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A SINC-HUNTER QUADRATURE RULE 
FOR CAUCHY PRINCIPAL VALUE INTEGRALS 

BERNARD BIALECKI 

ABSTRACT. A Sinc function approach is used to derive a new Hunter type 
quadrature rule for the evaluation of Cauchy principal value integrals of cer- 
tain analytic functions. Integration over a general arc in the complex plane is 
considered. Special treatment is given to integrals over the interval (-1, 1) . 
It is shown that the quadrature error is of order O(e ), where N is the 
number of nodes used, and where c is a positive constant which is indepen- 
dent of N. An application of the rule to the approximate solution of Cauchy 
singular integral equations is also discussed. Numerical examples are included 
to illustrate the performance of the rule. 

1. INTRODUCTION AND SUMMARY 

Let F be an arc in the complex plane, and let a and b denote the endpoints 
of F. It is assumed that neither a nor b belongs to F. Let D be a domain 
containing F such that a and b are boundary points of D. Suppose that a 
function F, defined and integrable on F, has an analytic extension into D (F 
may become unbounded at either a or b). For A in F, the Cauchy principal 
value integral is defined by 

(1.1) ff'(F; A) _ F(z) dz = lim f F(z)dz, 

where Fe is the part of F obtained by deleting from F all those points which 
are within a distance e from A. 

In this paper a Sinc function approach is used to derive a new Hunter type 
quadrature rule for the evaluation of (1.1). Several Sinc function methods of 
computing (1.1) have been previously proposed in [12, 13, 6]. The quadrature 
rule of this note is more accurate than those of [12, 13, 6], and, moreover, it 
is well suited for direct methods of solving Cauchy singular integral equations 
(see [6, 1, 3] for indirect methods based on a regularization process). 

If the function F appearing in (1.1) has singularities at a or b, then it 
is sometimes possible to rewrite F as w G, where the bad behavior of F is 
incorporated into the weight function w, and where G is a smooth function. 
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In such cases, Gauss type quadrature rules (see, e.g., [10, 4]) or rules based on 
piecewise-polynomial approximation of G (see, e.g., [8]) can be used to evaluate 
(1.1). However, these methods require a considerable amount of computational 
work for nonclassical weight functions w . Moreover, if higher-order derivatives 
of G are unbounded at a or b, then Gauss quadratures will, in general, exhibit 
a slow rate of convergence. In comparison, the quadrature rule presented here 
does not make use of the splitting F = w G. The rule is very easy to implement 
and its error converges to zero at the rate O(e -N ), where N is the number 
of nodes used, and where c is a positive constant which is independent of N. 

The Sinc-Hunter quadrature rule for a general arc F is developed in ?2. The 
derivation of the rule and the corresponding error bound is based on the results 
in [2]. In ?3, the important special case of F = (-1, 1) is discussed in more 
detail. An application of the rule to the approximate solution of Cauchy singu- 
lar integral equations is considered in ?4. It is demonstrated that in some cases, 
quadrature methods based on the present rule yield better accuracy than that 
achieved by solving Cauchy singular integral equations via Gauss type quadra- 
ture methods. Finally, the results of numerical tests are presented in ?5. 

2. QUADRATURE RULE OVER A GENERAL ARC 

In this section a new Sinc quadrature rule is derived for the approximate 
evaluation of Cauchy principal value integrals. 

Throughout the paper, the letters Z, Rt, and C denote respectively the set 
of all integers, the set of real numbers, and the set of complex numbers, i.e., 
Z = {n: n = 0, ?1, ... }, 11 = (-oo, oo), and C = {z = x + iy: x E R1 , 
y e R}. For d > 0, the domain Dd is defined by 

(2.1) Dd = {z E C: I ImzI < d}j. 

In this section the following conditions are assumed to be satisfied. 

Assumption 2.1. Let D be a simply connected domain in the complex plane C, 
and let a and b (a : b) be points on the boundary AD of D (see Figure 1). 

b y 

X \ >- > Dd id 

I ~~~~~~0 x 

-id 
a 

FIGURE 1. The domains D and Dd 
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Let Dd be as in (2. 1), and let q be a conformal map of D onto Dd, such that 
0(a) = -oo, and 0(b) = oo. Let V/ denote the inverse map of 0q, and let 

(2.2) F= {(x): x E RI}, 

where the direction along F is that from a to b. 
The following definition is fundamental for this paper. 

Definition 2.1. Let B(D) denote the family of all functions F that are analytic 
in D, such that 

(2.3) / IF(z)dzl-4+O asx--+oo, 

and such that 

(2.4) N(F, D) _ lim inf IF(z) dzl < oo, 
ya+d- W(Ly) 

where for x e 1R and 0 < y < d, 

(2.5) Lx={z=x+iv:-d <v <d}, 

(2.6) Ly = {z = u ? iy: u E R}. 

The main result of this section is given in the following theorem. 

Theorem 2.1. Assume F E B(D) and consider X(F; A) defined by (1.1). For 
h > O, let zn = y,(nh), n E Z, and let 

hE (z ) - + 7( cot [ h s(A) F (A) 
nE7Z q$'(zn)(zn -A) j 

if A)L z, for all l E Z, 

(2.7) K?? (F; A.) = , F(zn ) hO 
/ 

(A) F()+ h i 
hE F/ z)Fh(A)~ + ,F (A~) 

nE q$'(zn~)(zn~- L 2[q$I(A)I2( q$) 
n761 

= z1 for some / E Z. 

Then 

00 e~~~~~~~~-27rd /h 
(2.8) IX(F; A) -K??(F; A)I < N(F, D, ) 1 -e-27rd/h 

where 

(2.9) N(F, D, i) _ liminf F(z) dz 
yard- (Ly ) A 

and where Ly in (2.9) is defined by (2.6). 

Proof. First assume that A $ z1 for all / E Z. Choose a1, a2 in D\F so 
that a, lies on the left-hand side of F and a2 is to the right of F. Let 
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F, and F2 be two functions defined by F1 (z) = F(z)/(z - al) and F2(z) = 
F(z)/(z - a2), respectively. Note that F, and F2 have first-order poles at a, 
and a2, respectively, and that Res(F,; a,) = F(a,) and Res(F2; a2)= F(a2)= 
where Res(F; a) denotes the residue of F at a. Moreover, it is easy to see 
that F1, F2 satisfy all hypotheses of Theorem 3.1 of [2]. Hence, (3.15) and 
the estimate (3.18) of [2] give 

F___ F___ F____ 1 _ _ _ 

-dz +jF _dz-hElZfl { +zfa} 
||Fz) a + z - a2 nEZ h g(zn) {Zn - al, 2n a 

eisro(al )lh e e- i+(a2)1h 
(2.10) 17 F(a1)- ei(a/ eF~aa)h2 (2.10 j sin[7r0(a1)/h] (a2)sin[7r0(a2)/h] J 

e-27rd /h < {N(F1, D) + N(F2, D)} 1 - e-27d/h 

Letting a1, a2 -_ A , (2.8) follows from (2.10) and the PlemeUj formula (see, 
e.g., (17.4) in [11]). 

Now assume that A = z1 for some / E Z. This case can be reduced to the 
one considered above. Let A' E F be near A , and A' :) A. Then (2.8) holds 
true for A' in place of A and ? (F; A') given by the first expression in (2.7). 
The second formula in (2.7), and (2.8) for A = zi are now obtained by taking 
the limit as A' -- A. oi 

Using a new class of Sinc functions, Elliott and Stenger have derived a dif- 
ferent quadrature rule for the approximate evaluation of X(F; A). However, 
their rule (see (2.25) in [6]) is less accurate than that in (2.7), since the cor- 
responding error bound in [6], similar to that in (2.8), contains the expression 
e - d/h/(l - e-7rd/h) instead of e Id/ A/(l - e Idh ) . 

It is important to observe that N(F, D, )A) appearing in the inequality (2.8), 
and defined by (2.9), becomes, in general, unbounded as A -- c, where c = 
a or b. This will occur, for instance, when c is a finite complex number 
and F(c) : 0 or IF(z)I -- oo as z -- c. However, in this case, typically 
IX(F; A)l -- oo as A -- c. If, in addition, IX(F; A)l grows at the same rate 
as N(F, D, A)), then it follows from (2.8) that for A near c the relative error 
[X(F; A) - Z?? (F; A)]/'(F; I)) will remain small for sufficiently small h . 

Even though the quadrature rule (2.7) involves infinite series, it is interesting 
to note its similarity to Hunter's rule (see [ 10, 4]). Observe that ? (F; A) for 
A : z, 1 e Z, can be regarded as the Sinc quadrature rule (see (4.31) in [13]) 
applied to F(z)/(z - A)), plus one extra term T(A) = r cot[7q(A)/h]F(A) . Note 
also that if A = yi[(m + 1/2)h] for some m E Z, then T(A) = 0. This kind of 
property of quadrature rules for approximating X(F; A) has proved important 
in applications to the numerical solution of singular integral equations by means 
of quadrature methods (see [9] for references). 

One major drawback of the quadrature rule (2.7) is that it requires summation 
of an infinite series. However, as the next theorem shows, a finite number of 
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terms in the series may be sufficient to obtain an approximation to f(F; A) 
within a required error tolerance. 

Theorem 2.2. Let all assumptions of Theorem 2.1 be satisfied, and let F c R. 
Let 

(2.11) IF(z)I < Cj}I/(z)Ie aj I (Z)I , z E 1j7, j = 1 , 2, 

where C1 and aj, j = 1, 2, are positive constants, and where 

(2.12) FI = {y/(x): x E (-oo, 0)}, F2= {yI/(x): x( E( oo)} . 

Assume A E (z1-1E z1] for some nonpositive / E Z or A E [z1, zl,1) for some 
nonnegative / E Z. Let N, and N2 be positive integers such that -N1 < ? if 
I < 0 and N2 > l if I > 0, and let 

N2 F(zn) 
h Hi 7z ctz -A) + x( A) 

n=-N ( )Z 

if A :AZ, 

(2.13) 2N2 (F; A) N2 
Ni ~h F(Zn) _h~')) F(A) 

n=-N~ q(Z )(Zn -A)) 2[Y.)] 
n76l 

+ F'(A) ifhA=zF 

Then 

N e ~~~~~~~-27rd/h 
JX(F; A) - 2N2 (F; A)| < N(F, D, i) 1 - 

(2.14) Cle -a' h C2e-a2N2h 

+ (- Z-Nl-1) a2(N2+1 -) 

Proof. It is easy to see that (2.7), (2.13), and (2.11) yield 

JX?? (F; A)- 
- 

N2 (F; )l < A l 
_ 

EN+ 
(2.15) + C >h z ef + 2 - E e-c2 n 

ZN2+1 n>N2+1 

Thus, (2.14) follows from the triangle inequality, (2.8), and (2.15), on summing 
the series in (2.15) and on using the inequalities ecj - 1 > ? h j = 1, 2. o 

Although F in Theorem 2.2 is assumed to be a subset of Rt, a similar result 
is easily obtained for a more general arc F in the complex plane. 
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In practice, for a given A E F, the parameters h, N1, and N2 should be 
selected so that all three terms in the sum on the right-hand side of (2.14) 
are sufficiently small and approximately equal to one another. More detailed 
analysis of how to pick h, NJ, N2 in the case of = (-1, 1) is given in ?3. 

3. QUADRATURE RULES OVER (-1, 1) 

The results of the previous section are used to obtain quadrature rules for 
the approximate evaluation of Cauchy principal value integrals over the interval 
(-1, 1). 

Throughout this section, the arc F is the interval (-1, 1) and the domain 
D is defined by 

(3.1) D = z E C: I arg((1 + z)1(1 - z))l < d}, 0 < d < 7r . 

AD 

-1 :y-1/2 IF 1/2,X~ 

FIGURE 2. The domain D 

Taking 

(3.2) $(z) Ilog +VZ), y(Z) = - l 

it is easy to see that Assumption 2.1 is satisfied. In what follows, for h > 0, 
the points zn and zn+112 are given by 

-nh1 e n+1/2)h 1 
(3.3) Zn - 

enh + 1 Z e(n+l/112)h + 1 n E Z. 

Note that zn and Zn+l/2 cluster at i1 as n -- Too. For example, if h = 1/2, 
then z4= 0.7615..., z8= 0.9640... , z16= 0.9993... 

The following result is readily obtained from Theorem 2.2. 

Theorem 3.1. Let F E B(D), and let 

(3.4) IF(z)l ? C2(1 - Z)2 , z E (0, 1), 

where C1 and aj, j = 1, 2, are positive constants. Assume A E (z11, Zj] for 
some nonpositive / E Z or A E [zl, z1+1 ) for some nonnegative / E Z. Let N1 
and N2 be positive integers such that -N1 < / if / < 0 and N2 > I if / > 0, 
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and let 

h N2 1z __ FL S 2 E z _ iF(z)+ l cot[ oF(g) 

if A Z1, 
(3.5) XZ N2 (F; ) ) h N2 z2 h 

S E nF(zn)-AjF(A) 

n3l 

+ h ( 1-2 )F'(A) if A =zi h2 2 

Then 

N e~~~~~~~~-27rd /h 

IX(F; A) - tN2 (F; )) ? N(F, D, ) 1 - 

(3.6) C 2a'e" , h C22 2e-2N2h 
+ I~ +2- 

aj()L Z-NI-1) a2(ZN2+1 ) 

Proof. Note that (3.4) and (3.2) imply (2.11) with Cl and C2 in (2.11) being 

replaced with Cl 2c' and C2 2 2, respectively. Thus (3.6) follows directly from 

(2.14). o 

Let us briefly outline how (3.5) can be used in practice to compute f(F; A) 
when JII is not "too close" to 1. It is clear from (3.6) that for fixed h, the 

positive integers N1 and N2 should be selected so that all three terms in the 

sum on the right-hand side of (3.6) are approximately of the same order of 

magnitude. This leads to e-2rd/h = e-Nh = e 2N2h Hence, 

(3.7) N1 = [r2id/(alh 2)l, N2 = F27rd/(a2h )1 5 

where [xl , for real x, denotes the smallest integer > x. It is important to note 
that if A is close to a point z1, then -N (F; A) is likely to produce erroneous 

results in floating-point arithmetic, owing to loss of significance. Therefore, it 

is recommended that 2 (F; A) be only used when A is sufficiently far away 

from the points zn . 
The next theorem specifies conditions under which the bound on IX(F; A) - 

ZN2 (F; A) ) is independent of A). This is important for the purpose of solving 

Cauchy singular integral equations by means of a quadrature method based on 

the rule (3.5). 

Theorem 3.2. Assume F is an analytic function in D such that 

(3.8) IF(z)I < Cl1 + zIaIl _- zIa2, z E D, 

where C, aI , and a2 are positive constants. Let a = min(acx, Ca2), let N be a 
positive integer, let h, N1, N2 be selected by 

(3.9) h = [27d/(&aN)] 12 Nj = raN/a1j j = 1, 2, 
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and let F = [Z N 1/2 ZN2?l21U{-l, 1}. Let the quadrature rule XN2 (F; A) 

for the approximate evaluation of X(F; A), A E I*, be defined by 

(3.10) 
h N2 1-z2 [7r/1I +\ 
| E nF(Zn) + 7r cot [- 1og (1iJF() 2 

=NZn -A h I- 

if E [Z-N -1/2 1 ZN2+1/21 and 

i 7 z, for all l, -Nl < ? < N2, 

~N2(F~a) _ h N2 -z2 h h 2 

,AVN(i) - E n -F(z )-A2F(A)+-(l -A )F (A) ~2 (F A) ___- Zn -A 

n7Xl 

if A E [ZN -1/2 ZN2+ 1/2 and 

i =z forsome l, -Nl < < N2, 

h N2 -z2 
h E 1 nF(zn) ifAi= 1l 

2_n=-N_ n 

Then for all A E F* 

JX(F; A) ZN2 (F; A)l 

(3.11) N "/2 e-(27rdaN) ifA E [ z 

-(2rdN) 
{ 

12 if2 [ZN 1 Z 

e ~~~if A = Tl, 

where C' is a positive constant which depends only on D, C, a1, and a2. 

The proof of the theorem is based on the following two lemmas. 

Lemma 3.1. Let a1 and a2 be positive constants. Then 

(3.12) IDa ai +2 zlII1 _-zIl2 
k ,al 2) =SPJl-i IdI<0 

Proof. Lemma 5.4 of [1] could be used to establish (3.12). Here, a more direct 
proof will be presented. Clearly, setting a = min(al, a2), it will be enough to 
verify that 

(3.13) SU P _z Id <00. 

Eer JD 
Iz -21l 

Let 7v = y U y+, where y7 = {)L E F: IAT 11 < 1/2}, and similarly let 
OD' =L u L+, where L? = {z E OD: IzT II < 1/2} (see Figure 2). It will 
be sufficient to show that (3.13) is satisfied with F and OD replaced by 17 
and OD', respectively. For definiteness replace F with y+ and OD with L+ 
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(all other cases can be treated analogously). Let A E y+, let z E L+, and let 
co be the angle between the line segments 1A and 1 z. Inspecting the triangle 
i 1 z (see Figure 2), it is easy to see that there exists an angle co , 0 < co < a, 

such that 

(3.14) Iz - II < Iz-Al < IZ -Al (3.14) IzlI< 
~~sin(w) 

- 
sin(wo*) 

for all A E y+ and all z E L+. Thus it follows from (3.14) that 

(3.15) IuL 
2a 

dI<11 2 - Iz o 
(3.) AEY++ Iz id sin(w*) | 1 - | IdzI 

which completes the proof of the lemma. 0 

Lemma 3.2. Let A E F\(z nl/2, z n+112). Then 

(3.16) 2 1-zn <-2e ~Izn-Al - 
Proof. (3.16) follows easily from (3.3) (cf. also the proof of Lemma 2.11 in 
[6]). n 

Proof of Theorem 3.2. Clearly F E B(D), and hence all assumptions of The- 
orem 2.1 are satisfied. First, consider the case when A E [zN - 1/2' ZN2+1/2]. 

Using (3.16) and (3.8), it is easy to see that 

(3.17) 2(n<- E ?zE) n>_N2IF(Zn)I 
<_C2 +a2+1eh_ 2 (e-aiNih e-2N2h\ 

- h a aa 

Further, the triangle inequality, (2.8), (2.9), (3.8), (3.12), and (3.17) yield 

e-27cdl/h 
IX(F; A) --N2 (F; ))I < CM(D, al 1 a) - 2 N1 ~~~~21 e 27rd/h 

(3.18) + C2& a?2+1eh/2 (e %Nh e-a2N2h) 

+ 
h al 

+ 

The inequality (3.11) for A E [ZN - 1/2 , ZN2+1/21 follows now from (3.18) and 
(3.9). If A = 1 (the case of A = -1 is analogous), then in place of (3.18) one 
gets 

N e ~~~~~~~~~-27cd lh 
I|(F; A)) _-N2 (F; ))I < CM(D, a 1, a2) - 2 Ni 2)~~~~1 e&27rd/h 

(3.19) 
e 

(a,+I)Nlh e N2h) 
a C2(3.112 (e N obte f 

alI +~- a2 

and (3.1 1) is obtained from (3.9). El 
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The quadrature rule (3. 10) can again be compared with the corresponding rule 

in (2.50) of [6]. Since the error bound (3.11) contains the term e 

whereas the similar error bound in [6] involves e (cdN) instead, the quadra- 
ture rule (3.10) is expected to be more accurate for A E F* . It is also interesting 
to note that if A = zm+l/2, -N1 - 1 < m<N2, then the quadrature rule (3.10) 
coincides with that in (2.50) of [6], since in this case the term involving F(L) 
drops out of the first formula in (3.10). 

4. AN APPLICATION TO THE APPROXIMATE SOLUTION 

OF CAUCHY SINGULAR INTEGRAL EQUATIONS 

In this section the Sinc quadrature rule (3.10) is used to obtain an approxi- 
mate solution to a Cauchy singular integral equation (CSIE). Quadrature meth- 
ods for CSIE's have been extensively studied by many authors (see [9] for ref- 
erences). In the majority of these methods, nodes as well as collocation points 
are zeros of corresponding orthogonal polynomials. Recently, in [14], an at- 
tempt has been made to directly approximate CSIE by means of one of the 
Sinc quadrature rules derived by Stenger in [12]. It is believed by this author 
that the approach used here is more natural and straightforward than that of 
[14]. Moreover, the convergence analysis presented here, although still incom- 
plete from the theoretical point of view, shows better why the Sinc quadrature 
method based on (3.10) works. 

Consider the CSIE of the form 

(4.1) ft (1 _)w(r) dT = f(t) t e (-1, 1) 

whose solution w is subject to the condition 

(4.2) f(1 - 2T W(T) dT =c. 

In (4.1) and (4.2), f and c are a given function and constant, respectively. To 
describe a Sinc quadrature method of solving (4.1) and (4.2), assume that w 
satisfies the following conditions. 

Assumption 4.1. Let w be an analytic function in D (see (3.1)), and let there 
exist positive constants C, a,, and a2 such that 

w(z) - 
I 

Zw(-1) - I+ 
2 w(1)1 (4.3) w2) 12 (-) 

< C 1 + ZIl 1/2+a011 
_ ZI 1/2+a2 z D. 

Rewriting the solution w in the form 

2)1/2 1 - T___ 
(4.4) w(T) = (1 - T g(T)-+- 2 w(-1) + w(1), TE[-1,1], 

and substituting it back into (4.1) and (4.2) yields 
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and 

(4.6) -w(-1) + g(T)dr+ 7w(1) =c. 

Thus, the original problem has been reduced to finding w (-1), w (1), and 
g which satisfy (4.5) and (4.6). Once w(-1), w(1), and g are known, the 
solution w of (4.1) and (4.2) is obtained by (4.4). 

It follows from Assumption 4.1 that g of (4.4) satisfies all hypotheses of 
Theorem 3.2. Let N be a positive integer, and let h, N1, and N2 be selected 
as in (3.9), where a = min(a1, a2). Let the points z, , n = -N1 (1)N2, and 
Zn+l/2 n = -N1(1)N2 - 1, be given by (3.3). To simplify upcoming notation, 
assume also that Z-N -1/2 = Z-N = - 1 , and that ZN2+ 1/2 = ZN+l = 1. The 
Sinc quadrature method of this section consists in carrying out the following 
steps. First, replace the Cauchy principal value integral in (4.5) with the quadra- 
ture rule (3.10), and then collocate (4.5) at t = Zm+/2 m = -N1 - l(l)N2. 
Similarly, apply the quadrature rule of (4.32) in [13] to the integral in (4.6). 
This procedure yields the equations 

(4.7) 2w(-)? N2 E i- g(zh) ? zw(1) 

= f(Zm+ii2) +Cm m =-N1-1(1)-1, 

(4. 8) h n ) ( 1) + eol 

(4.9) 2 2 Z zz 1/ + 2 

= f(Zm 1/2) + gm m = 1(1)N2 + 1. 

It follows from (3.11), and from (4.32) in [13], that the error terms Cm in 
(4.7)-(4.9) satisfy 

2 ~~~12 2(~dN" 

(4.10) I8 mI= O(Nl/2e-( N),1m m1= -N1+- 1()N=2 +?1 

Let AN = (am,n)m,n=-N-I(1)N2+1 be the square coefficient matrix of order 
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N1 + N2+ 3 whose elements am . are given by 

7r 
-2 if m = -N1 - l(l) - 1, l(l)N2+l 

and n = -N1 - 1, 

- if m =0 and n = -N - 1 
2 

or m = -N - I(I)N2 + 1 and n = N2 + 1, 

(4.1 1) am hn= h i-2 
-m n n if m =-N - l(1) - I and n = -N1()N2, 

2 zn Zm+ 1/2 

h 
(- _ 2 if m =0 and n = -N1(1)N2, 

h i-9 
- if m =1(1)N2+ l and n = -N1(l)N2. 

- z Zml1/2 

Furthermore, let fN be the vector defined by 

(4.12) 

fN= (f(- 1), f(zN +1/2) Z f(z-1/2) c, f(5z19, * ,1 ' f(Z2-112) f(1)) 

Dropping the error terms Em in (4.7)-(4.9) gives rise to the system of linear 
equations 

(4.13) ANgN =fN 

where the vector gN is of the form 

(4.14) gN = (gN_ 1 5-N * gN2' g)N+ 

It is hoped, of course, that the components gn , n = -N1 - 1(1)N2 + 1, of gN 
will approximate w (- 1) , g (zn), n = -N1 (1)N2, and w(1), respectively. 

Using (3.16), it is easy to see that 

(4.15) IIANIKo < 7i + 2(NI + N2 + l)eh/2. 

At present, proving nonsingularity of AN and finding an upper bound on 
IIA 1 K 1 appear to be challenging problems. Nevertheless, numerical tests indi- 

1N-1 cate that AN exists and, moreover, IAN K seems to depend very weakly on 
the order of AN. For several values of d/a and N ,with a, = a2 = a , the 
results of the tests are given in Table 1. 

TABLE 1 
Values of IAN 100 and IIAN1 lK 

d/a 7r/2 _ 2 
N 8 16 32 8 16 32 8 16 32 

JIANL 14.8 19.2 24.9 17.8 23.7 31.7 22.1 30.3 41.5 

IIA ' Iljc, 1 1.2 1.5 .8 1 1.2 .7 .8 1 
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Once (4.13) has been solved, corresponding approximations to w at the points 
Zn n = -Ni - I(I)N2 + 1, are obtained by 

W =I Z2 1/2 1 I- Z n 

(4.16) w=(1-zn) gZ + 2 

+ 2 gN2 +1 n=-N - (I)N2+1. 

To analyze the accuracy of these approximations, introduce the vector 

(4.17) 

eN = (w(-l) -w Ni _1 15 W(Z_ N )W_ N1,** W(Z N2) _WN2 5 W(l) _WN2+1)T 

It follows easily from (4.17), (4.4), (4.16), (4.7)-(4.9), (4.13), and (4.10) that 

(4.18) IleNIQo ? IIAQ IIcoO(N /2e (2-dN)) 

The estimate (4.18) is also obtained if instead of - 1 and 1, the points Z-N -1/2 

and ZN2+1/2, given by (3.3), are used as collocation points. The results re- 
ported in Table 1 and (4.18) indicate a very rapid rate of convergence of the 
Sinc quadrature method. Recall that if w' satisfies a Lipschitz condition on 
[-1, 1 ] with exponent ,u, then the discrete error of the n-point Gauss quadra- 
ture method for solving (4.1), (4.2) is of order O(n Hlogn) as n -+ oo (see 
[5]). In comparison, the Sinc quadrature method yields (4.18) for w satisfying 
Assumption 4.1. Note that this assumption allows w' to be unbounded at the 
endpoints of [-1, 1 ]. 

The Sinc quadrature method presented here can be easily extended to a gen- 
eral CSIE of the first kind, 

(4.19) fT 1-t Jw + K(t r)(1 - "W(T) d=t 

t e (-1, 1), 

where as before w is subject to (4.2). In this case, the integral involving K is 
approximated, similarly as (4.2) before, by the quadrature rule (4.32) of [13]. 

It was demonstrated in ?3 that the points zn and Zm+1/2 cluster at ? I1 
as n, m -- ?oo. Therefore, computing first zn and Zm+l/2 by (3.3), and 
then using these values to obtain the coefficients (4.11) of the matrix AN may 
lead to loss of significance in floating-point arithmetic. This difficulty is easily 
remedied by substituting (3.3) into the formulas defining am n and simplifying 
the resulting expressions. For instance, it is easy to see that 

1 - 1Z 2(e(m?l/2)h + 1) 

Zn 
- Zmi 1/2 (enh + 1)(1e(mn 1/2)h) 

The expression on the right-hand side in (4.20) provides a numerically stable 
way of carrying out computations. Note, e.g., that if d = 7r/2, al = a2 = 1/2, 
and N = 32, then, by (3.9), h = nj14. Thus, there will be practically no loss 
of significant digits in subtracting e(m-n?l/2)h from 1. 
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5. NUMERICAL EXAMPLES 

Examples presented in this section illustrate the superiority of the Sinc quad- 
rature rule over Gauss type and piecewise-polynomial quadrature rules in the 
case of badly behaved integrands. 

Example 1. For several values of A E (-1, 1), the Sinc quadrature rule (3.5) 
was used to evaluate 

(5.1) X(F; F.)=f ( +z) (1z) dz =7r(l + ))-4( 1 7r v 

Parameters d and a, 1 a2 (see (3.1) and (3.4)) were selected as 7r/2 and 3/4, 
5/4, respectively. For a given h, integers N1, N2 were determined by (3.7). 
Numerical results of the tests are presented in Table 2 (integers in parentheses 
denote decimal exponents). 

TABLE 2 
The error e(i) = IJ(F; A) - ;2N (F; A)I for (5. 1) 

h N N e- 2ad/n E(-.8) e(-.3) E(O) e(.1) e(.6) e(.9) 

1 14 8 .5(-4) .2(-3) .4(-4) .1(-4) .4(-5) .6(-4) .3(-3) 

1/2 53 32 .3(-8) .2(-7) .6(-8) .3(-8) .2(-8) .3(-8) .2(-7) 

1/3 1 19 72 I1(- 1 2) .1- 11) .3(- 12) .2(- 12) .1(- 12) .4- 12) .1(- I 1) 

For all listed values of A, except A = 0, the first formula of (3.5) was used to 
evaluate X(F; A). Since zo = 0 (see (3.3)), the second formula in (3.5) was 
employed to compute X(F; 0). Analyzing the entries of Table 2, it is seen 
that the errors remain within the error bound given by (3.6). Recently, a very 
accurate, although somewhat involved, method was proposed in [7] to evaluate 
X(F; A) for F(z) = (1 + z)f'(I - z)fl2, f16 fl2 > -1 . Obviously, the Sinc 
quadrature rule (3.5) can be applied to more general functions F such as 

F(z) = (1 + z) 3(1 - z)- /41og(1 - z) 

or 
- 115 - 1/2 (1+z)",(1-z)'1/4 

F(z) = (1 + z)5 (1 Z) e 

Example 2. The following CSIE was solved in [15, 8]: 

sin '(t)w(t) + o - Cs(T/2)f()w()d 
(5.2) 2 t W7t +T -___ _ __ _ __t 

t E(-, 1), 

where 

(5.3) Q(t) = e(l - t2)- 1/2(1 - t)tI2(l + t)-t12 e = 2.71828... 
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The solution w of (5.2) can be expressed in closed form, 

( 5.4) w( t) sin(nrt/2)f(t) 1 COS((7rT/2)f(T) d + 
Q~~~t) r Q ()QrT - t) 

where c is an arbitrary constant. Consider a particular solution w correspond- 
ing to f(t) = (1 - t2)1/2 and c = 1/7r. It follows from (5.4) and (5.3) that the 
Cauchy principal value integral 

(5.5) (1-T - t dip 

where 

(5.6) G(t) = cos(7rt/2)(I - t)(l-t)/2(l + t)(+t)/2 

needs to be evaluated. It can be shown that the function G of (5.6) is contin- 
uously differentiable on [-1, 1 ] and that its second derivative has logarithmic 
singularities at + 1. For this reason, the integral (5.5) was evaluated in [8] by 
means of a piecewise-linear quadrature rule, instead of a Gauss type quadra- 
ture corresponding to the weight function (1 - T2) 1/2. The rule was based on 
an n-point nonuniform mesh with nodes concentrated at the endpoints I1. 
For t = 1, Gerasoulis found approximations wn (1) to w (1) = .5185916 ... . 
and then employed extrapolation to improve his results, which are reported in 
Table 3. 

TABLE 3 
The piecewise-linear quadrature of [8] for (5.4) 

n 10 20 40 80 
wn (l) .508712 .515989 .517931 .518426 
Extrap - .518414 .518579 .518592 

On the other hand, it is easy to see that the function F(T) = (1 - 2)1/2G(T), 
with G given by (5.6), is analytic in the interior of the unit disc centered at the 
origin. Moreover, F satisfies (3.8) with a, = a2 = 3/2. The Sinc quadrature 
rule of (3.10), with d = ir/2, and the selection of N1 and N2 based on (3.19) 
(cf. also (3.6) and (3.7)) was used to compute (5.5) for t = 1. Table 4 presents 
the approximations wNi (1) to w (1) obtained in this manner. 

TABLE 4 
The Sinc quadrature (3.10) for (5.4) 

N15 N2 2, 3 4,7 8,12 16,27 

W N( .5182984 .5185745 .5185908 .5185916 
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Recall that the Sinc quadrature rule (3.10) requires N1 + N2 + 1 function eval- 
uations to obtain wN2N (1), whereas the piecewise-linear quadrature rule of [8] 
uses n such evaluations to produce w n(1). In addition, certain integrals inde- 
pendent of the function G must be computed in advance so that the piecewise- 
linear quadrature can be applied. Comparing entries of Tables 3 and 4, it is 
clear that the Sinc quadrature rule is more efficient than the piecewise-linear 
quadrature rule. 

Example 3. Consider the following CSIE (cf. (4.1), (4.2)): 

(5.7) Al( - WT dT = 2t + f(t), t E (- 1, 1), 

(5.8) (1 T2) /2W(T) dT C 

where for given 0< al, a2 < 1/2, 

(5.9) f(t) = f 1 + t 1C = J (1 + T) '(I -T) )2 dTr. 

The solution w of (5.7)-(5.9) is given by 

(5.10) W(T) = 2T 2- 1 + (1 + T)1/2+a'(I - )/2+a2 

Note, that although w satisfies a Lipschitz condition on [-1, 1], w' becomes 
unbounded at ? 1 if al, a2 < 1/2. On the other hand, it is easy to see that 
w satisfies Assumption 4.1. The problem (5.7)-(5.9) was solved via the Sinc 
quadrature method of ?4. When setting up the right-hand side of (4.13), the val- 
ues of f and c were computed with high accuracy. The approximate solution 
to w and the error vector eN were obtained by (4.16) and (4.17), respectively. 
For d = 7r/2 and various values of a a2, and N, the corresponding values 
of JjeNj I. are presented in Table 5. 

TABLE 5 
Since quadrature method of ?4 for (5.7)-(5.9) 

a1, a2 1/2, 1/2 1/2, 1/4 1/4, 1/4 
N 4 16 8 32 8 32 

N1, N 4, 4 16, 16 4, 8 16, 32 8, 8 32, 32 
JjeN11.o .9(-2) .5(-5) . 1(-1 ) .7(-5) . 1(-1 ) .8(-5) 

The above results seem to support the conclusions of ?4 regarding gA 1 K 1 and 
the rate of convergence of the Sinc quadrature method (see Table 1 and (4.18)). 
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