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A STABILIZED GALERKIN METHOD 
FOR A THIRD-ORDER EVOLUTIONARY PROBLEM 

G. FAIRWEATHER, J. M. SANZ-SERNA, AND I. CHRISTIE 

ABSTRACT. The periodic initial value problem for the partial differential equa- 
tion u x + l(u2 +x + +u - ut = ?, a, 6 > 0, arises 
in fluidization models. The numerical integration of the problem is a difficult 
task in that many "reasonable" finite difference and finite element methods give 
rise to unstable discretizations. We show how to modify the standard Galerkin 
technique in order to stabilize it. Optimal-order error estimates are derived and 
the results of numerical experiments are presented. The stabilization technique 
suggested in the paper can be interpreted as rewriting the problem in Sobolev 
form and would also be useful for other equations involving terms of the form 
Ut - 5utx . 

1. INTRODUCTION 

The periodic initial value problem for the real-valued function u(x, t) given 
by 

(1.1 u+ UXXX+ f(u 2)X+ 
y (a )XX +8uXX - JutX =0, X E , t E[0, T], 

(1.2) u(x +27r, t) = u(x, t), x e Rt, t E [O. T], 

(1.3) u(x, 0) = q(x), x E R 5 

where fl, y, c, 3 are real constants, c, 3 > 0, arises in the modelling of flow 
in a fluidized bed (Ganser and Drew [7, 8]). The unknown u represents the 
value of a spatially periodic small perturbation of the concentration of parti- 
cles. Christie and Ganser [3] found that the numerical integration of (1. I)-(1.3) 
presents unexpected difficulties. In fact, several "reasonable" time-implicit, fi- 
nite difference and Galerkin schemes are unconditionally unstable. while other 
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schemes cannot be used with small values of the time step. The origin of these 
strange phenomena has been studied by Abia et al. [1]. It is expedient to 
summarize briefly their findings. First of all, the instabilities are invariably 
due to the space discretization. This implies that the difficulties encountered 
by Christie and Ganser cannot be circumvented by using a more sophisticated 
time integrator such as an automatic package. Second, the instabilities essen- 
tially arise from the terms ut + 8uXX - 3utxI so that to gain some understanding 
of the situation it is sufficient to consider the equation 

(1.4) ut + 8 -3 ut =0, ? >0. 

Fourier analysis shows that, at low wave numbers, the backward heat equation 
combination ut + 8uXX dominates, and therefore the corresponding Fourier 
modes grow exponentially. This growth is linked to the development of slugs 
in the fluidization process. However, at high wave numbers, the term involving 
utx offsets the importance of the term ut and introduces a stabilizing mecha- 
nism which results in the L -well-posedness of (1.2)-(1.4). Unfortunately, most 
standard spatial discretizations of (1.4) are unable to deal with the utx term 
in such a way that the stabilizing properties are not lost in the discretization 
procedure. For example, the standard Galerkin technique based on piecewise 
linear test/trial functions on a uniform grid leads to the system of ordinary 
differential equations 

1. 2 . 1 _ _ _ __U_ _-_2 U_ _ U_ _ _ _ _ _ _ 

(1.5) 2UJ + -U. + 1 + + ', 2hi-l = 0 

where a dot denotes differentiation with respect to t. When saw-tooth mode 
solutions of the form Uj(t) = (-1)jf(t) are sought, substitution in (1.5) yields 

I df - -2f = 0; 

that is, 

f(t) = exp[12eh 2t]fy(0). 

Thus, as h -O 0, (1.5) possesses solutions which grow exponentially at arbitrarily 
fast rates and, therefore, (1.5) is unstable. 

The situation just described contradicts an apparently widely-held belief that 
Galerkin discretizations of well-posed evolutionary problems are automatically 
stable. The purpose of this paper is to show how to modify the standard 
Galerkin approach so as to discretize (1.1) and related equations in a stable 
manner. The new method suggested in this paper is, in some respects, similar 
to Galerkin methods for first-order hyperbolic problems proposed by Dendy 
[5] and Wahlbin [10, 11], and the Galerkin method for the Korteweg-de Vries 
equation discussed by Wahlbin [ 1 1]. Note, however, that these authors were mo- 
tivated by the suboptimality of the convergence rate of the standard Galerkin 
approach in the problem that they were considering, while here the standard 
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Galerkin procedure has to be modified in the first place to obtain a convergent 
method. 

A brief outline of this paper is as follows. Section 2 contains a description of 
the new technique. In ?3, we prove that the proposed procedure is, in fact, con- 
vergent. Furthermore, the rate of convergence is optimal. Section 4 is devoted 
to numerical experiments and the final section, ?5, contains some concluding 
remarks. 

2. A MODIFIED GALERKIN METHOD 

We first introduce some notation. The functions considered are real-valued. 
On the space L 2(I), I = (0, 27r), let (., -) and 11 11 denote the standard 
inner product and norm, respectively. For any integer m > 0, Hm denotes the 
Sobolev space of 27r-periodic functions on iR with m derivatives in L 2 c(R) 
where the associated norm is given by 

(m ~2)1/2. 

11V11M = 
(El V| 

Note that, for u E H2, 

27t 27t 
(2.1) U'2 = u'u' dx = - uu"dx < h1ull Ilu"II, 

where the prime denotes differentiation with respect to x . Clearly, (2. 1) shows 
that 

Ilu'112 < I(11u,12 + I1U//II2) 

hence U11u2 + 1u1 112 is a norm on H2 equivalent to 11 112. 
Let L? (I) denote the space of functions v on I such that 

IIVIIL = ess sup Iv (x)I < 0. 
I 

If X is a normed space with norm 11 1Ix and v: [0, T] -X, then 

T - i~1/2 

IVIhL2(X) = IV(t)lldtl and IIVILOO(x) = ess supIlv(t)IIx. 11V11LI k)IX i IIL () tE[O, T] 

The piecewise polynomial spaces used in the treatment of (1.1) are defined in 
the following way. Let A = {x0, xI, ... , XN} denote a partition of I, where 
0 = X O< XI < <.X = 2i . Let Ik = [Xk-15Xk]I hk = Xk Xk-1 
k = 1, 2, ..., N, and h = maxkhk. For a closed interval E, let Pr(E) 
denote the set of polynomials on E of degree at most r. Then the piecewise 
polynomial spaces we shall use are 

(2.2) SA = {vv E H2 , V E Pr(Ik) , k = 1, 2, . . ., N}, 
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where r > 3 is a fixed integer. It is well known that such spaces have the 
property that there exists a constant C, independent of A, such that, for u E 
Hr+l1 

(2.3) in| U - V1lH' Chj|''UllHJ, 

with i = 0 ,1, 2 and i < j < r + 1 . In fact, in what follows, the spaces S. in 
(2.2) may be replaced by any other subspace of H2 for which (2.3) holds. 

The weak form of the initial value problem (1.1) on which the new semidis- 
crete Galerkin method is based is derived in the following way. We first take the 
inner product of (1.1) and the test functions v - vx~, with v E H2 arbitrary, 
to obtain 

At + UXXX + fl(U2)x + 2 ( )XX + +uXX - utX, v-v5) = 0, 

or 

(Ut , V) -6(ut, O x) + (u~xxx 5V - vX) + 2fl(uux, v - vx) 

+ y((uux)x, v - 3vX) + c(uXX, v - vX) - (Utx V) + ? (Utx v x) = 0. 

Then we integrate the second, third, fifth, and sixth terms by parts and simplify 
to obtain the required weak form of (1.1), namely 

(Ut, v) - (UXX v - vx) + 2fi(uux v - Jvx) 

- Y(UUX 5 VX - 05VXX) - 8(UX, VX - (5VXX) + 0s2(Utx, Vx) = O for all v E H2. 

Note that all inner products appearing make sense if, for t E [O, T], u(t) E H2 
and ut(t) E H' . 

The semidiscrete method for (1.1 )-(1.3) consists in seeking U: [O, T] -* SA 
such that U(O) is an approximation to the initial datum q and 

(2.4) (Ut, v) -(Uxxv V- vxx) + 2f(UUx, v - 6vx) - y(UUxv V- vxx) 

-ce(UX , VX - 05VXX) + J (UtX, Vx) = O. for all v E SA. 

Note that if fD} is a basis for SA and U(t) = Ej aj(t)(D, then (2.4) is 
equivalent to a system of ordinary differential equations, 

Ma = F(a)), 

where a is the vector of unknown coefficients {al }, F is a nonlinear function, 

and M is the matrix with entries ((i, %j) + 2((DI, IiD). Since M is the 
Gram matrix of the basis {j } with respect to the inner product [0, 5t] = 

(k+ yV) + 52(OI, v'), it follows that M is nonsingular. Thus (2.4) possesses a 
unique solution defined, at least, for t E [0, tmax) 5 tmax = tmax(h). 

3. ERROR ESTIMATES 

In order to estimate the accuracy of the semidiscrete approximation U, it 
is necessary to introduce a suitable elliptic projection W of the solution u of 
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(1.1)-(1.3). To define W, we require additional notation. Let B = B c c 

denote the bilinear form on H2 x H2 defined by 

(3. 1 ) B(0b, 5t) = (q , V/i) + (c330, v") + (c2q$', v') 2 

+ (CIO, Vs) + K(O, V/), for all 0, v/ E H. 
where c1 , C2, c3 are bounded 27r-periodic functions of x, and K is a suffi- 
ciently large positive constant whose choice will be discussed momentarily. 

Clearly, B is continuous; that is, there exists a constant C such that, for all 
X, viE H2, 

(3.2) IB(05 V/)1 < CIIOIIH 2II VIIIH2 
Furthermore, note that C only depends on 3, K, and IICiIILOO i = 1, 2, 3. 
On the other hand, since (2.1) implies 

IIu'll2 < 
I 

21b luIl2 + b IIUII2 
- 21 i2b 2 

where b is an arbitrarily large positive constant, it is easy to show that K can 
be chosen sufficiently large that 

(3.3) B(b, 0) ? 11 110 q2}, X E H2; 
2 

that is, B is coercive in H . The size of K depends only on 3 and IIciL, 5 

i = 1, 2, 3. 
We now define W: [0, T] -* SA by 

(3.4) B(W(t), v) = B(u(t), v), V E SA, t E [O, T], 

where, for each t E [O, T], the functions c,, i = 1, 2, 3, in (3.1) are chosen 
as 

c3(a t) = 1 + 'E + yu(, t), 

(3.5) C2(, t) = - 2fi8u(., t) - yu(., t) - , 

c1(., t) = 2fu(., t). 

Under the assumption that u(., t) E H2 for t E [0, T] (necessary for u 
to be a weak solution), the functions ci , i = 1, 2, 3, in (3.5) are in L' (I). 
Therefore, (3.2) and (3.3) hold, and the Lax-Milgram theorem (Ciarlet [4]) 
implies that W is uniquely defined. 

Theorem 3.1. Assume U, ut E L'(H r+), r > 3. Then there exists a constant 
C, depending on U, /3, y, 6, c, T, r but independent of t and of the partition 
A, such that 

D9 r+1i 
(3.6) | (u - W)(t) < Ch -, l =0, 1, i=, 1, 2, tE [O. T]. 

Proof. We first note that u E L" (Hr+l) implies u E L" (L?) ,via the Sobolev 
embedding theorem. Therefore, the bilinear form B defined by (3.1) and (3.5) 
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is continuous and coercive uniformly in t E [0, T], and the estimate (3.6), 
with 1 = 0, i = 2 follows from the approximation property (2.3) in a standard 
way. 

Next we address the case I = 0, i = 0 by a Nitsche argument. For t E 
[0, T], we set q(t) = u(t) - W(t) E H2 and define 0(t) E H2 by 

2 
(3.7) B(v, 0(t)) = (v, q(t)) for all v E H . 

By applying the Lax-Milgram theorem to B*, where B*(q, yV) = B(Vy, 0), 

a, q E H , it follows that q is uniquely defined. Integration by parts in (3.7) 
reveals that 0 satisfies, in the sense of distributions, 

0oxxxx - (c30xx)x - (c20x)x - (clq)x + K0 = 

Since uX E L' (L?) and therefore ci E L??(L??), i = 1, 2, 3, it follows by 
standard techniques that q E L2 implies that q E H4 and 

(3.8) Il(~l4 - C|t|2 , t E[0, T], 

where C depends on 3, IIciL-(L-), and 1I(ci)xLo(L?). Then, for X E Sa, 

we have, from (3.7), (3.4), and (3.2), 

(3.9) IIq1I = B(q5, C) = B(q, q0) = B(q, -X) < CII0IIH2 110 - XIH2. 
From (2.3), x E can be chosen such that 

(3.10) 110- XIIH2 < Ch I0 IIH4. 

On combining (3.8), (3.9), (3.10), it follows that 

||q|| < Ch?||0H|2, 

which implies (3.6) with I = 0, i = 0. The case I = 0, i = 1 follows from 
interpolation between the cases I = 0, i = 0, and I = 0, i = 2. 

To prove (3.6) for I = 1 , we must differentiate (3.7) to obtain, for X E SA, 

(3.11) B(qt X) (e3qx Xxx) + (e2qx Xx) + (el x %), 

where 

c3 = -YjUt C2 = (263J + y)ut , el = -2fiut. 
Since ut E L (LO), it follows that el, c2, c3 E L'(L'). Then, using (3.3) 
and (3.2), we can write, for x E S6, 

J 
(11 qxxt 12+ IIqt I2) < B(qt, 't) = B(qt u ut - X) + B(qt X - Wt) 

? C{f1qxxt11 + 1II1tII}IIUt - XIIH2 + (e3qx 5 (x- Wt)xx) 
+ (02qx' (X - Wt)x) + (Clax (X - 

Wt)) 

_ C[{JIIxxt11 + I1tII}IIUt - XIIH2 + IIC1IIH' 11X - Wt1H21 
(11 ll2 + iIqtI12) + C[lut - XI122 + Iq1121H. 
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In view of the approximation properties of SA, these estimates prove the case 
I = 1, i = 2 in (3.6). To prove (3.6) with I = 1, i = 0, techniques similar 
to those developed by Dupont et al. [6] can be used. Finally, the case I = 1, 
i = 1 follows from interpolation. o 

We are now in a position to provide error bounds for the solution U of (2.4). 

Theorem 3.2. Assume that u, ut E L??(Hr+l), r > 3, and that U(O) is chosen 
to be the projection W(O) of u(O). Then, for h sufficiently small, the solution 
U of (2.4) exists for t E [O, T] and 

(3.12) I|U-UIIL(L2) +hI|u-UIILC(HF)+h I|U-UIIL2(H2) = O(h ) as h - 0. 

Proof. Since L (H ) c L??(L??) with continuous imbedding, standard argu- 
ments (see, for example, Wahlbin [11]) can be invoked to show that we need 
only prove that (3.12) holds under the assumptions that U exists up to t = T 
and that U E L??(L??). As before, we set q = u - W. In view of the estimate 
(3.6) for , it is sufficient to show that C = U - W satisfies 

(3.13) IICIIL?(L2) + IICIIL(H1) + IC1IIL2(H2) = O(h r+). 

A simple calculation establishes that, if v E SA, 

(Ct , v)-(Cxx ,vx - vxx) + 2 ( UC + Wx C, v-6vx) 
- 

Y(UCX + RWC , VX - VXX) - (cX 5 VX-6VXX) + 6 (C tX VX) 

= (qt v) + 2fl(Wf , v - 3vx) 

- Y(Wxq , VX - JVXX) + J 2(qtx 5VX) - K(q , v). 

On setting v = C in this equality, we obtain 

Ild 2 25 d 2 
2 d 11C +611ICX11 - (Cxx 5 Cx) + 2 dC 1x1I 

(3.14) = 61lCxil2+agx 5 Cxx) + Y(UCx + ff4c C -C 
- 2fl(UCx + Wff4C, C - 6Cx) - y(Wxq Cx - 6Cxx) 

+ 62(qtx 5 Cx) - K(q 5 C). 

Now, by periodicity, 

(3.15) (xx Cx) = 0. 

The boundedness of U assumed a priori, and the boundedness of Wx implied 
by (3.6), enable us to write 

(3.16) Y(UCX + ffxc 5 CX - 6CXX) < Colo~l + ll11) 6 X11xi 5 

(3.17) 2UC (UCx + WxC, C - ?C1x) < C(11C2 + xII2)I) 2 

and 

(3.18) y(WX1, C S - 3$Cxx) ? C(IICII2 + IICXI 2) + 6ICII 
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Moreover, 

(3.19) (qtx' Cx)=-(qt, Sxx) < CIqItI2l + 6Kxx 
2 

and 

(3.20) -K(q, C) < C(IIqII2 + 11C112) 

On substituting (3.15)-(3.20) in (3.14) and simplifying, we obtain 

d 2(IIII + 1IC112) + 6 IIX112 < C[IICII + IICxII2 + 1IqII2 + IIiII2]. 
Now Gronwall's lemma leads to (3.13) and the proof is complete. o 

Finally, we show that the Galerkin technique discussed in this paper does 
in fact overcome the stability problems described in the introduction. As was 
pointed out there, the instabilities stem from the terms present in the linear 
model (1.4), so that it is sufficient to analyze our technique when applied to this 
model, or equivalently to consider (1.1) with fi = y = 0. 

Theorem 3.3. When ,6 = y = 0, the Galerkin solution defined in (2.4) satisfies 
t'he HI Lax-stability estimate 

IIU(t)112 + 62IIUx(t)II 2 exp(2et/32){IIU(0)112 + 3211U (o)II2 
Proof. The proof follows easily by choosing v = U in (2.4) and applying the 
energy method as in the proof of Theorem 3.2. o 

4. NUMERICAL RESULTS 

Problem (1.1 )-(1.3) was solved numerically by selecting S. in (2.4) to be the 
space of periodic piecewise Hermite cubic polynomials on a uniform partition 
of I. As in Abia et al. [1], the parameter values in (1.1) were taken to be 
fi = -0.45, y = 0.37947, c5 = 0.04216, e = 0.09487, and the initial condition 
was q(x)=0.lsinx. 

Numerical experiments showed that the constant K in (3.1) could be chosen 
such that the nodal values of the projection W(0) in Theorem 3.2 and its 
derivative W'(0) were essentially identical to the nodal values of q and its 
derivative q', respectively. It was decided therefore to take the interpolant of 
q(x) as the initial condition for the system of ordinary differential equations 
resulting from (2.4). This system was then integrated in time by means of the 
trapezoidal rule with a small fixed time step. Newton's method was used to solve 
the system of nonlinear equations arising at each time step. The initial estimate 
of the solution was taken to be that computed at the previous time level, and 
the Jacobian, which is periodic block tridiagonal, was updated at each iteration. 
The iterative process was continued until the maximum norm of the difference 
between successive iterates was less than 10-12 

As a comparison, we ran the second-order finite difference method suggested 
by Abia et al. [1], also using the trapezoidal rule to advance the solution in 
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time. While this scheme only computes nodal approximations to u, second- 
order approximations to u' at the nodes are easily determined by standard 
central differencing (see [1, Theorem 3.1]). 

In Table 1, we present approximations to u and u' at the point x = 0, 
t = 1 computed using (a) the new Galerkin method with Hermite cubics, and 
(b) the method of Abia et al., with At = 0.001 in each case. The Hermite cubic 
approximations to u'(0, 1) display an 0(h4) behavior, while the approxima- 
tions to u(O, 1) and u' (0, 1) computed with the method of Abia et al. exhibit 

0(h 2) convergence. Note that the Hermite approximation to u(O, 1) is highly 
accurate even on the coarsest partitions. Since each method requires a similar 
amount of computational effort, namely, the solution of periodic pentadiago- 
nal linear systems in the method of Abia et al., and periodic block tridiagonal 
systems with 2 x 2 blocks in the case of the Galerkin method, the Galerkin 
method should clearly be preferred. 

TABLE 1 
Approximations to u(O, 1) and u'(0, 1) computed using (a) the 

new Galerkin method; (b) the method of Abia et al. [1] 

(a) (b) 
h u(0, 1) u'(O, 1) u(0, 1) u'(O, 1) 
0.1 8.863513E-2 5.572576E-2 8.2864E-2 5.7047E-2 
0.05 8.864256E-2 5.585955E-2 8.6747E-2 5.6228E-2 
0.025 8.864264E-2 5.588262E-2 8.8146E-2 5.6049E-2 
0.0125 8.864264E-2 5.588423E-2 8.8517E-2 5.5729E-2 
0.00625 8.864264E-2 5.588433E-2 8.8611E-2 5.5896E-2 

It should be mentioned that we also conducted numerical experiments with 
fixed values of h and decreasing sequences of At. As predicted, no instability 
was encountered. 

5. CONCLUDING REMARKS 

Equation (1.1) is of the form 

(5. 1) ut- JUtX = L(u) , 
with L a nonlinear differential operator which does not involve derivatives with 
respect to t. The method suggested in this paper is based on the weak form 

(5.2) (ut - Ju tX 5v - osVx) = (L(u) , v - 6vx). 
A formal integration by parts in (5.2) yields 

(5.3) (u 6ut + 6u 2ttX v) = (L(u) + 3(L(u))x, v), 

a weak form of the equation 

(5.4) u-5 2Utxx = L(u) + 6(L(u))x. 
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In turn, (5.4) can be obtained by differentiating (5.1) to get 

(5.5) u - = (L(u))x 

and then eliminating utx between (5.1) and (5.5). Therefore, the novel weak 
form (5.2) of (5.1), based on the use of the somewhat artificial test functions 
v - 5vX, could have been obtained alternatively by (i) manipulating the strong 
form (5.1) to eliminate utx and arrive at (5.4), (ii) forming the familiar weak 
form (5.3) of (5.4), and (iii) integrating by parts to obtain (5.2). 

The observation which we have just made may be useful in other contexts. 
For instance, suppose we wish to discretize (1.1) by finite differences, and for 
simplicity let us suppose that we are dealing with the linear case /1 = y = 0. The 
discretization of (1.1) based on the standard centered replacements of 0/Ox, 
02/0X2, 03/0X3 is unstable (Abia et al. [1]). On the other hand, if we first go 
to the form (5.4), which in the linear case becomes 

ut -_ utXX + 8UXX + (1 + e5)uXXX + JUXXX= 0, 

and then perform standard central differencing, we obtain a stable semidiscrete 
scheme. An alternative way of constructing stable finite difference schemes for 
(1.1) has been suggested by Abia et al., but their construction is perhaps of a 
more ad hoc nature than the one we have just presented. 

It appears that the combination u - J2u in (5.4) is more easily discretized 
than the combination ut - 5 utX in the original form (5.1). It is perhaps useful 
to emphasize that the combination ut - Ju 

2 
appears in the so-called Sobolev 

equations [2, 9]. 
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