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BOOLEAN METHODS FOR DOUBLE INTEGRATION 

FRANZ-J. DELVOS 

ABSTRACT. This paper is concerned with numerical integration of continuous 
functions over the unit square U . The concept of the rth-order blending rec- 
tangle rule is introduced by carrying over the idea from Boolean interpolation. 
Error bounds are developed, and it is shown that rth-order blending rectangle 
rules are comparable with number-theoretic cubature rules. Moreover, rth- 
order blending midpoint rules are defined and compared with the rth-order 
blending rectangle rules. 

1. BIVARIATE RECTANGLE RULES 

The problem we consider is the numerical evaluation of integrals of the form 

2 2 where f is a continuous function on the unit square U = [0, 1] . Moreover, 
we assume that f satisfies the periodicity conditions 

(1.2) f(xO)=f(x,1), f(0,y)=f(ly) (O < x,y <1). 

The inner product of f, g E L 2(U2) is 
I I 

(f, g) = f f f(x, y)g(x, y)dxdy. 

We introduce the notations 

ek(x) = exp(i27rkx) (k E Z), 

ek l(x, y) = ek(x) * el (y) (k, I l Z), 

where x, y e U. The functions ek, I (k, / e Z) form an orthonormal basis 

of the Hilbert space L 2(U2). We denote by A(U 2) the Wiener algebra of 
those functions f E L 2(U2) with the property that the Fourier series of f is 
absolutely convergent: 

00 00 

(1.3) z 1II I(f, ek 1)I < x. 
k=-oo l=-oo 
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Let W(U2 ) denote the subspace of those functions f e L 2(U2) which are 
2 2 continuous on U . Moreover, WO(U ) denotes the subspace of those functions 

f E W (U2) which satisfy the periodicity conditions (1.2). It follows from 
relation (1.3) that 

AU2) C W0( A(U2Cc(U2) 

and, for feA(U2), 
00 00 

(1.4) f(x y) = E E (f, ekl) .ek l(xy) (xy E U). 
k=-oo l=-oo 

Let m and n be positive integers. The most obvious cubature formula is 
the bivariate rectangle rule: 

mn(f) = m1nE f( J ) 
j=O k=O 

The bivariate rectangle rule is not an efficient cubature formula in view of 
the large number of function evaluations. On the other hand, Jm n(f) is a 
basic tool in constructing a more sophisticated cubature formula, the rth-order 
blending rectangle rule. For this reason we will briefly derive a convenient 
remainder formula for Jm n (f) . 

Proposition 1. If f c A(U2), then 
00 00 

(1.5) im, n () =E E (f 5 eum, vn) 
U=-oo V=- 

Proof. In view of (1.4), we have 
m-1 n-1 k 

Jm,n(f) mn E E f(& ') 
nj=O k=O 

n 

00 00 1 - n A ti 4k\ 
= E E:(f 5ers)mn2 ery )LesyH 
r=-oo s=-oo j=O k=O 

00 00 

= E E (f eumvn). o 
U=-00 V=-00 

It is useful to define the series 

Rm 00() = ,(f eumo), Rn (f) = (Vf eo, vn ) 
U7&0 V 7&0 

Rm n (f) = E Z(f 5 eum, vn). 
u#O v#O 

Proposition 2. If f c A (U2), then the error in the bivariate rectangle rule is 

(1.6) 3mn (f)-(f)=Rm 00(f) +Roo,n(f)+Rmn(f) 
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Proof. It follows from relation (1.5) that 

m, n (f) = (f, eo, O) + Rm oo(f) + Roo n (f) + Rm, n (f) 
Since 3(f) = (f, eO 0), Proposition 2 is proved. o 

Following Korobov, we define, for each a > 1, the linear space 

E a(U2 = {f E L 2(U2): (f, em -)a=(( m * n) ) (m, n-x )}, 
where m = max{1, ImI} (m E Z) . It is easily seen that 

(1.7) E a (U2) C A(U2) (a > 1). 

We denote by Wp' '(U2) the linear subspace of W(U2) of those functions f 
whose partial derivatives satisfy 

Dk,'f zW(U2) (O <k, I < p). 

Similarly, Kf ' (U2) is the linear subspace of WO(U2) of functions f with 

D 'f (U2) (O < k, l <p). 
It was shown in Baszenski and Delvos [1] that 

(18qlq-1(U2) + 2q+l q+I(U2) q+I(U2) (1.8)nCE qz 

Proposition 3. If f e Ea (U2) with a > 1, then the error in the bivariate rectan- 
gle rule satisfies 

(1.9) m, n(f)-3(f) = (ma + n a) (m, n -oo). 

Proof. Since f E EEa (U2 ), we have 

(1.10) Rm oo(f) = ((m a) Roo n(f) = (n -a) 

Rmn(f) =6(ma.n a) (m, n ox), 

from which (1.9) follows by virtue of Proposition 2. o 

Proposition 4. Iff E - (U2) n ?q+ q+l (U2) with q e N, then the error 
in the bivariate rectangle rule satisfy es 

(l~~ll)m n 'f' 
- :Yf) = 6(m-q- 

I 
+ n-q-1) (m, n x-o). 

Proof. Using (1.8), an application of Proposition 3 yields (1.1 1) o 

2. rTH-ORDER BLENDING RECTANGLE RULES 

We introduce the rth-order sum of bivariate rectangle rules 
r 

(2.1) S(f) = E 32m2r+I-m(f) (r E Z+). 
m=1 

Then the rth-order blending rectangle rule 3r (f) is 

(2.2) 32(f) = S2(f)-S2_I (f) 
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where r E N and r > 1 . The construction of the rth-order blending rectangle 
rule resembles the explicit formula of the interpolation projector of rth-order 
blending (Delvos and Posdorf [3] and Delvos [2]). The cubature points of 3J (f) 
are mainly determined by the points occurring in S( (f): 

r 
(2.3) U w(j*2n m k *2rlI+M): O0<j<2m, O<k<2r+lml}. 

m=l 

Their number is given by 

(2.4) nr = (r + 1) * 2 

Next we will determine a remainder formula for the rth-order blending rec- 
tangle rule. 

Proposition 5. If f E A(U2), then the error in the rth-order blending rectangle 
rule is 

3r(f) - 3(f) = R2r, 00o(f) + R 2r(f) 

(2.5) r r-I 

+ E R2m 2r+l-m(f) -E R2m,2r-m(f). 
m=1 m=l 

Proof. Using (1.6), we get 
r r- 

r (f) 3(f) (32m , 2r+ m(f) 3(f)) - (G32m 2-m(f) - 3(f)) 
m=1 m=l 

r 

= 5?(R2m 2r+l-m(f) + R2m, oo(f) + Roo 2m(f)) 
m=1 

r-1 

-E?(R2m 2r-m(f) + R2m, O(f) + Roo 2m(f)) 
m=1 

R2r, 00(f)+Roo2r (f) 

r r-1 

+ E R2m 2r+l-m(f) - E R2m 2r-m (f). E 

m=l m=l 

Proposition 6. If f E Ea (U2) with a > 1, then the error in the rth-order 
blending rectangle rule is 

(2.6) J2(f) - 3(f) = 6((r + 1) * (2 r) a) (r -x ) . 

Proof. From (1.10) we have 

R2r (f) = &((2r)-a), Roo, 2r(f) = ((2 r) a) (r -* ox), 

R2m2r+I-m(f) =((2 r+l)a) (1<m<r, r -oo), 

R2m,2r-m(f) = ((2 r) a) (1 < m < r, r -oo). 

Now (2.6) follows from the remainder formula (2.5). E 
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Remark 1. Recall that the number of cubature points of the rth-order blending 
rectangle rule 3r2(f) is bounded by 

nr = (r+ 

1)2'. It is easily seen that the error relation (2.6) of the rth-order blending rectangle 
rule obtains the form 

2 a+1 -a 
Jr(f) - 3(f) = 6(log(nr) (n') ) (r -x oc), 

where f E E a (U2) with a > 1 . Thus, the rth-order blending rectangle rule is 
comparable with the bivariate number-theoretic "good-lattice" rules (see Sloan 
[5]). The attractive feature of the rth-order blending rectangle rule is its easy 
computation based on relations (2.1) and (2.2). 

Proposition 7. If f E - l(U2) n +l( U) with q E N, then the error 
in the rth-order blending rectangle rule satisfies 

(2.7) 3J(f) - 3(f) = 6&((r + 1) * (2 ) 1) (r -x ) . 

Proof. Use of (1.8) and an application of Proposition 6 yields (2.7). a 

3. BIVARIATE MIDPOINT RULES 

Let m and n be positive integers. A simple cubature formula closely related 
to the bivariate rectangle rule is the bivariate midpoint rule: 

9lm n(f) = 
m . n E f (2m , 2n) 

Again, the bivariate midpoint rule is not an efficient cubature formula in view of 
the large number of function evaluations. However, Mm n (f) is a basic tool in 
constructing the more sophisticated cubature formula of the rth-order blending 
midpoint rule. For this reason we will briefly derive a convenient remainder 
formula for Mm, n( (f) 

Proposition 8. If f E A(U2), then 
00 00 

(3.1) Mfm, n f) =, (f, eum, vn) *(1 
u=-00 v=-00 

Proof. By (1.4), we have 

1 rn-i __2j+1 2k+1) m -n *\ m ' 2n~ 
j=O k=O 

r~oo E(f 5er, ) m n erf 2j+ ,es (2kn 

00 00 

- E E (f, eumivn) * (-1)u. *] 
U=-00 V=-00 
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We define the series 

Qm,oo(f) E(f , eum 0) (1)u 
U7#0 

Qoon(f) = (f, eO vn) (1), 
v #0 

Qm, n(f) E E(f eum vn) (-1)uv 
U7&0 V7&0 

Proposition 9. If f E A (U2), then the error in the bivariate midpoint rule is 

(3.2) 9m, n (f) (f)= Qm, oo (f) + Qoo, n (f) + Qm, n (f) 

Proof. From (3.1) we get 

%m,n(f) = (f, eOO) + Qm, o(f) + Q,,,n(f) + Qm,n( f) 

Since 3(f) = (f, eO 0), Proposition 9 follows. o 

Proposition 10. If f E Ea (U2) with a > 1, then the error in the bivariate 
midpoint rule satisfies 

an(f) 2(f) 
= 

(m + n a) (m n ) 

Proof. Since f EE Ea (U2 ), we have 

(3.4) QQm,oo(f) = &(m a) Qo (f) = '(n -a) 
(Qm, n(f) = 6(-(ma n-) (mi, n o), 

and (3.3) follows from Proposition 9. o 

Proposition 11. If f E %0l l(U2) n "q+ ( q+I (U2) with q E N, then the 
error in the bivariate midpoint rule satisfies 

(3.) 9%l, n (fn) - Y( f ) = &(m-q- 
I 

+ n -q-1 (m n -( o 
Proof. The proof of Proposition 11 is similar to that of Proposition 4. E 

4. rTH-ORDER BLENDING MIDPOINT RULES 

We introduce the rth-order sum of bivariate midpoint rules 
r-1 

(4.1) T2(f) E9J2m2r-i-m(f) (r E N). 
m=0 

Then the rth-order blending midpoint rule 9A 2(f) is 

(4.2) 9A 2(f) = T 2(f) -T 2 

where r E N and r > 1 . The construction of the rth-order blending midpoint 
rule is analogous to the construction of the rth-order blending rectangular rule. 
While the latter may be interpreted as an interpolatoiy cubature formula based 
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on Boolean periodic spline interpolation, no such interpolatory characterization 
holds for the rth-order blending midpoint rule. 

The cubature points of 9X2 (f) are mainly determined by the points occurring 
in T2(f): 

r-1 

(4.3) U ((21+) 2-m- (2k+1).2 -r+m): O<j<2, O<k<2 rli}. 

m=O 

Their number is given by 
r-1 

(4.4) mr = r . 2 

Next we will determine a remainder formula for the rth-order blending mid- 
point rule. 

Proposition 12. If f E A(U2), then the error in the rth-order blending midpoint 
rule is 

r 3(f) = Q2r- oo () + Q, 2r-(f) 

(4.5) r-1 r-2 

+ E Q2m,2r-l-m(f) E Q2m,2r-2-m(f). 
m=O m=O 

Proof. In view of relations (3.2), (3.4), (4.1), and (4.3), the proof of (4.5) is 
similar to that of (2.5). a 

Proposition 13. If f E Ea (U2) with a > 1, then the error in the rth-order 
blending midpoint rule is 

(4.6) 9A2(f) - 3(f) = 6(r * (2r [) a) (r -x ) . 

Proof. In view of relations (3.4) and (4.5), the proof of (4.6) is similar to that 
of (2.6). o 

Remark 2. Recall that the number of cubature points of the rth-order blending 
midpoint rule 9J1(f) is mainly determined by mr = ret 2rl . It is easily seen 
that the error relation (4.6) of the rth-order blending midpoint rule obtains the 
form 

9 2 )a+1I - ) ( -- 
r() - 3(f) = &log(mr) (mr)j) (r - x), 

where f E E a (U2 ) with a > 1 . Thus, the rth-order blending midpoint rule is 
comparable with the bivariate number-theoretic "good lattice" rules (see Sloan 
[5]). Again, the attractive feature of the rth-order blending midpoint rule is its 
easy computation based on relations (4.1) and (4.2). 

Proposition 14. Iff E %tl.l(u2) n Wq+l +l(U2) with q e N, then the 
error in the rth-order blending midpoint rule satisfies 

(4.7) 9A2(f) - 3(f) = 9(r * (2 r1)1) (r -x ) . 

Proof. The proof of Proposition 14 is similar to that of Proposition 7. a 
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5. A NUMERICAL EXAMPLE 

We consider the double integral 

3(f) =ff y f(x, y) dx dy 

with the function 

(x' ,y) = l++Y (X, y E U). 

The function f is an element of the Korobov space E (U . Following Hua 
and Wang [4, p. 122] we introduce the function 

g(X, Y) = , 
(f(x, Y) + f(X, 1 y) + f(I -,y) +f(I -X, I -y)). 

It is easily seen that 
3(g) = 3(f) = 2. (log(4) - 1) 

and 
g E?2W0 0(U ) nw2 2 (U2). 

It follows from relation (1.8) that Propositions 4 and 7 are applicable to g with 
q = 1. The errors and the number of cubature points for the blending rectangle 
rule and the ordinary rectangle rule are shown in Table 1. 

TABLE 1 
Errors in blending and ordinary rectangle rules 

r (r + 1) *2r J32(g) - 3(g) 2r 3J (g) - 3(g) 

1 4 0.01009 4 0.01009 
2 12 0.00365 16 0.00282 
3 32 0.00120 64 0.00072 
4 80 0.00037 256 0.00018 
5 192 0.00011 1024 0.00005 
6 448 0.00003 4096 0.00001 

Similarly, it follows from relation (1.8) that Propositions 11 and 14 are ap- 
plicable to g with q = 1. Table 2 shows the errors and the number of cubature 
points for the blending midpoint rule and the ordinary midpoint rule. In Figure 
1 we exhibit the distribution of cubature points in rth-order sum of midpoint 
rules. 

Remark 3. It follows from (2.3) and (4.3) that the cubature points of T (2) 

form a subset of the cubature points of S 2(f) which are not contained in the 
set of cubature points of S_ (f). 

Remark 4. The Boolean methods for double integration can be extended to 
arbitrary dimensions by using the method of d-variate Boolean interpolation 
developed in [2]. This is the topic of a forthcoming paper. 
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TABLE 2 
Errors in blending and ordinary midpoint rules 

r 77 ' * 2 r (g) 3(g) 2 2 ,2r 2 (g) 3(g) 
1 1 -0.02741 1 -0.02741 
2 4 -0.00317 4 -0.00611 
3 12 0.00028 16 -0.00148 
4 32 0.00035 64 -0.00037 
5 80 0.00016 256 -0.00009 
6 192 0.00006 1024 -0.00002 

rI 4 
r *1 r *2 

r *3 r *4 

FIGURE 1 
Points of rth-order sum of midpoint rules 
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