59f . 

To approximate this equation, we replace X and 9' with a sequence of nu- 
merical integral operators %n and 9n. Introduce the parametrization 

r(t) = (4(t), 5 (t)), 0 < t < 27r 

of the boundary F. Assume r E Cp (27), the space of C0 27T-periodic 
functions, and also assume 

I r'(t) 1& O.4 0 < t < 27r. 

The assumption of C00 continuity is just for simplicity, and one can prove con- 
vergence of our numerical methods under the weaker assumption r E C(27) 
although with a much slower rate of convergence. 

The double layer operator X can now be written 

1 f2n q'(s)[~ (S) - ~(t)] - ~'(s)[1() - q0 
(2.5) Qv)(t) = - J ?(cS) _ <(t)]2 + [r(S) _ q(t)]2 v(s)ds 

for v E Cp(27) . When s = t, the kernel function has the value 

(t)2 + q'(t)2] 



454 K. E. ATKINSON AND GRAEME CHANDLER 

To approximate this integral, use the trapezoidal rule, midpoint rule, Simpson's 
rule, or some other composite integration rule. Let X v denote the numerical 
integral approximation of (2.5) with n subdivisions of [0, 2Z7. The error in 
Xnv satisfies 

Cq 1 
(2.6) LXV - nV IVoo <-q IIIH v(27r) E q > 

The notation Hq(27r) denotes the Sobolev space of index q > 0 with functions 
that are 2T-periodic. 

The single layer operator 59 is written as 
l 27t 

(2.7) (592v)(t) = -If v(s)Ir'(s)I logIr(t) - r(s)I ds. 

We use product integration to approximate 59v, but it will be convenient to 
first modify (2.7). Write it as 

(J'v)(t)= -- if2t vv(s)Ir'(s) 
(2.8) M 

(2.8) x floglt - sl + logI27r - s + tj + logI27r - t + sl} ds 

7f _f ~~ (~ g[It - sI(27r - s + t)(27r - t + s). 

For n > 0. define h = 27r/n and tj1n = tj = jh. To make clearer the 
definition of our numerical method, we define the product quadrature rule for 
approximating 59. Let n be even. The last integral on the right side of (2.8) 
has a kernel function that is C? on [0, 27r]. We approximate this integral by 
the regular Simpson's rule; and the error is O(h4) if v e Cp(27r) . 

For the first integral on the right side of (2.8), replace v (s) r'(s) by its piece- 
wise quadratic interpolant on the mesh {t0, t1, ... , tn }. The resulting inte- 
gration can be done explicitly, and a careful consideration of the formulas will 
lead to quite inexpensive implementations. The use of product integration in 
solving integral equations is discussed extensively in Atkinson [4, pp. 106- 
123]. Denote the combined approximation of the right-hand integrals of (2.8) 
by S9nv(t). For the error, the results in de Hoog and Weiss [5] can be used to 
prove 

(2.9) <l5gv(t) - ECv(t) l < ogn ,4[0, 27r]. 11 -'v M- -; VMI I 4~ V 
n 

We approximate the nonlinear equation (2.4) by 

(2.10) un -Ju +5'(Un) 5 

and we seek a solution un e C (27r). This is a Nystr6m method for solving 
the nonlinear equation (2.4), and a complete framework and error analysis for 
such methods is given in Atkinson [2]. Equation (2.10) is equivalent to a finite 
nonlinear system, which is given below in (2.13). 
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Let the linear operators n and 5Yn be written as 

n 

(2.11) (Kv)(t) = w1K(t, t )v(tj), t E [0, 27r], 
j=0 

n 

(2.12) (?V) (t) = E -)j (t) V(tj), t E [O. 2r]. 
j=0 

The kernel function K(t, s) is given in (2.5), and the weights {w1)j(t)} are 
obtained from the approximation of the right-hand integrals in (2.8). For (2.1 1), 
we will use Simpson's rule as the quadrature method, partially to be consistent 
with the earlier definition given for (2.12). Just as with the linear Nystrdm 
method (see Atkinson [4, p. 88]), equation (2.10) is equivalent to a finite system 
of equations, 

n n 

Un (ti) -EWjK(ti 5 tj)Un(tj) + 1: 0j(td9g(tj, 5Un(tj)) 

(2.13) J=0 j=0 n 

= Sj (ti)f(tj). 
j=0 

The grid function that solves (2.13) is extended to a function on [0, 27r] by 
means of the Nystr6m interpolation formula 

n 

Un(t) = 5 w1K(t, t1)un (t1) 

(2.14) j=0 
n 

+ E a1(t) [-g(tj, un(tj1)) + f(tA)]. 
j=0 

We use this formula in the two-grid iteration method presented in ?3. 
The error analysis of (2.10) can be carried out within the framework of [2]. 

Write (2.4) and (2.10) in the shortened form 

(2.15) u = Y(u), 

(2.16) =n =n(un) 

respectively. With the assumption of S' following (2.3), the operator Y is 
compact from C(r) into C(r). We must also have that Y is continuous, 
and thus we assume 

[Al] ': C(r) -- C(r) is continuous. 
With this and the known properties of X and 9I , it follows that Y is com- 
pletely continuous (compact and continuous) from C(r) into C(r). The as- 
sumption [Al] is true if g(P, v) satisfies the Lipschitz condition 

jg(P, V1)-g(P, V2)1 < CVI - V21A' P E P, 

for some exponent A E (0, 1] and constant c > 0. 
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The framework of [2] assumes that {5 Y,} satisfies the following four prop- 
erties: 

[Hi] Y and 5,, n > 1, are completely continuous operators on a Banach 
space J into itself. 

[H2] {n } is a collectively compact family, i.e., for every bounded set B in 
A, the set U5 Y (B) has compact closure in J. 

[H3] For every v E , 

Yn V -*Yv asn -)x. 

[H4] At each v E A, {5 n} is an equicontinuous family. 
These assumptions are true for our approximations Yn . In [H I], we let X = 

c(r). The complete continuity of .4 follows from [Al] and the compactness 
of the finite-rank operators Xn and 59 . For [H2], the proof of the collective 
compactness of {Snj} follows from that of {in} and {5?9}, and the latter 
are well-known results (e.g., see Atkinson [4, pp. 97, 108]). The proof of [H3] 
again follows from the same result for {in} and {S?9}, along with the fact 
that ?'S(v) E c(r). For [H4], use 

Il11(Vl) -Yn(V2)v9oo < ? nI IIVI - V21loo + 11?nA 11 'I(V1 ) (-2) 

The families {in} and {5fn} are uniformly bounded, and then [Al] com- 
pletes the proof of equicontinuity. We state the following existence theorem 
for approximate solutions un without proof. It is a direct statement from [2, 
Theorem 3]. 

Theorem 1. Let uo be an isolated solution of (2.4), with no other solutions in 
the ball 

B(uo, ro) = {vI Iluo - vIKlo0 < rO} 
for some ro > 0. In addition, assume uo has nonzero index as a solution of 
(2.4). Then for every 0 < r < ro, there is an integer N(r) such that for n > N(r) 

(i) the approximating equation (2. 10) has no solution in the annular region 

{ver <luo-vH rl}; 
(ii) equation (2.10) has at least one solution un inside B(uo, r). 

As a consequence, the solutions un of (2.10) exist for all sufficiently large n, 
and they converge to uo as n -* 00. (This result allows the possibility that uo 
is a "multiple root" of (2.4), with several distinct and nearly equal approximate 
solutions un for each n, all converging to uo .) 

Remark. Equation (2.15) has an isolated solution uo of index zero if and only 
if the equation satisfies the following property: 

There exists some open neighborhood N of uo such that for 
every 3 > 0, there exists Y defined on N (the closure of N) 
with 

a ih (u) - = j (u) hai< gn u E Ns 

and with the equation u = Y.(u) having no solutions in N. 
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Thus, a solution uo has nonzero index if and only if the existence of solutions 
to the equation is stable with respect to small perturbations of the equation. In 
general, we would consider solving only those equations in which the solution 
uo possesses this type of stability. 

To obtain results on the rate of convergence of un to U0, an additional 
assumption is needed for the operators Y and 5n : 

[H5] For a given solution uo of u = 5(u) and r > O ,assume Y and n ' 
n > 1, are twice Frechet-differentiable on B(uo, r) . Moreover, assume 

(2.17) Ily"(u)II, Iln"(U)II < c, u E B(uo, r), n > 1. 

In our case, this will be satisfied if we assume 

[A2] The function g(P, v) is twice differentiable with respect to v, for all 
P E F and all v e R, and it satisfies 

(2.18)0a 2g(P 5v)_ _ (2.18) ?a2 ? c(a,b), PEP, a<v<b, 

for every finite interval [a, b], with c(a, b) a constant. 

This is easily satisfied with most functions g that one is likely to encounter. 
From [2, Theorem 4], we have the following. 

Theorem 2. Let uo be an isolatedfixed point of Y, say in B(uo, r), and assume 
g satisfies [Al] and [A2]. In addition, assume I is not an eigenvalue of a' (uo) . 
Then uo is an isolated solution of u = Y(u) of nonzero index. Moreover, there 
are O < e < r and N > 0 such that for every n > N, u = Yn(u) has a unique 
solution un E B(uo, e). Also, there is a constant y > 0 such that 

(2.19) IIuo -n uIoo < YIly(u0) -i (uo) IIoo ' n > N. 

This bounds the speed of convergence of un to uo . 

With the earlier results (2.6) and (2.9) on the errors in the discretizations Xn 
and 5n , we can use (2.19) to bound the error in our method (2.10) based on 
piecewise quadratic product integration and Simpson's rule. 

Theorem 3. Assume the function g(P, v) satisfies the property that 
[A3] u E C(27r) implies g(., 5u()) E Cp'(27r). 

Assume [Al], [A2], and the hypotheses of Theorem 2. Finally, assume the solution 
uo of (2.4) is in Cp(27r). Then the numerical solutions un satisfy 

P n~~~~~lo 

(2.20) IluO - u K? 4 
n 

for all sufficiently large n. 

Remark. The assumption [A3] can be replaced by the much weaker assumption 
that u0 and g(., uo(.)) belong to Cp(27r). 
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Examples. We solve (1.1 )-(1.2) with the two choices of g used in Ruotsalainen 
and Wendland [8]. These are 

(2.21) g1(P, v) = v + sinv, 
3 (2.22) g2(P, v) = IvIv 

The function g1 E C0 (IR) , and thus [Al ]-[A3] are satisfied easily. The function 

g2 is only three times continuously differentiable, with the fourth derivative 
satisfying a Lipschitz condition. For practical purposes, g2 satisfies [A3]; this 
is verified empirically. We choose a known true solution, 

(2.23) uo(x, y) = ex cosy, 

and the function f = auo(P)/On + g(P, u0(P)) is calculated accordingly. For 
the region D, we use the elliptical region 

(x/a) + (y/b) < 1 

with various values of (a, b) . The values in Tables 1 and 2 use (a, b) = (1, 2) . 
Numerical results are given in Tables 1 and 2 for solving (1.1 )-(1.2) with 

g1 and g2, respectively. The numerical method is (2.10), with the use of 
Simpson's rule and the quadratic product integration. The error Hu - u0110 is 
the maximum error at the node points on F. According to (2.20), we should 
have the error decreasing by a factor of about 16 when n is doubled. This is 
verified empirically for larger values of n, as can be seen in the column Rate, 
the quotient of successive errors. 

TABLE 1 
Using (2.10) to solve (1.4) with g = g, 

n Duo-unlloo Rate IT COND 
4 9.93E- 1 6 5.8 
8 4.44E-1 2.2 6 7.3 

16 9.OOE-2 4.9 6 8.2 
32 5.29E - 3 17.0 6 8.5 
64 3.04E-4 17.4 6 9.1 

TABLE 2 
Using (2.10) to solve (1.4) with g = g2 

n Du0 - unl2oo Rate IT COND 
4 5.89E- 1 8 2300 
8 2.81E-1 2.1 8 750 

16 5.64E-2 5.0 9 360 
32 2.83E-3 19.9 9 720 
64 1.47E-4 19.3 9 930 
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The nonlinear system (2.13) was solved iteratively using Newton's method: 
(2.24) U(k+ 1) = U(k) _[I - ~~/((k) I- 1 (k) k 

(2.24) an ) = an Y-[- n ( [n ) [n Yn(Un))a 

The initial guess chosen was 

(2.25) U(n) = U + 1. 

We iterated until the relative correction satisfied 

(2.26) || ln n u 1k00 < 10-4 

All norms are maximum norms over the values at the nodes on F. The column 
IT gives the lowest value of k for which (2.26) was satisfied. The column 
COND gives the LINPACK condition number for the matrix associated with 
I - 5 '(unk) for the final iterate. Note the values of IT are essentially constant 
with increasing n. This is an illustration of the mesh independence principle 
discussed in Allgower et al. [1]. All of the numerical examples of this paper 
were computed on an 80286/287 microcomputer. 

3. ITERATIVE SOLUTION OF DISCRETIZED EQUATION 

The approximating integral equation (2.10) of the preceding section can be 
solved using Newton's method (2.24), as was done in the numerical examples 
of the last section. This is rapidly convergent, but it is also quite costly. Each 
iteration involves solving a system of order n + 1 at a cost of about 2n3/3 
arithmetic operations. In this section, we consider other iteration methods that 
are less costly. Another source of inefficiency in constructing Tables 1 and 2 
was that the nonlinear system was solved to much greater accuracy than jus- 
tified by the size of Iluo - un~l. , mostly to illustrate the iteration method for 
different values of n. A practical program would attempt to iterate only until 
j1un - u k) II was comparable to IIu0 - un I I 

The simplest modification of Newton's method (2.24) is to fix the derivative 
matrix I- '(unk) for iterates of index k > k, for some k > 0. The iteration 
then becomes 

(k) (k) ) 

(3.1) [I-5?<(u~n (U ) n(nk) = (k+ ) (k) k 

an (k) = U(k) + a5(k) 

For iterates u(k) with k > k, the cost of (3.1) is 0(n2) operations per iterate, n 

since the LU factorization of I - 5f'(u~k) will have already been computed. 
The rate of convergence of (3.1) will only be linear, in contrast to the qua- 

dratic convergence of the Newton method (2.24). The iterates satisfy 

(3.2) un- n = {I-n[I -Y(un)]I[I- (un)}[un -n I 

+ 00lun -f U(k) 2 
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This gives linear convergence, with the rate improving as u(k) approaches u 
The number of iterates needed for convergence is greater than for Newton's 
method; but the number needed for an iteration error of at most a given 3 > 0 
can be shown to be bounded independent of n. A condition for choosing k is 
to use the smallest k for which 

(33) U n<l - 

(uk) 1 

where e is given (say e = .1). We have used this condition in the following 
numerical examples. 

Examples. We solve the problem (1.1)-(1.2) with the functions g of (2.21) 
and (2.22), and we use the modified Newton method (3.1). The test (3.3) was 
used to determine k, and the initial guess u(?) was (2.25), the same as used in 
Tables 1 and 2 for Newton's method. Again, we iterated until the relative error 
test (2.26) was satisfied. In Tables 3 and 4, the column IT is the total number 
of iterates computed, and k is the index used in (3.2) and discussed preceding 
(3.3). The column Ratio gives the empirically observed convergence rate 

HU |(k) _u(k- 1) 11 0 

(3.4)~~~~~~~~ ~u~k-1 )-u- l 

In Tables 3 and 4, the parameters for the elliptical boundary F are (a, b) = 

(1, 2). 

Two-grid methods. The modified Newton method still requires 0(n3) arith- 
metic operations, because the LU factorization of the derivative matrix 
I - ..n'(u) must be computed at least once (and usually more). To avoid this, 
we use the LU factorization of a lower-order derivative matrix I - YM (UM), 

TABLE 3 
The modified Newton method: Case g = 

e6 n I T k Ratio 
.1 4 12 2 .0571 

8 8 3 .00514 
16 11 3 .0306 
32 10 3 .0180 
64 10 3 .0186 

.01 4 7 3 .00101 
8 8 3 .00514 

16 7 4 .0048 
32 7 4 .00017 
64 7 4 .00018 
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TABLE 4 
The modified Newton method: Case g =g2 

e6 n I T k Ratio 
.1 4 50 3 .547 

8 16 5 .0776 
16 29 4 .311 
32 30 4 .321 
64 30 4 .324 

.01 4 13 5 .0260 
8 9 6 .00015 

16 10 6 .00134 
32 10 6 .00157 
64 10 6 .00163 

m < n, to construct an approximation to the solution of the linear system 
occurring in (2.24) or (3.1). These ideas for solving nonlinear equations were 
introduced in Atkinson [3], and we extend that discussion. 

While ordinarily we are interested only in solving for the grid function on 
{ti n } that solves the nonlinear system (2.13), we will use the linear analogue 
of the Nystrdm interpolation formula (2.14) to move between grid functions 
defined on {ti n } and { ti m}. For this reason, and because the error analysis 
is easier in C(F), we use the function space setting of C(F) with the operators 
Yn and ,<n rather than limiting ourselves to the solution of (2.13) on just 
the mesh {ti n }. Later we give an explicit form of the second of our two-grid 
methods for solving the nonlinear system (2.13). 

Our first two-grid method uses the simple approximation 

(3.5) [I - n (Un ) ]Y-M' (Um )] f 

The iteration method becomes 
(k) (k) (k) 

(3.6) [I M,(Um)I)n k rn 

nk+ 1) (k) +(k) 

When this method is applied to solve the system (2.13), the operations count 
can be shown to be 0(n 2) per iteration. 

The iterates u(k) satisfy the recursion relation n 

u -U(k+i) M m un (k)I + (k)2un an 1|2 
(3.7) mnnnn-n ]+(u nu 

Mm n =m, (Um)] [ n (Un)] . 

It can be shown that 

(3.8) Limit SupHMM = 0. 
m--+00 n>m 
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TABLE 5 
The two-grid method (3.6): Case g = 

a b m n I T Ratio 
1.0 2.0 8 16 63 .622 

16 32 29 .381 
16 64 29 .379 

.5 1.0 8 16 25 .305 
8 32 25 .299 
8 64 25 .308 

16 32 16 .183 
16 64 16 .182 

Combined with (3.7), this will show that u<k) -* n as k 00, provided m 
is chosen sufficiently large. The proof of (3.8) is fairly straightforward. It uses 
the assumption [A2], the bound 

LYm(u) -5Ym(v) 11 < 2Ma<x jm' (6u + (1 - )v) 11, 

and the proof in Atkinson [4, p. 139]. 

Example. We solve the first of the problems considered in the earlier examples 
of this section, where the numerical results were given in Table 3. We allow the 
boundary ellipse parameters (a, b) to vary, however, The results are given in 
Table 5. They show a linear rate of convergence, with an improvement as the 
course mesh parameter m is increased. 

We have omitted results for the case g = g2, mostly because they are so poor. 
Only when the boundary F becomes small (a and b become small) does the 
iteration method become convergent for values of m < 16. A critical factor 
in HjM, nil in (3.8) is II[Ym'(um) -Y'(um)]Ym(um) K, and it can be shown to 

be O(m 15). This is reflected in the relatively small decrease in the value of 
Ratio when m is doubled in Table 5. From earlier results in Tables 1 through 
4, it can be seen that the case g = g2 is more badly behaved than is the case 
g = g1, and this is reflected in the behavior of the iteration method (3.6) when 
applied to g = g2. With (a, b) = (.5, .5) and g = g2, the iteration (3.6) 
converges with m = 16 and n > m. With (mi, n) = (16, 32) and (16, 64), 
we have Ratio - 0.74. 

For a second two-grid method, we use the approximation 

(3.9) [I - n (Unk) _ I + [I -YM (UM)F Yn (Un ) 

The iteration method becomes 
rk) U((k) (k) 

_k) = (k) (k) 
(3.10) [I - (U )]?5n Y (un )r) 

(k+1) (k) (k) (k) 
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The approximation in (3.9) comes from the theory of collectively compact oper- 
ator approximations for linear operators; for example, see Atkinson [4, p. 94]. 
For the development of the iteration method (3.10) for linear operators, see 
Atkinson [4, p. 142] or Atkinson [3]. 

The iterates u(k) satisfy the recursion relation 

u U- u(k+) = Mm(n[Un-U(k)] + (k1Un- U lk) 12 

Mm, n = IYm (Um )] [2yn (Un ) _ Ym (Um )]2n (Un )a 

It can be shown that 

(3.12) LimitSup11Mmn| = 0 
m-1oo n>m 

The proof is fairly straightforward, just as for (3.8), and we omit it. From 
(3.12), it follows easily that 

(3.13) Hun - U~k+1)~ ? H H+cH (k) (3.13) llun-an 11 < (llMm nil + 80Hn 
- Un 11 

with en -? 0 as n -* 00. It can be shown that 

(3.14) IlMm nil = O(m 1 5) 

The proof is much the same as for (4.12) in ?4, and thus we omit it here. 

Examples. We repeat the cases used in the preceding example, but now using the 
two-grid method (3.10). The results are given in Table 6, and again they show 
a linear rate of convergence. [The value of Ratio for the case (a, b) = (1, 2) 
and m = 8 oscillated between two values, and the geometric mean of these 
values is given in the table.] Considering the results of Tables 5 and 6, the two- 
grid method (3.10) is superior to the two-grid method (3.6) when the rates of 
linear convergence are compared. This has been observed in general, and some 
theoretical support can be given for it. 

We also solved the integral equation (2.4) with g = g2; and as was true 
with (3.6), the results were much poorer than those in g = g1 . There was no 

TABLE 6 
The two-grid method (3.10): Case g = 

a b m n IT Ratio 
1.0 2.0 8 16 47 .50* 

16 32 17 .186 
16 64 17 .178 

0.5 1.0 8 16 15 .132 
8 32 15 .124 
8 64 15 .128 

16 32 9 .045 
16 64 9 .042 
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convergence for (a, b) = (1, 2) or (.5, 1), with m < 16. For (a, b) = (.5, .5) 
and g = g2, the iteration (3.10) converges for m = 16 and n > m. With 
(n, m) = (16, 32) and (16, 64), we have Ratio = .795 and .754, respectively. 
This is slightly worse than the analogous results for method (3.6), but it is 
expected that the method (3.10) will be superior to (3.6) for larger values of 
m. 

Finite Algorithm. We reduce the two-grid iteration (3.10) for solving the func- 
tion space equation (2.10) to an algorithm for the finite system of nonlinear 
equations (2.13). Calculate: 

Recall On (V) =5 _ -5?nI[(() fi. 

2 qi = [Yn (un )rnI(tim), 0 < i < m, 
(in = [5nf(Unk)rI(t) n i < n). 

Recall 5 (VV))r = Anr - 5n [I (V)r]. 

3. Solve the linear system [I - f(um)Inm = qm, where I -5?(um) is 
the matrix of order m + 1 associated with I - ((Urn). The LU fac- 
torization will generally have been computed earlier and saved for use 
in the present iteration. The vector amwas defined in step 2. 

4. 5i = qin + [<(Um) 5m I(tin ) 

in yn(tin) = rn](tin)-r 5 tn-i 0 < i < n n 

In the evaluation of the product integration portion of whrv at the node 
points {tin~ } and {tim }, it is possible to be quite efficient, both in the evaluation 
of the needed product integration weights and in the size of the tables that need 
to be constructed in advance of the computation. A partial discussion of the 
computation of these weights is given in Atkinson [4, p. 113]. 

This iteration has O(nU) arithmetic operations per iterate. More precisely, 
we use the following operations: 

(a) n + 1 evaluations of the function g, used in evaluating o (Uth) . 
(b) n + 1 evaluations of the partial derivative gbt used in evaluating 

(c) 2ni(2n + 1) arithmetic operations to evaluate rat. 
(d) 4n(n + m) + 2n + m operations to evaluate em and qn . 

(e) 2mu operations to solve for : m 

(f) 4nm + 3n + m operations to calculate id and eaung) . 
It is assumed that the needed matrices associated with en' X, 5' 5?n and 56M 

have all been computed once for use in all iterations. 
The total number of arithmetic operations needed in computing one iteration 

2~ ~~ 

o(3.) i operatelyn +8nm+2m + +m 
(f) 4nm + 3n + oprains to cacuat + and + (km 
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For comparison, the analogous operations count for the two-grid method (3.6) 
is 

2 2 4n +8nm+2Mr + 5n + 2m. 

2 Since the term n will dominate the remaining terms in these operation counts 
for n > m, we have that the two-grid method (3.1 0) is about twice as expensive 
per iterate as the two-grid method (3.6). Combining this with the generally 
faster convergence of (3.10), the two methods seem to be roughly comparable in 
computation time. Nonetheless, we have a slight preference for method (3.10), 
mainly because of the convergence behavior. With nonlinear integral equations 
other than those considered here, the first method (3.6) has been less regular in 
its convergence, with the values of Ratio for (3.6) varying widely as the iteration 
converged; see the discussion of method (3.6) for linear equations in Atkinson 
[4, pp. 159-161]. But for the present work, the convergence behavior of method 
(3.6) was very regular, equal to that seen with method (3.10), in contrast with 
earlier work on other nonlinear integral equations. Thus there does not seem 
to be any clear reason to prefer either of these two-grid methods over the other 
one. 

4. TRIGONOMETRIC PRODUCT INTEGRATION 

For boundary value problems (1.1)-(1.2) with a smooth boundary F, we 
can usually do better than a fixed order of convergence 0(n P), p > 0, of the 
type obtained in ?2. In this section, this is accomplished by using trigonometric 
polynomial interpolation to define the product integration approximation for 
the single layer operator 5. This gives a much improved approximation un 
as compared to using piecewise polynomial interpolation. 

For n > 1, let 

27r 
h= 2+1 tj= h, j= 0, ?1, ?2. 

The trigonometric polynomial of degree < n that interpolates a given function 
p E C (27r) on the nodes {tj} is given by 

n 

(4.1 ) Pn (t) =] E (tj) ii (t) 
-n 

with the Lagrange functions ij given by 

Ij (t) =-Dn (t - to Dn (t) =2+ 11cos(kt) =2 i ) 7r o2 k 1 b sin( t) 

Also define the linear operator Pn: C (27r) --* C (27r) by PnP = Pn~ 
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To approximate the single layer integral 5';'v of (2.7), first rewrite it as 

6v (t) = S0 p(t) + q p(t), p(t) = v(t)lr'(t)l, 

5a9P0t = - | p(s) log| -l sin - (t - s)|' )log 2 

(4.2) _p(t) = - 1f B(t, s)p(s) ds, 

log V/e'[r(t) -r(s)] t - s 2k7r, 
B(t ,s) = 2 sin I(t -s) 

logIklekr'(t)l, t - s =2k, 

with k any integer. With respect to both variables t and s, the function B 
belongs to Cl1 (27r) if r belongs to Cl(27r), some / > 1 . For similar splittings 
of i, see Kress [7] and the references contained therein. 

This decomposition is taken from Yan and Sloan [9]. The operator 90' is 
closely related to the single layer operator 9? on the unit circle. It satisfies 

(4.3) '0*: Ht(27r) 1LH (27r) t > O. 
Onto 

The eigenfunctions of 90' are the trigonometric monomials: 

(4.4) _910, : eikt ) 1 eikt 
(4.4) ~~~~~~~Max{ 1 jkj< 

for all integers k. 
Approximate 'lop by replacing p by its trigonometric interpolant pn of 

(4.1), and then perform the integrations exactly. This yields 
n 

(4.5) 29,nP(t) =5 nP p(t) = E p(t )En(t- tj) 
j=-n 

with 

(4.6) ~~~~~~h I n 1 } (4.6) En (t)=!!{ +Z cos(kt)} 

Approximate 56v by 

(4.) -9?n' =-95? n P +A P1 p (t) = v (t) r (t)| 

where iWnp is obtained from iWp by applying the trapezoidal rule. It is possi- 
ble to evaluate En (t) very efficiently for larger values of n . But we found that 
n < 20 was sufficient for most of our examples; and therefore, we used (4.6) 
directly, evaluating {cos(kt) 1 < k < n} with the trigonometric addition for- 
mulas. Thus, the cost of evaluating En(t) was about 8n arithmetic operations 
plus the cost of evaluating sin t and cos t. 

Approximate the nonlinear integral equation (2.4) by 
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The trapezoidal rule applied to %u is used to define the numerical integral op- 
erator Xn . As before in ?2, this approximating equation is a Nystrom method, 
and the solving of (4.8) reduces to solving a finite system of nonlinear equations 
of order 2n + 1 . 

The error analysis of (4.8) is similar to that used in Theorem 1, but it re- 
quires some significant changes. With (4.8), we cannot prove {5? } is a col- 
lectively compact and pointwise convergent family of operators from C (27r) 
into C (27r); and therefore, we cannot simply invoke the results from [2] in the 
manner done in Theorem 1. Instead, we construct another proof, for our situa- 
tion, of the major result [2, Theorem 2]. Then we can use the subsequent results 
in [2], constructing an error analysis for (4.8) in analogy with that given earlier 
in Theorems 1-3 for the product quadratic method (2.10). We begin with the 
following lemma on trigonometric interpolation. It can be proven using a fairly 
standard manipulation of the Fourier series representation of the function p. 

Lemma 4. Let p E Ht(27r) with t > 2; let s < t. Then the trigonometric 
interpolation polynomial Pn p of (4.1) satisfies 

(4.9) IIP-PnPIIS Snt S 

with c5 a constant and 11 Ilt denoting the norm in Ht(27r). 

Using this lemma, we can prove a number of error bounds involving the 
approximating single layer 90 n . 

Lemma 5. Let p E Ht(27r) with t > ;let s < t + 1. Then 

(4.10) II-~I 
cal 

11(kOP - -0, nPlIs < nt-S+1 

Proof. Use (4.3) to obtain 

1'O5P `onPIIS = Pl`I - PnjPIIs < 1'OlIII (I -Pn)Pl 1s- I 

Then invoke Lemma 4 to complete the proof. El 

Lemma 6. For any e > 0 

(4.11) lIR-on)?l 9.- 

(4.12) cIR ?~n5nl, 
lo 
nl 

where the operators 5'O and 5'0, n are regarded as operators from C (27r) into 

Cp(27r). The constant cg depends only on e. 

Proof. We show only (4.12), the more difficult of the two inequalities. The 
proof of (4.11) is similar. For p E C (27r) c Ho (27r), we have 5 p E H1 (27r) . 
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Similarly, P, p E C (27r) and 9'0 p E H1 (27r). Using the Sobolev embedding 
theorem, it follows that for any e > 0, 

l I Ro, )2< P I I 0o <lIK (o on) ),nP II 11 2+ P 

< l ee|1 'Pn 1.5-e 1P p|l 

1 l.5-e1`~ II P II | o < I 5 EII PnII0? < Cg~~~ ~ cglog nH 

The second inequality uses Lemma 5 with s = 2 + , and the third inequality 
uses (4.3). The last inequality uses the result 

(4.13) IIPJ = O(logn) 

when Pn is regarded as an operator from Cp (27r) into itself; see Zygmund [10, 
Vol. II, p. 18]. The constant cg is regarded as generic. o 

We make a further assumption about the function g and the associated 
operator S. Assume: 

[A4] For some p > 2,1 5: HP(27r) -* HP(27r) is bounded with 

(4.14) 119(av)IIp < Ca q 
1(V) 1p, v E HP(27r), jal > ao, 

for some q > 0 and some a0 > 0. c is a constant independent of v 
and a. 

This is easily verified in most cases. Consider the earlier examples g in 
(2.21 )-(2.22): 

(a) For g = g1, [A4] is true for any p > 0 with q = 0. 
(b) For g = g2, [A4] is true for 0 < p < 4 with finite q depending on p. 

The assumption [A4] can be weakened a great deal, but it is needed for the 
proof we give of the following lemma. The assumption [A4] can be forced 
to be satisfied in most cases, as follows: Replace g(P, v) by g(P, v) _ 

qi(v)g(P, v), where (a) qi(v) = 1 for all real numbers v in a neighborhood 
of F = {g(P, uO(P))IP E F}, say within a distance of do > 0, with uO the 
true solution of (2.4); (b) I(v) = 0 for all real numbers v well away from F, 
say at a distance greater than di > do; and (c) qi E C (1R) . Then the problem 
(1.1 )-(1.2) with g replaced with g will have the same solution uO, and the 
new operator 

will have the same values in C (27r) for functions v near to uO. Finally, the 
new equation will satisfy (4.14) for all sufficiently large values of a with q = 0. 

For notational convenience, we will also write the approximating equation 
(4.8) as 

Un = Yn (Un) ' 

as was done in earlier sections. The following lemma is crucial to proving [2, 
Theorem 2] for our situation. 
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Lemma 7. Assume [Al] and [A4]. Let T be a bounded set in C (27r) . Then 

(4.15) Supll(5 Rn')'(5n(v))1.-* 0 asn--xoo. 
vET 

Proof. From the assumption that F is Coo, it follows that the kernel functions 
K(t, s) and B(t, s) are also C' in both variables t and s, as well as being 
periodic. This implies A, ,nu X, and Xn are bounded mappings from 
C (27r) into Cm(27r), for all integers m > 0. 

We write 

(4. 1 6) (5? 'n )? '(5n(v ) )= (5' ~ -50,)?g (in (v)) 

+ ( - n)(yn(V)) 

where 
(V) (t) -I r'(t) (v) (t) . 

We first show 

(4.17) SupH(5 - 5' 9 )(5n(v))HI. -0 0 as n -* 00. 

The same result for the last term in (4.16) follows by a similar, but simpler, 
argument. 

Combine Lemma 5, the Sobolev embedding theorem, and [A4] to obtain 

(4.18) (p+.5-8 Il(-n 

for the index p of [A4]. We now show 

(4.19) I(Yn(v))IIP < c[logn]q. 
The constant c is generic in this proof. 

Write 
7n (V) = XnV --95?O'pn (V) g(V) + 5?n f 

From the smoothing behavior of S0, ,Xn and %n 5 it is straightforward to 
show 

Ilyn(v)Ilp < cl Ivloo + c2{ IPn, + 1}H?I'(V) loo + C3 IPn 1 v E T. 

The set 9(T) is easily bounded from [Al]. Using (4.13), 

(4.20) SupIYn2(v)IIP < clogn. 
vET 

Write 
~~~~~~~~~~~~~~~~~~~~~~~~1 

g(n(V)) = (anwn) aen = logn 5 wn = no y(v) 

Define 
T= {wnIv e Tand n > 1}. 

From (4.20), T is bounded in HP(27r). From [Al] and [A4], 

Ia as(Vs))eIp < Crnt(Wnd)lip < c[log(n 
as asserted in (4.19). 
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Combining (4.19) and (4.18), 

(4.21) O95, n)kg(nk(V))IIo - 
p+ 

This easily converges to zero as n -x 00. The proof can be easily generalized 
to the last term in (4.16), and that will complete the proof of (4.15). a 

The result (4.15) and its proof can also be extended to show 

Sup (5I2 -59n')? (Y2(V))H11l-o 0, 
vET 

SupIR -Xn )g'(yn(V))I l- 01 
vET 

SUP I I ( - Xn)? (Y5(V)) I oo 0 
vET 

as n -* 00. The proofs are much the same, with (4.15) being the most difficult 
of the lot. 

With these results, the proof of Theorem 2 of [2] can be completed with no 
difficulty. Then the other results of [2] can be applied to our approximation 
(4.8). Theorems 1 and 2 of ?2 are true for (4.8); but we omit their statement 
since it is exactly the same as previously given. We give a convergence result, 
using Lemma 5 and the following assumption. 

[AS] For some integer A > 0, the function g satisfies 

u E C"(27r) implies g(-, u(-)) E C(27r). 

Theorem 8. Assume [Al], [A2], [A4], [AS], and the remaining hypotheses of 
Theorem 2. Further, assume the solution uo of (2.4) belongs to CA(27r). Then 

(4.22) luo - UnII c/n 

for n sufficiently large. [Remark: The assumption [AS] can be replaced by the 
weaker hypothesis that both uo and g(-, uo(-)) belong to C .] 

Proof. Use the inequality (2.19) of Theorem 2 to write 

- ulloK < y{ll(-Xn)UOllco + S'6(I -Pn)g(UO)loo 

+ 11(-q n)(U0)Iloo0 

The terms 11( - Xn)u0IIK and 11( - ~Wn)g(uo)uj. can be treated with 
standard error results for the trapezoidal rule, yielding the order of convergence 
ni. Theterm ~(I - j-Pn)?(uo)KI. canbeboundedwiththeSobolevembed- 
ding theorem and Lemma 5, giving an order of convergence of approximately 
n i5. This proves (4.22). n 
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TABLE 7 
Using method (4.8) to solve (1.4) with g = g, 

a b n HluO-unIloo IT COND 
1.0 2.0 3 2.23E - 1 5 5.16 

6 1.21E - 3 6 4.75 
9 2.77E - 6 6 5.26 

12 3.53E - 9 6 5.36 
15 2.66E - 12 6 5.21 

1.0 5.0 5 4.59E - 1 6 16.5 
10 1.74E - 3 6 15.0 
15 3.06E - 5 6 16.6 
20 5.57E - 7 6 17.6 
25 9.79E - 9 6 17.9 
30 1.70E - 10 6 18.5 

1.0 8.0 30 1.75E - 6 6 35.6 

TABLE 8 
Using method (4.8) to solve (1.4) with g = g2 

a b n 11u0-uUn oo IT COND 

1.0 2.0 3 1.45E - 1 9 780 
6 8.27E - 4 9 631 
9 1.82E - 6 9 609 

12 3.59E - 9 9 643 
15 2.38E - 12 9 626 

Examples. Consider again the cases (2.21), (2.22) of g, which were used in the 
examples of ??2 and 3. The equation (4.8) reduces to a finite system of 2n + 1 
nonlinear equations. This system was solved with Newton's method, with the 
initial guess 

u(0) =u+1, Per. u -u 
The numerical results for various (a, b) and n are given in Tables 7 and 8. 
For the meaning of IT and COND, see the discussion for Tables 1 and 2. 

The method (4.8) converges very rapidly as n increases, and it is much more 
rapid in convergence than the quadratic product integration method of ?2. It 
can be seen from the tables that the rate of convergence is exponential for 
both problems being solved. Using method (4.8), more elongated and difficult 
boundaries F can be treated very accurately with much smaller values of n 
than is possible with the quadratic product integration method. 

CONCLUSIONS 

Although the examples in this paper were all computed on elliptical re- 
gions, we did similar calculations on other regions with a smooth boundary. 
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The numerical results were comparable to those given here, including the much 
greater accuracy obtained with the trigonometric product integration method 
of ?4. We conclude that when the boundary curve is smooth, as in this paper, 
then the method of ?4 is much superior to the piecewise polynomial product 
integration method of ?2. If the method of ?2 is to be used, then the two-grid 
methods of ?3 are a very efficient way to solve the nonlinear systems that arise 
in the method, and they are preferable to either the ordinary Newton method 
or the modified Newton method. 

In future papers, the ideas of ??2 and 3 will be extended to planar problems 
on regions whose boundary is only piecewise smooth. 
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