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ANALYSIS OF SPECTRAL PROJECTORS 
IN ONE-DIMENSIONAL DOMAINS 

Y. MADAY 

ABSTRACT. In this paper we analyze a class of projection operators with values 
in a subspace of polynomials. These projection operators are related to the 
Hilbert spaces involved in the numerical analysis of spectral methods. They 
are, in the first part of the paper, the standard Sobolev spaces and, in the 
second part, some weighted Sobolev spaces, the weight of which is related to 
the orthogonality relation satisfied by the Chebyshev polynomials. These results 
are used to study the approximation of a model fourth-order problem. 

1. INTRODUCTION 

The numerical analysis of the error between the exact and the numerical solu- 
tions of a partial differential equation approximated by spectral methods relies, 
in most cases, on the comparison between the numerical solution and the best 
polynomial approximation in some suitable Sobolev spaces. The best approxi- 
mation is achieved by orthogonal projection operators. This paper presents an 
analysis of a wide class of such projection operators in weighted Sobolev spaces. 
The reason why this analysis is somewhat more difficult in spectral methods than 
in finite element methods has to do with the fact that the inverse inequality be- 
tween spaces of polynomials provided with Sobolev norms is not as good as the 
ones that are available between spaces of finite elements. Because of this, the 
projection operators in low-order norm have poor approximation properties in 
higher norms (see Remark 2.1 of this paper). 

Such projection operators have been studied before in [4, 12, 16, 1], but 
the existing results are limited to the approximation in low-order norms such 
as the L - or Hl-norm and are therefore not adequate in many applications. 
For example, they are not sufficient for the error analysis of the approximation 
by spectral methods of fourth order and, in several instances, second-order 
problems (see [5]). 

For different properties of projection operators that arise in spectral methods, 
see also [19]. 

An outline of the paper is as follows. In ?2, we prove some results con- 
cerning the approximation theory with Legendre polynomials on the interval 
(-1, 1). These results are obtained in a standard Sobolev framework. The 
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theory of interpolation between Sobolev spaces is widely used here. In ? 3 we 
recall and complete results proved in [6, 1] concerning interpolation between 
weighted Sobolev spaces on (-1 , 1) . The weight is the one that appears in the 
orthogonality relation for Chebyshev polynomials. These properties are used 
in ?4 to extend the results of ?2 to the approximation theory with Chebyshev 
polynomials. Finally, we give in ?5 an application to a simple fourth-order test 
problem. Note that other applications of these results can be found in [3, 18]. 

Let A be any interval of R; for any integer m, the space of continuous 
functions defined on A whose derivatives of order < m are continuous on 
A is denoted by F'm(A); for any real number s > 0, we denote by Hs(A) 
the Sobolev space of index s on A and by Hs (A) the closure in Hs (A) of 
the space 9(A) of all functions F?? with compact support in A (see [8] for 
more details). For any s > 0 we denote by ((., .))s A the scalar product of 
Hs (A) and by l* A its norm; the space Hs (A) is provided with the standard 
seminorm I Is A of Hs(A). In the sequel, the interval of reference will be the 
interval A = (-1, 1); for this interval, we shall omit the subscript A in the 
various norms. For any function f, we denote by f' and J'" the first and 
second derivatives of f. 

The duality pairing between a Hilbert space and its dual space is denoted by 

Let X and Y be two Hilbert spaces such that X c Y and X is dense in Y; 
for any 0 in [O, 1], we denote by [X, VY] the space obtained by any Hilbert 
interpolation of index 0 . We refer to [8, Chapter 1] for a complete analysis of 
Hilbert interpolation. 

For any integer N, PN stands for the space of all polynomials of degree 
< N on A, and for any real number s, s > 0, we denote by PsN the space 
' nHsO(A). 

Finally, for any real number s, we denote by s the integral part of s. 

2. APPROXIMATION RESULTS FOR PROJECTION OPERATORS 
IN THE STANDARD SOBOLEV SPACES 

The main result of this section is 

Theorem 2.1. Let p and s be two real numbers such that p 0 N + 1/2, 0 < 
s < p. There exists an operator I' ON from HP(A) n Ho(A) onto 1>" such that, 
for any ( EHW(A) n Ho(A) with a > p, we have 

V>, < < . 11 - p~fv~0 < CNv_-7I?9II,. Vt' O<v~p, o- so_<N~k~ 

The proof of this theorem will be carried out in two steps. The first considers 
the case where p is an integer, and the second generalizes the results to all values 
of p. 

First step. Let us first consider the case where p is equal to s and belongs to 
N. We define a projection operator Pp, N from H0 (A) onto as follows: 
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for any (0 E HPO(A), Pp N satisfies 

(2.1) Vy e IPPN, ((dp[p - PPN o]/dxp, dpy/dxp))0 = 0. 

This projection operator has the following properties. 

Lemma 2.1. For any (0 e Hcl(A) n HRP(A), with a > p, we have 

(2.2) Vt' O<vp, I - PPNI, < CNk'-cI1la. 

Remark 2.1. The estimate in the case v = p = 0 has been proved in [4], while 
the case 0 < v < p = 1 is analyzed in [ 12]. Moreover, it is proved in these two 
cases that no optimal bound is possible for HV'(A)-norms with vi > p. Indeed, 
the best estimate that can be achieved is 

NO - PONqllv < CN 2vfIla. 

It is often necessary (see, e.g., [2, 3, 18]) to obtain optimal results in higher 
norms. 

Proof of Lemma 2.1. We prove (2.2) for vi = p by induction over p in N. In 
Remark 2.1 we have recalled that the result is well known for p = 0. Let us 
assume that, for any (0 in Hcl(A) n HO l1(A) with a < p - 1, we have 

(2.3) NO? - Pp-INAolp-l < CNP-al- R91 

For technical reasons that will be clarified in the sequel, we assume that 

(2.4) N > 2(p - 1) 

(note that the asymptotic result (2.2) is trivial for N < 2(p - 1) if we take the 
constant C large enough). Let (0 be any element of Hpo(A); then (0' belongs 
to Hpo l(A) and p~, ,- kV) is a polynomial in PN- 1 Moreover, since 
?o(-1) = ((1) = 0, we have 

1 Il 

1-1 P1, N-I (0)ux = [Pp-1, N-1 ((') - '] dx. 

Integrating by parts 2(p - 1) times and noticing that Pp_ l 1N- 1 (V') - (' belongs 

to HP l(A), we obtain 

1 Pp 1,N-1((') dx 

NC(p)((d' [Pp- ,N- I )- 'I]/dx(p1 , d(p 1)[(1 - x2 )P- ]/dx(p-)))O. 

From (2.1), (2.4), we derive 

(2.5) Pp_ 1, N- 1 ((0') dx = 0. 
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Finally, we deduce that the primitive function x -- El Pp-,N- l (&(') (y) dy = 

RN(X) is a polynomial of PN that, for any V in PPN satisfies 

((dPRN/dxp, dp v/dx))o = ((dp- [Ppl ,N-I (&)]/dxp1, dp1 [yi']/ dxp))o 

= ((dp- 1 k[p]/Pd x, dp-' [y']/dxp ))o 

= ((dpo/dxp, dpy/dxp))O, 

so that RN =FPp N9. Then, using the classical Poincare-Friedrichs inequality 
yields 

RD(o N(lp < CIP' - [PPNV]'llp-l = Cl9O PP-1,N-1(9)11p-j 

From the induction hypothesis we obtain 

11- PpN p < CNP-l-(a1)l a-'11 

so that 

(2.6) 11f - Pp,N?91P < CNP-flk a 

This proves the lemma for zJ = p. 
In order to prove (2.2) for v < p, we use a duality argument. Consider the 

operator Lp defined from H P(A) into HPO(A) by 

Vf e H (A), V y( HPO(A), ((dp(Lpf)/dxP, dp V/dxp))0 = (f, qi). 

It is well known that Lp is an isomorphism from L2(A) into H2p (A) n HO (A), 
so that we have 

1V Pp,NV11O sup- 
((V - PpNV 

I 
V))O 

VEL2 (A) 110 o 

((dp ( - Pp N)/dxp, dp(Lp )/dxp))o 
- sup 

VEL2(A) 11010 

((dp (V-Pp Nv)/dxp, dp(Lpy -PpN(Lpv))/dxp))o 
= suip l 

VEL2(A) 1 "10 

where the last equality holds because of the definition (2.1) of Pp N(O We 
deduce that 

1V-PpNV1o<?1-PpN||p SUp LP/PPN (P/)P 

using (2.6), we obtain 

|| - PpNVI0 ? CNPflO11 aNP2P sup p 

VEL2(A) H1V'H0 
From the regularity of Lp we finally derive 

11V - Pp,NVIIO < CN- RIIVIa,. 
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We have proved (2.2) for vi = 0 and vi = p. We deduce now the result by 
interpolation. Indeed, the two results we have proved can also be stated as 
follows: the mapping Id Pp N is linear continuous 

-from HW(A) n Hp(A) into L2(A) with a norm bounded by CN C, 

-from HW(A) nmH.(A) into HP(A) with a norm bounded by CNP C. 
We derive from [8, Theoreme 1.5.1] that, for any 0 in (0, 1), the mapping 

Id -p N is linear continuous 

-from H (A) nHuPO(A) into [HP(A), L2(A)], = H6P (A) with a norm bounded 
by CN 6p , which concludes the proof of (2.2). 5 

We now turn to the case where s and p are integers such that 0 < s < p. 
From the well-known properties of the traces we deduce that there exists a linear 
continuous operator AP from HP (A) into the subspace of polynomials P2p-_1 

such that for any (0 in HP (A) n Hs (A) we have 

(2.7) v( - Ap?( e HO(A) and All - Ap?(oH ? I CIIIp, 

VA (= R+ 5 IIAp?911, < C(y)11?911p. 

It is an easy matter to check that, if we assume (2.4), the polynomial Ap?( + 

Pp, N (?- -AP?) is an element of Ps. . Thanks to (2.2), it satisfies, for any a > p 
and any (0 in HW(A) nmHs(A), 

VV t ? ' M'P. 11O p -(Ap + PPN( - Apo)) v? < CN Vfk11 -Ap?91 

From (2.7) we deduce that 

119 - (Ap?9 + PpN((9 - Apo))Hl < CN vflROIf. 

We now define I- I0 to be the projection operator from HP(A) n Hs(A) 
onto ~sN with respect to the scalar product ((. *))p of HP(A). Using this last 
inequality with v = p, it is an easy matter to check that 

||?? -rl ?|| = inf O| P ? ko - (A( + 

so that 

(2.8) 1ko - H ;'0(o < CNP- 7f1lO . 

We now use a duality argument to analyze II - I-Is'0 K As in the case 

s = p, consider the operator Lp defined from H- (A) into Hp (A) by 

Vf E H P(A), Vy E HPO(A), ((Lpf, y))p = (f, V). 

It is well known that Lp is an isomorphism from L2(A) into H2p (A) n HP (A), 
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so that we have 

s =0 ((? - HN~s?), L,, y))) t!EL2 (A) ||M 

=?9 ( - Njs 0), (Lp , -rp 
0 

(LP v))))p 

where the last equality holds because of the definition of Ip I'(o . We deduce 
that 

s~v 0 sfllo 0 I1v-np N|Ip Sup IILP- p IN(LpV)IIp 
11- rvi'N?91 ? NO - 1I' VELH1 su (A) /H01 

using (2.8), we obtain 

-sO? 1l < CNIV" -11 NP S2 HLpL H2 
119- rHpN?91H - 

sup2A)111 

From the regularity of Lp we finally derive 

(2.9) 11 ; - ;' H0 < CN I 1k1H. 

With an interpolation result we then obtain an estimate for (0 - HP," for 
any vz, 0 < v < p. Hence, we have proved 

Lemma 2.2. For any (0 e H (A) n Hs (A), with a > p, we have 

(2.10) VtV Os<v o P1v-H H < CNva'HP11a. 

Second step. We want to extend Lemma 2.1 to nonintegral values of p, p ? 
N + 1/2. We must distinguish the two cases p - p < 1/2 and p - p > 1/2. 

We begin with the case p - > 1/2 and take (0 in H7(A) n HP (A) with 

a > p-+ 1 . It is standard to note that (0 is, in fact, in HP (A). Now using 
Lemma 2.1, we obtain 

inf IVO - (NH1p < CNP"11(O11 
N(P E P7N 

for any a > p- + 1 (use (2.2) for P.+I N in the case v = p) . Since we have 

1N+ PP- , we deduce that 
N - N' fNEM (2.11) Vai ?T+ 1, infH- HP?C fkOa 

We now consider the case p - p- < 1/2 and take p e H (A) n H-O(A), 
a > p- + 1 . Using now Lemma 2.2 gives 

inf H11 - NHlp < CNP I 1a, 
(P N EPN 
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(use (2. 10) for +I, N with v=p),sothat,forany a?>T+l, 

(2.12) Va > T + 1, inf 119 - 0N1Ip < CNPU711p11. 

Now define, for nonintegral values of p, p 0 N + 1/2, a scalar product over 
HP(A) obtained by interpolation of index 1/2 between L 2(A) and H2p(A) if 
2p does not belong to N + 1/2, and by interpolation of index 1/3 between 
L2 (A) and H3p(A) if 2p belongs to N + 1/2 (see [8, p. 12 and Chapter 1, 
? 11.5]). More precisely, we consider the domain operator interpolation: there 
exists a self-adjoint operator Ep such that 

-the domain D(Ep) of the operator Op in L 2(A) is HP (A), 
-if 2p does not belong to N + 1/2, the domain D(e9) of the operator O2 

in L2 (A) is H2P(A); if 2p belongs to N + 1/2, the domian D( 3) of the 

operator E3 in L 2(A) is H3p (A). Moreover, if p does not belong to N + 1/2, 
the bilinear form 

(2.13) (u, v) -* (((u, v)))p = ((u, v))0 + ((E3pu, Epv))0 

is a scalar product whose associated norm, denoted by I I I * I 1 , is equivalent to 
the one defined in (2.2). 

From (2.1 1) and (2.12), the projection operator Pp, N from HO(A), provided 
with the norm I. IIIP, onto Py verifies the following estimate, for any (o E 
H(A) n HPo(A) > T + 1, 

1k" - Pp,N911p < CNP?I1 9 a 

Trivially, we also have 
119 - PpNll, < CH(oIIp. 

A simple interpolation argument now gives, for any a > p and any q' E Ha (A) n 

Ho0(A) A 

(2.14) 119 - Pp,NPIlp < CNP-aIOIjla 

We now use the abstract duality result of the appendix to derive an optimal 
estimate for 11 - Pp N110I . In the situation where Y0 = L2(A), Z = H2P(A) n 

WoV(A), Y= D(e2), and X = HPl(A), we obtain from (2.14) that 

11k - Pp,N("II0 < CN f-la1K sup 11Vl PpNVIlp 
vH2P (A)nHPO (A) 1 1 VU| 2p 

< CN '71(lfic. 

Interpolating between (2.14) and the previous estimate, we conclude that, for 
any p E Ha (A) n HP (A), a > p, we have 
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Following the same lines as in the proof of Lemma 2.2, we deduce from the 
result (2.15) the existence of an operator Hs 0N for any values of p and s that 
satisfy the bound of Theorem 2.1. 

Remark 2.2. It is an easy matter to state a similar result concerning the existence 
of an operator from the closed subspace of all elements of HP (A) such that only 
some of the derivatives of order < p - 1/2 vanish on the boundary of A onto 
the space of polynomials in PN having the same derivatives equal to zero at 
the boundary. 

Remark 2.3. As pointed out in [18], the operator AP + Pp N O(Id -AP) defined 
in (2.7) for integral values of p, and that could be defined in a similar way for 
any real number p not in N + 1/4, has the same approximation properties as 
1 N and, moreover, it preserves the traces of any element of HP(A). 

3. SOME RESULTS CONCERNING WEIGHTED SOBOLEV SPACES 

3.1. Notation and basic properties. Let us briefly recall the definition of the 
weighted Sobolev spaces we shall use. If p(x) = (1 - x2)-1/2 denotes the 
Chebyshev weight on the interval A, let 

(3.1) L 
2 

(A)= RD: A F l (D is measurable and fD2(x)p(x) dx < +oo 

be the Lebesgue space associated with the weight p(x) . We provide it with the 
inner product 

(3.2) (F, 5)TP = f (x)T(x)p(x) dx. 

For any integer m > 1, we set 

H7(A) = { FE L2(A) I d /dx E L2(A), 1 < k<m}, 

the weighted Sobolev space of order m, provided with the inner product 
m 

(3.3) ((O D T))m,p= E (d F/ddx ,d 5 /dk xk ) 
k=O 

and the norm 

(3.4) VFj(D112np = ((D D))mP 

For any real number s = m + a , with 0 < a < 1 and m an integer, Hs>(A) 
is defined by Hilbert interpolation of index a between the space Hm (A) and 
Hm+7(A): 

H>s (A) = [Hpm(A), H7m+(A) ] 

(see [8] for more details). In addition, we define Hs O(A) to be the closure of 
2(A) in Hs>(A). 

We recall some results proved in [1] that extend to these spaces the results 
of [6]. 
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Theorem 3.1. (i) For any real numbers s, p, q such that 0 < q < s < p and 
which do not belong to N + 1/4, 

(3.5) H O(A) = [Hp.o(A), Hp (A)]q , 

with 0 = (s - p)/(q - p). 
(ii) For any real numbers s, p, q such that 0 < q < s < p and such that 

p and q do not belong to N + 1/4, Hs (A) satisfies the following topological 
imbedding: 

(3.6) Hs (A) c [Hp (A), H q(A)]O, 
with 6 = (s - p)/(q - p) 

(iii) For any real number s > 1/2, s 0 N+ 1/2, the space Hs (A) is contained 
in C>(A), where v is the integral part of s - 1/2. 

(iv) For any integer m, the trace mapping defined from C' (A) into R 2m+2 

by 

U -- (u(- 1), duldx(- 1), . . .,dm/xm(- 

u(1), du/dx(1), ... , dmu/dxm(1)), 

can be extended to a continuous mapping from Hs>(A) onto R 2m+2 for any real 
number s > m + 1/4. Moreover, the space Hs, 0(A) coincides with the kernel 
of that trace mapping. 

We recall also the following result that can be found in [5]. 

Theorem 3.2. For any real number s > 1/4, Hs(A) is contained in Hsl 1/4(A). p 

3.2. The case of real interpolation. Let us first use a wider class of interpolation 
that depends on two real numbers. It consists of the real interpolation procedure 
(see [9] for more details), and we recall that for all 0 E (O, 1), and (r, r') E 

(R+), r > r, 
(3.7) [Hp (A), H q(A)]or C [Hp (A), H q(A)]o6 
and that, in the case where r is equal to 2, this interpolation coincides with any 
Hilbert interpolation. 

Define the weight function w on R+ by 

{x- 1 /2 0 < x <1 

We define the weighted Sobolev spaces associated with this weight as follows: 

L 2(l+)= {F: iR+ -:R I F is measurable and f (D2(x)w9(x) dx < +oo 

and, for any integer m > 1, 
m + 2+ k k 2+ 

H, (R ) = {f E LN (R ) I d F?/dx ELN(R), 1 < k < m}; 

these spaces are provided with the norm I Ilm w . 

The next lemma exhibits an equivalent norm over Hn (R +) 



546 Y. MADAY 

Lemma 3.1. For any integer n > 2 and for any u in H n(R+) we have 

(3.8) Vm, 0 < m < n, Ildmu/dxmllo < C(QlulHlo + lld nu/dxnl0loa). 
Proof. Let us choose a function u in Hn(R+), and define u* as the orthogonal 
projection of uj(0 1) into PI for the L 2(0, 1) scalar product. It satisfies 

(3.9) \d(p C= | (U - u*)(x)(9(x) dx 0, 

and, from the uniform equivalence of norms over Pnfr 

(3.10) Vu>0, Hu JuJ(01) <C(n)llullo. 

We deduce that, in particular, the element -i = u - u* has zero average and is 
continuous on (O, 1) , hence ii vanishes at least once in (O, 1). If ui has a finite 
number of zeros in (O, 1) , let (hi) 1 <i<p be all of those with odd multiplicity. It 
is an easy consequence of the definition of the hi to note that (-a)(Htlp ,(x - Xi)) 
has constant sign on the interval (O, 1). Let us assume that p < n; taking 

= HfJ I(x - i) in (3.9) implies that (i)(HrtJP I(x - 4i)) is constant equal to 0 
on (O, 1), which contradicts the assumption. We therefore deduce that ii has 
at least n distinct zeros in (O, 1) . This implies that for any 1, 1 < I < n - 1, 
the function a0(ii)/Oxl vanishes at least at one point ,ul in (O, 1). As a 
consequence, we note that 

Vy E [0, 1], i(al0/0ax)(y)i < f a 1+?1 /ax,+1 (t) dt 

Ii'~~~~~~~~~/ 
< c[ll (al+l g~aX1+1 )2 w(y) dy] 5/ 

whence, from (3.10), we deduce that 

Vy E [O. 1], ( / /xl)(Y) 

(3.11) < C 11u11o Q0 + [fl(o+ u/0x +1)2w(y)dy]/) 

and 

J(all/0x)2 o(y)dy < C (lu loa,+ [1(0+,o+ I/+1 20(y) dy1 1/2 

By induction, we derive that 

(3.12) Vl, 1 < 1 < n- 1, ] (0lu/Ox) 2(y)wt(y)dy 

< C(IHullo a) + 1H10u2/0Xlnlo0a). 

Let v be an element of F' (Ri+) with values in [O, 1] , with compact support 
in [O, 3], and such that v(1) = 1. The element ii defined on R+ by 

Vx > 0, u(x) = u(x) - [E(x - 1)'v(x)u(')(1)/l!1 
1=1 
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satisfies 

(3.13) V/, 1 < <n- 1, aiii/xl(l)=O; 

moreover, we derive from (3.11) that 

(3.14) Vl, 1 < 1 < n-i 1H' (iji-u)/d3 x ow < C(Hullo0 ce+ja U/nXnjj0Xc). 

Integrating by parts and using (3.13), we deduce that 

V1, 1 < 1 < n-i, f(l/ xl)2(x)dx 

hence V/ <l0 n-1 

;??(0l / I2( dx<f t(d l i/Oxl1l)2(x) dx 

+ 2 if (x'1 (i/OX 'i) (x)dx. 

Iterating this process, we find that 

Vi1, 1 < n-1, f(<lui/-xl)2(x)dx 

C[f (<)2(X) dx + f (x) /dxn)2(X) dx]. 

Vm, 1 <m <no-1, f?(OmU/OXm)2(Y)w0(Y)dY 

1 

? C(||uH0OCt + 11O 2/0X ll ). 

This last result and (3.12) yield the lemma. 5 

Corollary 3.1. For any function u in H2(R+) we have 

(3.15) HluKl~l ?) < CluH0lHuHgO C,,12. I 

Proof. Applying (3.8), with n = 2, to the function x -*u(tx), for t > 0, we 
derive that 

(3.16) Vt > 0, t-ju'j j, - C(jjujj0, + t2Idu"110 c) ? 0 

If the roots of the polynomial [tjju' jj) - C(jjuj dx + t2(njjuljj)] are real, 
they are positive; hence, we deduce from (3.16) that the discriminate of this 
polynomial is nonpositive, that is, 

jju'jj0 C - 4C2jjujI j Ujjuljjl +, 
?n n 0.? 

This immediately yields (3.15). 3 
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Another consequence of Lemma 3.1 is 

Corollary 3.2. Let n be an integer; the scalar product on Hp (A), 

(3.17) V( M)) nP=(( isV) 0,+ (dn (o )IdXn ,dn ( ,I4n{~ 

defines a norm on H n(A) equivalent to the standard one. 

Let X be a Banach space. We say that X is contained in X(H~p(A), Hq (A)) 
for a real number 0 in (0, 1) if 

(3.18) [H~p(A), H q(A)] 1 c X c [H~p(A), H q(A)]6 . 

We recall the following characterization: a Banach space X contains the space 
[H~p(A), H q(A)] 1 if and only if 

(3.19) Vu E H~p(A), I uIIx < C ( t1- P6) |6lot 1p 

We now prove 

Lemma 3.2. The space Hl (A) is contained in ,/2(H 2(A), L 2(A)). 

Proof. By (3.6) and (3.7), we immediately obtain 

(3.20) H I(A) c [H 2(A), L (A)]112,. 

Let us consider a function fi of C' (A) with values in [0, 1] such that 

Vx, -1<x<-1/3, ,8(x)=1, 
Vx, 1/3<x<1, /3(x)=0. 

2~~~~~~ Let w be any element of H2(A) . We derive from (3.15) that 

(3.21) H~flwK1,, ? CH/JwlloHpIflWI2, p < 
CIIwIIOHpIIwII2 , 

RII - l)wK1p < CHO( - /3)wHpll(l - /)WI12,p < CIIWIIOplIWI12,p 

From the Cauchy-Schwarz inequality, we then obtain 

Vw E- H 2(A) 5 IIWI,p < flgwKP + II(, - fl)wI ,, < CIIwH0I12 IHwHI/2. 

The lemma now follows from (3.19) and (3.20). 5 

We can easily extend the same techniques to higher derivatives and state 

Theorem 3.3 [7]. For any real numbers s, p, q such that 0 < q < s < p and 
which do not belong to N + 1/4, and for any r such that 0 < r < s, the space 

H>(A) n H0 (A) is contained in ,(Hp(A) nH0(A), HH(A) nHmin(rq)(A)), 
with 0 = (s- p)/(q - p). 

3.3. Some properties of the dual spaces. In order to sharpen the previous results 
on Hilbert interpolation, we need some properties of the duality between the 
spaces Hs 0 (A). Let us introduce, for any real number s > 0, the dual space 

Hps(A) of Hs ,o(A). In the following, we shall always identify L2(A) with 
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its dual space. As a consequence, differentiation in the space of distribution 
9Y'(A) is defined as follows: 

(3.22) Vf E c'(A), V ( E 2(A), (df/dx, (o) = -(f, (1/p)[d((pp)/dx]). 

Obviously, this definition coincides with the classical notion of differentiation 
for regular functions. 

The following lemma is then an easy consequence of [8, Chapter 1, Proposi- 
tion 2.1]. 

Lemma 3.3. For any real number s > 0, [Hs o(A), H-s(A)]112 is equal to 

L2 (A). 

Now we can prove 

Lemma 3.4. For any real numbers p and q, p > q > 0, such that p and q do 
not belong to N + 1/4, and for any 0 in (0, 1) such that 

(3.23) s=Op+(1-0)q 0 N+1/4, 

we have 

(3.24) [H7 q (A), HpP(A)]o = Hps(A). 

Proof. Recall that, under the conditions of the lemma, Theorem 3.1 states that 

(3.25) [HPO(A), Hp O(A)]1_ = Hs o(A). 

Using now the theorem of duality (see [8, Chapter 1, Theorem 6.2]), we deduce 
(3.24) from the definition of the spaces Hp r(A) for r > 0. E 

Using now the technique of [8, Chapter 1, Theorem 12.3], we deduce from 
the previous results: 

Lemma 3.5. For any positive real numbers p and q such that p and q do not 
belong to N + 1/4, and for any 0 in (0, 1) such that 

(3.26) s = (1 - 0)p - Oq 0 N + 1/4 and - s 0 N + 1/4, 

we have 

-P{ Hs (A) if s < 0 

We are going to prove now that, in the case where m is an integer, the 
elements of the space Hpm(A) are derivatives of some functions in L 2(A). 

More precisely, let us introduce the space Ypm(A) = {dmf/dxm; f E L2(A)}. 

Theorem 3.4. For any integer m > 0, the space Z7m (A) coincides with the 

space Hpm(A). 
p 

Proof. Let u be in Hm O(A); it is an easy consequence of Hardy's theorem, 
and has been proved in [1, Lemma 3.2], that (l/p)[dm(up)/dxm] belongs to 
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L2 (A). It follows that, for any f in L2 (A), 

ff(x)[dm(up)/dxm](x)dx < CjjfjjOHpHjujjmp. 

We conclude from this bound, and from (3.22), that dmf/dxm is in Hm m(A). 
This proves that XpZm(A) c Hpm(A). 

Conversely, it follows from [1, Lemma 3.2 and Corollary 3.1] that the map- 
ping u -* (l/p)[dm(up)/dxm] defines an isomorphism from Hm7O(A) onto 

2~~~~~~~~~~~~~~ a closed subspace of L 2(A). Hence, for any L in Hrm(A), there exists an P p 
element L, defined on this closed subspace, such that 

Vu e H%(A), (L, u) = (L, (1/p)[dm(up)/dxm]). 
P~~~~~~ 

We deduce from the Hahn-Banach theorem that L can be extended into an 
element of the dual space of L2 (A), whence of L2 (A). Let f be that element; 
it is then obvious that L and dmf/dxm coincide on Hm o(A). This proves 
that Hpm(A) c p2m(A). * 

3.4. The case of Hilbert interpolation. In this section we prove a more precise 
result concerning Hilbert interpolation between weighted Sobolev spaces. 

Theorem 3.5. For any integers s and p such that 0 < s < p, the space 
[H~p(A), L2(A)](ps)/p is equal to Hs (A). 
Proof. It is an easy consequence of well-known results on interpolation between 
standard Sobolev spaces that 

[H~p(A), L 2(A)](ps)lp c [HP(A), L2(A)](P-s)/P = Hs(A), 

so that from Theorem 3.2 

(3.27) [Hp(A), L2(A)](Ps)/p C H 1(A). 

In addition, the operator dp/dxp is linear continuous from the space HPp(A) 

into L2 (A) and, from Theorem 3.4, it is also linear continuous from L 2(A) into 
the dual space H7P(A). It follows from the principal theorem of interpolation 
[8, Chapter 1, Theorem 5.1] that dp/dxp is linear continuous from the space 
[H~p(A), L 2(A)](ps)/p into [L2 (A), H7P(A)](ps)/p. The space coincides with 

HspP (A), so that we can state p 

(3.28) [HP (A), L 2(A)](P _s)/p c {f E Hs-1(A); dpf/dxp E HspP(A)} 

We deduce from Theorem 3.4 that, if f is an element of [H~p(A), L2(A)](PS)/p, 
there exists an element g of Lp (A) such that dpf/dxp = dP Sg/dxP s. It is 

an easy matter to check that dsf/dxS - g is a polynomial in Pp-s-I and that 

dsf/dxS is in fact an element of Lp (A). We derive from (3.28) 

[H~p(A) , L2(A)](Ps)/p C {f E Hsp 1(A); dsf/dxS E Lp(A)} = H>s(A). 
This imbedding, and (3.6), give the theorem. 5 
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The reiteration theorem, together with the definition of the spaces Hs (A), 
gives the following general result: 

Theorem 3.6. For any real numbers s, p, q such that 0 < q < s < p, q < p, 
we have 

(3.29) H s (A) = [HP (A), Hq(A)I(p-s)/(p-q)* 

Moreover, we can state 

Theorem 3.7. For any real numbers s, p, q not in N + 1/4 such that 0 < q < 
s < p, and for any integer r such that r < s, we have 

(3.30) Hs (A) n H ,o(A) = [HP (A) nH 0 (A), H (A) n H or) (A)](p-s)/(p-q). 
Proof. It is an easy matter to deduce from (3.29) that 

[H~p(A) n Hp ro(A) 5H q(A) n HmlnO(r ' q) (A)](p-s)1(p-q) 

c [HP(A), H q(A)](p~s)/(p~q) = Hs(A). 

In addition, we also have, if r < q, 

[H~p(A) n Hp o(A) Hp(A) n Hp 0(A)](p-s)1(p-q) P H o(A) 

Hence we first deduce the imbedding, in the case where r < q, 

(3. 3 1 ) [HpP (A) n H ,O(A) 5 Hq (A) n Hp In0 'q (A)](p-s)1(p-q 

c Hs (A) n Hp O(A). 

Furthermore, if r > q, it is an easy matter to check that the space & (A) n 
H 0r (A) is dense in the spaces Hp (A) n Hp ,(A) and Hp 0(A); therefore, 
F"? (A) n Hp ,0(A) is also dense in the space 

[H~p(A) n Hp rO(A) Hq (A)](p-s)1(p-q)' 

and (3.31) is also satisfied for any r. 
Conversely, assume now that neither s - 1/4 nor p - 1/4 nor q - 1/4 are 

integers. Let u be an element of Hs (A) n Hp O(A). We define the polynomial 

Aof P2(s-1/4)-1 such that u - A is an element of Hs ,0(A) . It is an easy 
consequence of Theorem 3.1 that A exists and satisfies 

(3.32) Va > 0, L/tlla p < CjjujjsHp and A er H0(A). 

We deduce from equality (3.5) that the element u - A belongs to the space 
[Hp ,0(A), Hq, o(A)I(p-s)/(p-q), hence 

u- E [HP(A) n HP O(A), H (A) n Hm (A)](p-s)1(pq 
From (3.32) we derive that 

u e [Hp(A) n Hp ro(A), Hp (A) n Hpinro (A)](p-s)1(pq 
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which proves the converse inclusion of (3.31) whenever s - 1/4, p - 1/4, or 
q - 1/4 are not integers. n 

4. APPROXIMATION RESULTS FOR PROJECTION OPERATORS 

IN THE WEIGHTED SOBOLEV SPACES 

Let p be a nonnegative real number not in N + 1/4. By virtue of (3.5), we 
can define a new scalar product over Hp, 0(A). Indeed, for any p such that 2p 

is not in N + 1/4, HPI 0(A) can be obtained by interpolation between L (A) 

and H2p0(A) of index 1/2, and for any p such that 2p isin N+1/4, Hp, 0(A) 
can be obtained by interpolation between L 2(A) and H3p O(A) of index 1/3. 

If we consider domain operator interpolation, we can deduce the existence 
of a self-adjoint operator Ep P such that 

-the domain D(E) p) of the operator Ep ) in L2(A) is HPpO(A); 

-if 2p does not belong to N + 1/4, the domain D(9E2 p) of the operator 

Ep p in L (A) is H2P0(A); if 2p belongs to N + 1/4, the domain D E) 
3 2 3p of the operator Ep p in L (A) is HpIO(A). 

Moreover, the bilinear form 

(4.1) (u, v) -* (((u, v)))P P = (u, v)P + (EP Pu, ElpPv)P 

is a scalar product whose associated norm, denoted by I I I * I Ip p, is equivalent 
to the one defined in (3.4). 

We are going to examine the properties of the projection operators related 
to the scalar product defined in (4.1). The interest in considering this kind 
of projection operator will appear when we shall analyze the approximation 
properties they satisfy in lower-order norms. 

We first choose p in N, and we define pP, N as the orthogonal projection 
operator from Hp, 0(A) onto Pp. with respect to the scalar product defined in 
(4.1). 

Lemma 4.1. For any q' E Hop(A) n Hp, O(A), with a > p, we have 

(4.2) Vv, O <v<P, 11O-PpN(P11v,p < CNv fla ,p. 

Remark 4.1. The estimate in the case v = p = 0 has been proved in [4], and 
the case 0 < v < p = 1 is analyzed in [12] (note that the dependence of the 
constant C in (4.2) with respect to a is such that there exist two constants C1 
and C2, 0 < C1 < C2 such that Ca! < C(a) < C2oa!). Moreover, it is proved 
that no optimal bound is possible for Hp 0(A)-norms with v > p . Indeed, for 
example, the best possible estimate is 

11(PO ,N(Pvp < CN 2v-a 
p 

It is often necessary (see [5, 2, 11, 18] and (5.13)) to obtain optimal results in 
higher norms. 
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Proof of Lemma 4.1. We prove (4.2) for v = p by induction over p in N. In 
Remark 4.1 we have recalled that the result is well known for p = 0. Assume, 
then, that for any p in Ha (A) n H~p -% (A) with a < p - I we have 

(4.3) Vv, 0< v <p-1, |0 PplNN( vp?CNHa~p 
For the same reason as in ?2, we assume that 

(4.4) N > 2(p - 1) 
(note again that the asymptotic result (4.2) is trivial for N < 2(p - 1) if we 
take the constant C large enough). 

Let (o be an element of HP O(A); then p' belongs to H~p7 o(A), and since 
p(-1) = p(-1) = 0, we have 

a =] PPN- I (& )(t)dt = [Pp-1, N-I(&P) - P ](t)dt. 

Here, one cannot prove that a is equal to 0, but from the Cauchy-Schwarz 
inequality we find 

ja?(f< [Ppl N( I) - &2 (t)p(t)dt) (f p_ (t)dt) 

< C11PP-1,N-1((P&) - & lo,p 

so that, from the induction hypothesis (4.3) we obtain 

(4.5) jal < CN1f0lO'Hjijjp. 

Finally, we deduce that the primitive function 

RN(X) f [PP.,N-1((&)(t) - (a(1 - t2)P1)/( (1 - s2)p-1 ds )]dt 

is a polynomial in Pp. (note that we have used here the hypothesis (4.4)). From 
the Poincare-Friedrichs inequality (see [1, Corollary 2.11) we derive 

11p-RN11P P < 11(V-RN)'1 lp-1,p 
and the induction hypothesis (4.3), together with (4.5), gives 

-1Rp - _ < CQN(P-N1)-(a-1 + N(1 -a)&)Hj1i'jj,- 1p < CNrP ||f |lHaj, p 

From the equivalence of the norms I I * I Ip p and I I I * I I p we derive that 

1H1k1 - RN11IpIP < CNP | 1k|1|a p. 

Since the definition of Pp, N yields the relation 

0- Pp,N(()H11p, = inf 11o - ( N11Hpp < 1Ho - RN1P1P, 

we obtain for any (o in Ho (A) n Hp, 0(A) 

(4.6) 11k - PPN((P)I1p p < CNPl11ka11p 

This proves the induction hypothesis for v = p. 
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Next, to derive the case v = 0, we use the abstract duality result of the 
appendix. With Y0 = L 2(A), Y = D(pp), Z = H2p(A)nHp (A), and 
X = Hp, 0(A), we obtain by using (4.6) that 

- ~~,N(~")H,~ ? CN' PIloH ap sup II b'HN()Ip,p 
IHP(A)nHPp 0(A) IIVIl2pp 

< CN flkDla p. 

Now, from the two estimates 

Va ?PI Io PpN(- )IIp < CNP_1 1o1ap 

Va ?PI II(' PpN(')II0,p ? CN fl p 

valid for any (o E H' (A) n HP, p(A), we obtain for any 0 E (0, 1) 

P. ~,N ( ) Il[HP O(A), LP (A)]0 ? CN6" Plk a p 

From this result with 0 = v/p, we deduce, using (3.5), that for any 0 < v < p 
we have 

(4.7) II(1 PPN(()Ilv p < CNkOIaI, 

which completes the induction argument. 5 

As in ?2, we are now interested in the approximation of the spaces Hp (A) n 
Hs O(A) by elements of PSN, when s and p are integers such that O < s < p. 
From Theorem 3.1 we deduce that there exists a linear continuous operator Ap 
from HPp(A) into the subspace of polynomials '2p-1 such that for any q' in 
H~p(A) we have 

(4.8)~( - -A p E HPp o(A), 11(p- APpllp p < Cl 19Ip p, (4.8) P A P eP0A) 
Vy E R+ , I IAPpII# lHp < C(y)IIl pIIp'. 

By Lemma 4. 1, we have for any a > p and any p in H~p(A) n Hs, >(A) 

II(o-ApO)-(PpN(p-AgP))IlH P < CNv 'lO- Apfla p. 

We deduce from (4.8) that 

11 - 
(Ap(q + PpN( - Ap))Hlp < CNV"1liOaP. 

The operator Pp X = Ap + PpN o (Id-Ap) from HP(A) n Hso(A) onto PN n 

HS, 0(A) is such that 

(4.9) 1 1 9 P fN(P I Iv,, N P < CNv I a P. 

As noted in [18], the operator Pp, N preserves the traces of any element of 
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H~p(A). This proves that in fact PpN is independent of s. We have proved 

Lemma 4.2. For any (o E Hap(A) n Hs, 0(A) with a > p, we have 

(4.10) Vv, 0 < vP, < 
o1-PpN(Ilv p < CN 

k0Ha P. 

Remark 4.2. The operator P, N is not defined as a projection operator for a 
scalar product. This may be a disadvantage in some applications (see [2]), but 
we note that we can define a new scalar product over A that induces a norm 
equivalent to the original one by using Theorems 3.6 and 3.7. More precisely, 
for example in the case where s = 0, we recall that the space H2P (A) is the 

domain of a positive, self-adjoint operator Q in L2 (A) and that the domain of 

Q = (f)1/2 is then Hp (A). The space Hp (A) can be provided with the scalar 
product 

((u, v)) = (u, v)p + (Qu, Qv)P. 
If we define the projection operator p, N on PN with respect to this scalar 
product, we obtain from (4.10) that 

IIU-PpNUIHp p < CNPa HUIIa p 

Using now the abstract duality result with Y0 = L2(A), Z = H2P(A) = Y, and 

X = Hp (A), we deduce that 

IIU-PpNUIIOp < CN HIUIIa p. 

The complete set 0 < v < p is recovered by an interpolation argument that 
relies upon Theorem 3.6. We also obtain for any u in Hap(A) with a > p that 

VV 0< V <p, IIU-PpNUlHvp < CN HIulIa p. 
We now prove an analogue of (4.2) for nonintegral values of p such that 

p - 1/4 is not in N. Here, the two cases p - T < 1/4 and p - T > 1/4 must 
be distinguished. 

We begin with the case p - ji> 1/4 and take q' in Hap(A) n HI- 0(A) with 

a ? p- + 1 . It is a consequence of Theorem 3.1 that (o is, in fact, in Hp (A). 
Using now Lemma 4.1, we obtain 

inf ko - PN Ipp 
? C 1NlHia,p 

(PNE IIPN 
-(Nl~p<Cr 

for any a > p- + 1 (see (4.2) for P,,+l N in the case v = p) . Since we have 

-N+ PPN we deduce that 

(4.11) Va > T+ 1, inf ||? - PN~lp,p < CNPalkOiap 

Consider next the case p- < 1/4 and take o E H' (A)nHPp 0(A), a >jp+1. 
Using now Lemma 4.2 with P++l N gives 

info-qI( ,Nlpp < CN rfplk a p 
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(see (4.10) for Pp+ Nwith v = p), so that, for any a >?i+ 1, 

(4.12) Va > Th+ 1, inf |1|o - lPNlpp < CNP fl1k1v1 1ap 

From (4.11) and (4.12), the projection operator Pp N from H-O(A) onto 
IPPN with respect to the scalar product defined in (4.1) satisfies the following 
estimate, for any 8o E Hap(A) n Hp, 0(A), a ? + 1, 

11k-PPNPlp p < CN lH(Oa p. 

Trivially, we also have 

11- Pp,N'lp,p < C1o1p. 

A simple interpolation argument, that relies upon Theorem 3.7, now gives, for 
any a > p and any (p E Hap(A) n Hp, 0(A), 

(4.13) 11kPPpN(PHP, < CN ll(O a,,p 

The same techniques as in ?2, which rely on the abstract duality result and 
an interpolation argument, yield for any q' E Ha (A) n HI- 0(A), a > p, and 
any v, 0 < v < p, that 

(4.14) 11( PpN((P)Il,,p < CNVk 11o1Up. 

Following the same lines as in the proof of Lemma 4.2, we can prove 

Theorem 4.1. Let p and s be two real numbers such that p 0 N + 1/4, 0 < 

s < p . There exists an operator n11 from H~p(A) n Hs, 0(A) onto PsN such 
that, for any q' E Hp(A) n Hs 0(A) with a > p, we have 

Vv 0< v<pV < 
k1p 

- I>o p? < CN V 
lf lap. 

Remark 4.3. Similar results concerning the existence of an operator from the 
closed subspace of those elements of Hp (A) for which only some of the deriva- 
tives of order < p - 1/4 vanish on the boundary of A onto the subspace of 
polynomials of PN satisfying the same boundary conditions can be obtained 
following the same lines. 

Remark 4.4. We point out that the previous operators can all be seen as orthog- 
onal projection operators with respect to some scalar product (recall Remark 
4.2). In the general case, it seems difficult to exhibit exactly the analytic form 
of this scalar product, but the previous remark will be essential in a forthcoming 
paper. 

5. AN APPLICATION 

5.1. Definition of the problem. In order to explain how the previous results can 
be applied, we consider the approximate solution of the very simple problem: 
find ,v defined on A such that 

(5.1) d y/dx4 = f on A, yV(?1) = (dqy/dx)(?1) = 0. 
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(This problem is a first step towards the numerical approximation of the Stokes 
problem in the ,v-formulation; see [10, 11].) 

As in ?3, p will denote the Chebyshev weight; cf. ?3.1. We want to prove 
the following 

Theorem 5.1. For any f E H72(A) there exists one and only one solution v of 

the problem (5.1) in the space Hp 0(A). 

This theorem is a consequence of the Lax-Milgram lemma and the following 
lemma. 

Lemma 5.1. There exist three positive constants a, ,B, y such thatfor any (P, yg) 

2 2~~~~~~~~~~~~~~~~ E Hp (A) x Ho ,p (A) 

(5.3) ((", (vp)") ? all'Op/11 Op 

Proof. (i) We first obtain the following inequalities, valid for any ,v in O(A), 

J yi"(x)(yip) "(x) dx 

= f (y/')2(x)p(x) dx + 2 f y (x) V'(x)p'(x) dx 

+ f 
// 
(x) V(x)p" (x) dx 

= f ( "/)2*(x)p(x) dx + f ( x/2)'(X)p'(x) dx + (v')'(x)y,(x)p" (x) dx 

= I (i1")2(x)p(x) dx - f y2(x)p"(x) dx - f ' (x)(Vyp")'(x) dx 

= A (W11)2(x)p(x) dx - 2 V (x)p" (x) dx 

+ (1/2) f 2(x)p""//(x) dx. 

Note that 

p (x) = (1 + 2x )p (x), 

p (x) = (9 + 72x2 + 24X4)p(X), 

from which we derive 

J '"(x)(Vp)"(x) dx 

(5.4) = (V )2(x)p(x) dx - 2I I2(x)(I + 2X2)p5 (x) dx 

+ (1/2) f 2(x)(9 + 72X2 + 24x4)p9(x) dx. 
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Now set 

P = f (y/'(x)p(x) + 2x V/(x)p3(x) 

+ (2x + 10 2)y(X)p (X)) p (x) dx. 

We note that P > 0; moreover, an easy calculation gives 

P = f 
/ 
(x)(qip)"(x) dx - 2. 10-2 f 1/2(X)p5(x) dx 

F 2 V2 X~9 A(5 78 + 0.4699) (x)p (x) dx, 

so that 
f y/2(x)p5(x) dx < 50 y /(x)(yip) "(x) dx. 

From this we derive that 

v/2 (x)(1 +2x2)p5 (x) dx < 150 
f / 

(x)(Vp) "(x) dx, 

and using this inequality in (5.4), we obtain a constant c > 0 such that 

f y (x)(V p) (x) dx>c (]1)2 (x)p(x) dx. 

Inequality (5.2) then follows as a consequence of the Poincare-Friedrichs in- 
equality. 

(ii) Finally, let us note that for any (co, ,v) in Hp (A) x H0 p(A) we have 

(P"' (igp)") = (p", vi")p + 2 f (x)v'(x)p'(x) dx 
(5.5)A 

+ jP (x)yi(x)p" (x) dx. 

We easily derive 

(5.6) 'p"5, V/)Pl < 11? ko"H,pHi"H/0lo,p 

Let us examine the second term in (5.5). We have 

J p vt(x) ,i (x)p' (x) dx 

= f p"vtt(x)(Vi'p 'p)(x)p(x) dx 

i2 1 ~ 112 5/ - 
/ < p 

J f)(x) p(x) dxl (V'p') (x)p-(x) dxl 

Since p2 (x)p I(x) = x 2p5 (x), as a consequence of Hardy's inequality we 
derive that (see [1, Lemma 2.2]) 

(5.7) f p"(x)yv'(x)p'(x) dx < Cjtp"jO,,pjijq"jO p. 



ANALYSIS OF SPECTRAL PROJECTORS IN ONE-DIMENSIONAL DOMAINS 559 

In a similar way we obtain 

(5.8) f (x)y(x)p"(x)dx < CjjHplo"H0HPjj j'H, 

so that (5.3) is a consequence of (5.5)-(5.8). o 

Proof of Theorem 5.1. Let f be in H72 (A). Problem (5.1) is equivalent to 

finding y, in H2 0(A) such that, for any q' in H 2 (A), 

(5.9) f //"(x)(p p)"(x) dx = (f, (o). 

The bilinear form a, defined for any (x, (0) in Hp 0(A)2 by 

(5.10) a(X, (0) = f x (x)(Pp) (x) dx 

is continuous and elliptic on H2 0(A) (see Lemma 5.1). The Lax-Milgram 
lemma gives the existence and uniqueness of a solution of (5.9), hence of 
(5.1). n 

Remark 5.1. We point out that problem (5.1) is defined for any f in the 
space H7 2(A), hence, a priori, the right-hand side of (5.9) cannot be written as 

fA f(x) ( (x) p dx . This formulation is valid if we assume that f is more reg- 
ular, at least in L 2(A). In the general case, we know from Theorem 3.4 that 

there exists a function g of L2 (A) such that f = g",and 

Vo E Hpo(A), (f po) = fg(x)(pp) "dx. 

5.2. Approximation of problem (5.1). We are interested in the approximation of 
the solution of problem (5. 1) by a polynomial of degree < N. We use a Galerkin 
spectral method (we refer to [ 1 3] and to [ 1 5] for numerical implementations and 
more details on the method). From (5.9) we derive a discrete problem: find 

VIN in p2N such that, for any (o in PN2 

(5.11) f yj(pp)"dx = (f, (p). 

From Lemma 5.1 we know that problem (5.1 1) is well posed in the sense that 
there exists one and only one solution to it. Moreover, we derive from (5.9) 
and (5.11) that 

a(,V - ,VIN () = 0 for any (p in p2N 

so that (recall that r2 0NV E l2 

(5.12)~~~~~~~~~~~~~~~_1: (5.12) T(rm a nd N L 5. 1N) w a(oin- tNh, w 2 N r). 

By Theorem 4.1 and Lemma 5. 1, we obtain the following result. 
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Theorem 5.2. For any f in Hp2(A), there exists one and only one solution 

VIN to problem (5.1 1); moreover, if the solution V/ of (5. 1) belongs to Hp (A) n 

H 2 O(A),we have 

(5.13) 11i - V1N112,p < CN f11/ p. 

Remark 5.2. The previous estimate is optimal, since no polynomial of P N is 
asymptotically nearer to the solution yV than the solution Y'N of the approxi- 
mate problem. 

Remark 5.3. The previous theorem will be extended in a future work, in order to 
consider collocation and tau pseudospectral approximations of one-dimensional 
fourth-order problems. Such methods are much more efficient from a compu- 
tational point of view. 

APPENDIX. AN ABSTRACT DUALITY RESULT 

Consider two Hilbert spaces X and YO, X C YO, with a continuous imbed- 
ding. Moreover, suppose that X is dense in YO. It is classical (see, e.g., [17]) 
to prove that there exists an unbounded operator E, self-adjoint and positive 
definite, such that X is the domain D(e; YO) of e in YO. Denote by (, .)o 
the scalar product in YO and by 11- Io its norm. We can define a new scalar 
product on X equivalent to the initial one by 

(A.1) ((U. V)) = (U. V)0 + (@U, EV)O 

such that the associated norm 

Hull = [Hlu10 + 0 

is equivalent to the initial one. Define the space 

Y =D(&2; yV) 

and equip it with the norm 
2 [uH+ 1,E2U,2I 1/2. Hlully = [llU110 1l2l0]l 

We now turn to the approximation problem. Consider a family (XN)N of 
closed subspaces of X indexed by N E N. We denote by I-N the projection 
operator from X onto XN for the scalar product defined in (A. 1). 

Theorem A.1. Let Z be a Hilbert space such that Y c Z c X, and such that Z 
is dense in X. The following approximation result holds for any u in X: 

(A.2) Hu-HNu||O < sup 11H O uH HuH-NuH|. 

Proof. Denote by ii the difference u - HNu. We have 

- 
17INu0 = (u- Nu, U)O 

= (U - 
HNu, (e2)E) 
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Since e is self-adjoint and positive, we derive 

U12- = (E9(u - HNu), e(e-2)i)2 

? (6(U - HNU), 9(EF)i2)0 + (e ( H-"NU) I I(u - HNU))O 

? (E9(u - Hnu), E9(E9-2A)u + ((u - HNu), (0-2)U)0. 

Therefore, from the definition of the scalar product (A. 1) we have 

||U - I'l 
U 

1 < ((U-N 
_ 

(e1 )U) 

The definition of the projection operator HN yields 

V EN E XN, 11U - r7NU11 < ((u - HNU, (E 2)ii- N)) 

The choice of (PN = HIN((E 2)U) gives 

2 
, (0 -~2 A f -2 

||U 
- INU110 < ((U - fNU N ( E)Uny( )U])); 

we now derive 

Hu - NUH ?| cIu-N - JI II(e2) -HN [(e) AU II 

whence we obtain 

11 - HNUHO < C11U- _1NUHI sup 11 - HNPIII I (E-2)1 HU 
- 

r1N 0 N 
( E Z koH1Z 

It is an easy matter to note that 

.le2VI 
- 

I (E)-2VUii " 

Also, since e is positive, 6- 1is bounded, and we obtain 

II(e 2)iilZ < C11I = C|U - HNU1O 1 

from which the theorem follows. 5 
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