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THE DIFFERENCE BETWEEN THE WEIL HEIGHT 
AND THE CANONICAL HEIGHT ON ELLIPTIC CURVES 

JOSEPH H. SILVERMAN 

ABSTRACT. Estimates for the difference of the Weil height and the canonical 
height of points on elliptic curves are used for many purposes, both theoretical 
and computational. In this note we give an explicit estimate for this difference 
in terms of the j-invariant and discriminant of the elliptic curve. The method 
of proof, suggested by Serge Lang, is to use the decomposition of the canonical 
height into a sum of local heights. We illustrate one use for our estimate by 
computing generators for the Mordell-Weil group in three examples. 

Let E be an elliptic curve defined over a number field K, say given by a 
Weierstrass equation 

(1) y2 =x +Ax+B 

with A and B in the ring of integers of K. The canonical height on E is a 
quadratic form 

h: E(K)-+ R. 

(For the definition and basic properties of h, see [10, Chapter VIII, ?9 or 6, 
Chapter VI].) The canonical height is determined by this property together with 
the fact that the difference 

(2) h(P) - h(x(P)) 

is bounded as P ranges over E(K), where h is the Weil height on K. In 
this paper we will give explicit upper and lower bounds for the difference (2) 
in terms of the coefficients of the Weierstrass equation (1). For example, an 
immediate consequence of Theorem 1.1 will be the estimate 

(3) -1 8h(j) - 1 
h(A) - 0.973 < h(P) - I 

h(x(P)) 

< ' 
h(j) + ' h(A) + 1.07. 

3 2 3~~~~~i2 
Here A = -16(4A3 + 27B 2) and j = -1728(4A) 3/A are the discriminant of 
(1) and the j-invariant of E, respectively. 
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Estimates of this sort have been given by other authors. Dem'janenko [4] 
and Zimmer [13] give general, explicit bounds for the Weierstrass equation (1). 
However, our estimates are somewhat more precise, and since these are loga- 
rithmic heights, a small improvement in the bounds may translate into large 
savings for numerical applications. For the family of curves y2 = x3 + px, 
Bremner and Cassels [1] give an estimate for (2), and for the particular curve 
Y2 = 4x3 - 28x + 25, Buhler, Gross, and Zagier [3] give essentially best possi- 
ble bounds. We will compare our results with these earlier estimates and give 
examples in ?2. 

Except for [3], all of the earlier results depend on first giving an explicit 
estimate for the difference h(2P) - 4h(P). Lang [8] has pointed out that one 
can also obtain an estimate for (2) by adding up estimates for the difference of 
the local heights 

(4) A, (P) - 2 log maxf Ix (P) l1, , I} . 

He gives such estimates in [6, Chapter I, Theorem 8.4, and Chapter III, Theorem 
4.5], making explicit the dependence on j and A, but leaving undetermined 
various absolute constants. This makes his results useful for theoretical pur- 
poses, but unsuited to actual computations. 

In this paper we will follow (with some modifications) the program described 
by Lang in [6] to give completely explicit estimates for (2) and (4). We begin in 
? 1 by stating our main results. After some examples (?2) and preliminaries on 
local heights (?3), we give our principal local estimates in ?4 (non-Archimedean) 
and ? 5 (Archimedean). It is worth noting that the absolute constants in (3) 
arise only from the Archimedean places; we have taken some care to keep these 
constants small, which will help explain the length of ?5. In ?6 we add up the 
local results to prove our main theorems. 

One practical application of an estimate such as (3) is related to the problem 
of finding generators for the Mordell-Weil group E(K) . A standard descent will 
often (if one is lucky) produce generators for the quotient group E(K)/mE(K) 
for some small integer m > 2. (See, e.g., [2 or 10, Chapter X].) The usual 
proof of the Mordell-Weil theorem then shows how, in principle, one can find 
generators for E(K) . However, in order to carry this out in practice, one needs 
an explicit estimate for the difference (2). In the last section, we will illustrate 
this procedure with three examples. 

1. STATEMENT OF THE MAIN THEOREMS 

We set the following notation, which will remain fixed throughout this paper: 

K, a field; 
E/K, an elliptic curve defined over K; 
h, the absolute logarithmic height on Q; 
h, the canonical height on E(K), when K is a number field. 
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If K is a number field, we also let hoo be the Archimedean contribution to 
the height. Thus, with the usual notation (cf. [10, Chapter VIII, ?5]), 

??o [K) Q E nV log+ Itlv for t (E K. 

vEMK 

The following result gives our main global estimate for the difference of the 
Weil height and the canonical height. 

Theorem 1.1. Let K be a number field, and let E/K be given by a Weierstrass 
equation 

2 3 2 
(5) E :y + aixy+a3y=x +a2x +a4x+a6 
whose coefficients are in the ring of integers of K. Let A be the discriminant of 
(5) and let j be the j-invariant of E. Further let 

b2 =a + 4a2 and 2* ={2 ifb2 
0 

Define a "height of E" (really of the Weierstrass equation (5)) by 

A(E) = ' h(A) + 'l h ~(i) + 2 ha (b/ 12) + I 
log2 2 

Then for all P E E(K), 

-1h(j) - u(E) - 0.973 < h(P) - 'h(x(P)) < A(E) + 1.07. 

Remark 1.2. If E is given by a Weierstrass equation 

y =x +Ax+B, 

then A = -16(4A + 27B 2) and j = -(48A) 3/A. If we replace h. (j) by the 
larger quantity h(j), then in this case Theorem 1.1 gives the estimate 

(6) - 8 h(j) - 1 h(A) - 0.973 < h(P) - h(x(P)) 
< 1 h(j) + 1 h(A) + 1.07. 

This is the version we stated in the introduction. Of course, it is often possible 
to do better. For example, if K = Q and A > 0, then IiIj < 1728, so 

h. (j) < log( 1728). This gives a substantial improvement over (6) if A and B 
are large. 

In special cases it is possible to improve the estimates of Theorem 1.1, espe- 
cially the more important lower bound. Rather than try to give the most general 
such improvements, we will illustrate the techniques for a particular class of 
curves, and leave it to the reader to adapt these ideas to other examples. 

Theorem 1.3. Let E/Q be given by a Weierstrass equation 

(7) y = -x +Ax + B 

and suppose that A, B E Z satisfy the conditions 4A + 27B2 is square-free and 
gcd(A, 3B) = gcd(2, B) = 1. Then Ih(x(P)) < h(P) + 8 log+ jjj + 1.205. If in 
addition A > 0, then 

'h(x(P)) < h(P) + 2.137. 
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2. EXAMPLES AND COMPARISON WITH EARLIER ESTIMATES 

Example 2.1. An often-studied family of elliptic curves is given by the equation 

y2 x3+ B 

This family of curves has j = 0, A = -2433B = -432B , b2 = , and 
2* = 1, so Theorem 1.1 gives the estimate 

(8) - h(B) -1.48 < h(P) - 1h(x(P)) < 4h(B) + 1.576. 

By way of comparison, Zimmer's estimate [13] gives in this case 

(9) Ih(P) - .h([x(P), y(P), 11)1 < h(B) + 1.3863. 

We see that the constants in (8) are not as good as those in (9), but the depen- 
dence on B is much better. Of course, for computational purposes it is also 
preferable to have a bound for h(x), rather than for h([x, y, 1]), since the 
latter will generally be 3 as large as the former, requiring a much larger search 
region. 

Let us show that the dependence on B in (8) is best possible. For each 
integer t E Z, consider the curve and point 

Et y2 = x3 + t3 Pt =(-t,0). 

Since Pt is a two-torsion point, we have h(Pt) =0. On the other hand, 

h(x(Pt))=logjtj and h(Bt) = logIt3l, 

so 

h(P)-2 h(x(Pt)) =-h(Bt)X 

Since also h(Bt) -* x as t -- cx, this shows that the lower bound (8) has best 
possible dependence on B. 

In order to show the same for the upper bound, we cannot look at torsion 
points, since we want h (P) to be large. Again for t E Z, we consider the elliptic 
curves and points 

Et:y2 =x3 +(t +1), Pt=(-2,. 

Using [11], one finds that the canonical height of Pt over the function field 
C(t) is equal to ' . It then follows from [9] that 

lmh (Pt) -1 
t 0o h(t) 3 

On the other hand, for the given equation we have 

h (Bt) = h(t2+ 1) -2h(t) as t -+o. 

Since h(x(Pt)) = h(-1) = 0, we find 

h(Pt) - 'h(x(Pt)) 1 
tim- h(Bd) 6' 
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which shows that the dependence on B in the upper bound of (8) is also best 
possible. 

Example 2.2. Similarly, the elliptic curves 

(10) E:y =x +Ax 

with complex multiplication by Z[i] are frequently studied. These curves have 
= 1728, A= -26A3, b2 =0, and 2* = 1, so Theorem 1.1 reads 

(11) -4h(A) -2.252 < h(P) - 'h(x(P)) < I h(A) + 2.038. 

Just as in Example 2.1, it is possible to show that the dependence on A is best 
possible. (For example, for the lower bound, look at the torsion point (t, 0) on 

2 3 _ 2 the curve y = x - t x; and for the upper bound, look at (1, t) on the curve 
y2 = x3 + (t2 )x .) 

We compare (11) with an estimate of Bremner and Cassels [1]. They work 
over Q and consider equation (10) with A = p > 3 prime. They deal only 
with points P = (x, y) satisfying x = r/s, gcd(r, p) = 1 . In this situation 
they obtain the estimate 

(12) -6h(p) - 0.232 < h(P) - 'h(x(P)) < 2h(p). 
Notice that the lower bound in (12) has a better dependence on A = p than 

(11), although we observed above that (11) is best possible. The reason that 
Bremner and Cassels do better is their restriction to points with gcd(r, p) = 1. 
Geometrically, this ensures that P is on the identity component of the NMron 
model for the prime p. By using this additional fact, we can improve on (12) 
as follows: For the equation (10) with A = p > 3 prime, we have 

(13) -2.252 < h(P) - 'h(x(P)) if x(P) = r/s, gcd(r, p) = 1. 

This is better than (12) as soon as p > 183506. So for practical purposes, (12) 
will often be preferable. We briefly indicate the proof of (13). 

For the Archimedean place of Q we use Theorem 5.5, obtaining 

- I log(64p3) - I log(l 728) - 0.973 < A. (P) - 2 log+ Ix(P)K. 

For all primes q $ p, we use Theorem 4. 1 (a), which gives 

0 < Aq(P) - 2 log+ IX(P)lq . 

Finally, for the local height at p we use the condition that gcd(r, p) = 1 to 
observe that P reduces to a nonsingular point modulo p. This means that the 
local height at p is given by the exact formula 

12 loP3)= (P) - 2 log+ 1x(P) IP. 

Summing all of the local heights, the dependence on p vanishes, yielding the 
estimate given in (13). 

Example 2.3. Consider the curve 
2 3 E: y +y=x -7x+6 
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of conductor 5077 and rank 3 over Q. For this curve, Buhler, Gross, and 
Zagier [3] give the estimate 

(14) 0 < h(P) - 'h(x(P)) < 0.60254... for all P E E(Q). 

(Note that their h is twice ours.) This curve has A = 5077, 1 = 2123373/5077, 

b2= 0, and 2* = 1, so applying Theorem 1.1 directly gives 

-2.7 < h(P) - 'h(x(P)) < 2.46. 

Of course, this can be substantially improved by using the fact that there is only 
one component on the fiber of the Neron model at p = 5077, so 

25077(P)- 'h(x(P)) = 1 log(5077). 

However, this will still yield something much worse than (14). The reason is 
that llj is quite large. To get an estimate close to (14), one would need to 
redo the Archimedean bound in Theorem 5.5, using the fact that q = e2nli is 
extremely small. In fact, Buhler, Gross, and Zagier use a series for )'O due to 
Tate to obtain a very accurate estimate for the local height at the Archimedean 
place. 

Example 2.4. Consider the curve with equation 
2 3 

E:y =x -x+1 

with j = 6912/23. Since 4(-1) + 27(1)2 = 23 is square-free, we see that this 
equation satisfies the conditions of Theorem 1.3. Hence we obtain the estimate 

(15) 'h(x(P)) < h(P)+ I log 6932 +1.205 < h(P)+ 1.92. 

Example 2.5. Similarly, the curve given by 

E: y2 =x -x+ 15 

has 4(-1)3 + 27(15)2 = 6071 = 13 *467, so again we can apply Theorem 1.3. 
This gives 

(16) 'h(x(P)) < h(P)+ I log 6912 + 1.205 < h(P) + 1.222. 

Example 2.6. The curve with equation 
2 3 

E:y =x -28x-48=(x+4)(x+2)(x-6) 

was considered in [10, Chapter X, Example 1.5]. (Actually, the equation in [10] 
is y2 = X3 - 12X2 + 20X. We have made the substitution X = x + 4 to 
eliminate the x2 term.) This curve has 

14 2 148176 24 2373 
A=409600=2 5 and 25 2 

Applying Theorem 1.1, we find that every point P E E(Q) satisfies 

(17) -3.27 < h(P) - 'h(x(P)) < 2.871. 
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By comparison, Zimmer's estimate [13] gives 

-3.053 < h(P) - 3h([x(P), y(P), 1]) < 3.053. 

In ?7 we will use these estimates to compute generators for the Mordell-Weil 
group over Q of the curves in Examples 2.4, 2.5, and 2.6. 

3. PRELIMINARIES ON LOCAL HEIGHTS 

In this section we set notation and briefly review the basic facts about local 
heights that we will need in the sequel. For further explanation and proofs, see 
[6, Chapters I, III; 10, Appendix C, ?18]. 

Let K be a field complete with respect to an absolute value v, and let E/K 
be an elliptic curve given by a Weierstrass equation 

y2 +a xy+a3y =x3 +a2x2 +a4x+a6 

with discriminant A and j-invariant j. The local height function 

i 
= Av : E(Kf)\f 0 -- R 

is a continuous function, with a logarithmic pole at 0, which satisfies the du- 
plication formula 

A(2P) = 42(P) + v((2y + aix + a3)(P)) - 4 V(A) 

for all P E E(K) with 2P $ 0. As usual, we will let 

v(t) = - log ItIv and log+ ItIv = logmax{ItIv, 1}. 

The local height is independent of the choice of a Weierstrass equation, and 
does not change for finite extensions of K. 

In case v is non-Archimedean, if all of the ai coefficients are v-integral and 
if P E E(K) reduces modulo v to a smooth point, the local height is given by 
the formula 

(P)= log+ Ix(P)IV - I log iAIV . 

Again, if v is non-Archimedean and if IiIv > 1, then (possibly after a 
quadratic extension of K) the curve E has a Tate parametrization E(K) 
K*/qZ for some q E K* with IqIv = IijIV < 1. If u E K*/qZ is normalized 
by IqIv < IuIv < 1 , then the local height is given by 

A(u) = log+ 1 _ + B2(a)v(q), 

where a = a(u) = v(u)/v(q) and B2 is the second Bernoulli polynomial 

B2(T) = T2 T+ . 
In case v is Archimedean, we can assume that K = C; then E(C)- C*/qZ 

for some q E C*, IqI < 1. In this case the local height of u E C*/qZ is given 
by 

)4u) = 2B2(a)v(q) + v(1 -u) + Ev((l-qnu)(1-qnu1)), 
n>1 

where a and B2 are as above. 
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Finally, if K is a number field, then the canonical height h on E(K) can 
be computed locally as 

[K: Q] E n v (P) for all P E E(K), P 
: 

0. 

We conclude this section with an elementary inequality which will prove 
useful. 

Lemma 3.1. For all real numbers a, b > 0, 

- log+ (b l ) < log+(a/b) - log+(a) + log(b) < log+(b) . 
Proof. Note that 

log+(a/b) - log+(a) + log(b) = log(max{a, b}/max{a, 1 }). 

Now one need merely check the six possible size orderings of { 1, a, b}. o 

4. NON-ARCHIMEDEAN LOCAL HEIGHTS 

Theorem 4.1 (Tate). Let K be complete with respect to a non-Archimedean ab- 
solute value v, and let E/K be an elliptic curve with Weierstrass equation 

(18) E:y 2+axy+a3y =x 3+a2x 2+a4x+a6 

such that all of the a 's are v-integral. Let A be the discriminant of (18), and 
let j be the j-invariant of E. 

(a) For all P E E(K), 

-2 log+ IjV < i(P) - 2 log+ Ix(P)IV < v(A) 

(b) If in addition we have 

ordv(j) = -1 and ordv(c4) = 0 

then the lower bound in (a) can be replaced by 

1 log 1i9IV < i(P) - 2 log+ 
IX(P)IV. Proof. The inequality in (a) is proven in [6, Chapter III, Theorem 4.5]. During 

the course of the proof it is shown that if E is a Tate curve (i.e., if it has split 
multiplicative reduction), then the lower bound is 

I1 {ordv(u)0 .-1,) 

Here we have chosen a v-analytic parametrization 

E(K) K- /q 

for a certain q E K* with ordv(q) = - ordv(j), and u E K* is chosen normal- 
ized to satisfy 0 < ordv(u) < ordv(q) . 



DIFFERENCE BETWEEN WEIL AND CANONICAL HEIGHTS 731 

Now under the hypothesis in (b), namely ordV(I) = -1, we must have 

ordv (u) = 0, which gives the required lower bound of I log+ 1 I1 j 
Suppose now the E is not a Tate curve. Since IijI > 1, it becomes isomor- 

phic to a Tate curve after a quadratic extension L/K. Further, the condition 
ordv (c4) = 0 means that LIK is unramified. In this case, E has nonsplit 
multiplicative reduction and is isomorphic to a Tate curve in the unramified 
quadratic extension over which it attains split multiplicative reduction. Now 
the above argument works for points in E(L), so a fortiori it is valid for points 
in E(K). [N.B. It is vital that L/K be unramified; otherwise the valuation w 
in L would give ordw(j) = 2, vitiating the entire argument.] 5 

5. ARCHIMEDEAN LOCAL HEIGHTS 

In this section we estimate the difference between local heights for Archi- 
medean absolute values. This will involve using q-expansions to estimate vari- 
ous functions. Throughout this section, we use the following notation: 

T, z EC, ImT > 0, 
2Utri 27riz 

q=e , u=e 

Im z log lul 
I MT log IqI 

We will sometimes also impose one or both of the following conditions: 

(*) Im(T) > Wv" (equivalently, IqI < e - 0.00433342 ...), 

) < a < 2 (equivalently, 1 > IuI > Iq 1'/2) 

Lemma 5.1. Let t E C satisfy I qtI < 1. Then 

(I I qI ) ( I - qtI) n>lIq | n>1 

Proof. For any w E C with IwI < 1 we have the elementary bounds 

IWI < log l -w <IwI. 

Substituting w = qnt and summing over n > 1 immediately gives the desired 
upper bound; for the lower bound we need merely note that 

Z logil - -nt > E Iz nt1 > I EIq nt*[ 
n>1 ~~~n>1 I - qnl- -jtjn>1 

Next we prove some estimates relating the modular j-function j(T), the 
modular discriminant A(1), and the parameter q. 
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Lemma 5.2. Assume that (*) is true. Then 

(a) -5.7538 < log+ Ij(T) I + log A2 (T) < 2.2; 
(27r) 1 

(b) -5.6795 < log+ Ii(T)I + log IqI < 2.304; 

(c) -0.105 < log 
I 

-T < 0.1045. 
(2iQ)12 q 

Proof. (a) To avoid powers of 7X in our calculations, we let 

12 nq_ 
F(T) = 4g2(T) = 1 + 240Z 1f_ qn, 

(27r) ~~~n>1 

D(T)= A2 (T)= q rfJ(1 qf) 
(27r) 12n>1 

Then j(T) = (12g2(T))3/A(T) = 1(T)3/D(T), so 

log jj(T)D(T)l = 3 log J1(T)I. 
As in [5, Lemma 2.2], it is easy to get an upper bound for 1(T): 

1(1T)? < 1 + 240 n 3q| = 1 + 2401qI 41 q 12 
< 2.0813. 

z 
q 

n>1qfl(I + 4Iq +) 
The last inequality uses (*). Hence, 

log+ Ii(T) I+ log ID(T) | log Iij(T)D(T) I 
= 3 log 7(T)I < 3log(2.0813) < 2.2. 

To prove the other inequality, we must bound F(T) away from 0. As above, 
we have 

(19) IF(T) > 1 - 1 |40 n31 qn| = 1 -2401qI 1 Iq5 1 
I -j jn>1(I 

- q 
5 

Notice if we use the trivial estimate aIl < e 7r4, then the lower bound (19) 
is negative. This reflects the fact that j((1 + v/T3)/2) = 0. We also need the 
following estimate for D(T), which follows immediately from Lemma 5.1 with 
t= 1: 

(20) log D(T)I>log qj-24 
jqj 

(1 - IqD 2 

Using (19) and (20), we find 

log+ Ii(T)l + log ID(T) I 

(21) = max{log lj(T)D(T)l, log ID(T)I} = max{3 log J1(T)I, log ID(T)|} 

> max 3log I - 2401ql ?+ 4qj +l ql ) ,log qj - 24 (1 } 
(1 - IqI)5 (I- Iq 
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To find a lower bound for this maximum, we equate the two quantities in 
the right-hand side of (21) and solve numerically for jqj. This gives Iqj = 
0.003446... and a lower bound of -5.75377 ... , which completes the proof 
of (a). 

(b) The upper bound is [5, Lemma 2.2a]; the proof of the lower bound is 
similar to (a), so we only briefly sketch it. In place of (21) we find, after some 
calculation, 

log+ Ii(T)l + log Ijq 
(22) > max {3log (1 - 2401q I+ 41Iq +l) - 24 'l l, logjqI} 

(I - jqj 51 - jqj 

Now one can verify numerically that the minimum of the right-hand side of 
(22) occurs at Ijq = 0.0034153... , giving a lower bound of -5.67948.... 

(c) Using Lemma 5.1 with t = 1 gives 

-24 jqj 
2 < log 12 A(T) 24 E log 1 -q | < 24 q 

(1 - IqI (27r)1 q n>1jq 

Since IqI < e A we obtain the stated bounds. U 

Next we estimate the Weierstrass p-function and the local height A in terms 
of the parameters u and q. 

Lemma 5.3. Assume that (*) and (**) are valid. Then 

(a) 1 P(Z T)) - < 0.1682; 

(1- 

(b) - 1.0506 < log + (zT)+ 22log 1 - ul 
(27r i) 

< 2log(1 + jqua); 

(c) -0.0665 < A(z) + B2(a) log jqj + log 1 - u < 0.0711. 

Proof. (a) The Weierstrass p-function has the q-expansion 

1 u 1 

(27ri)2 (1 - U)2 12 

+ 
(I -j q n U)2 (1-qn u-1)2 

( Aqn)2,j 

(Cf. [7, Chapter 4, ?2 or 10, Appendix C, Proposition 12.6].) 
For any t E C with I qtI < 1 we have the elementary estimate 

(23) qt < 1 E Iqfl - qt. 
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Using (23) three times, with t= u, t= ul, and t= 1, we find 

1)2 U)2 (27ri)(. 

1 1 f q aJ I+ aqJ1-a 2_ qlI 

12 1- iql (1 - ql + (a)2 (1- qJlIa)2 (1 - q)2J 

In the range ? < a < a2 owed by (**), the quantity in braces has a maximum 

at a = 1 Combined with (*),this gives the desired bound 

T2g(z ') - <- + 0.08482... < 0.1682. 
(2 7r )(1- -2 

(b) Letting 

1 U F = F(z, T) = 2 (Z, T) - (1Iu)2' 
(27ri)U) 

we have 

log+ 2(Z, T) + 2log|1 - u 
(24) 1(27rij) 

= logmax{u + (1 - u)2 Fl, I1 - ul2}. 

From (a), IFI < 0.1682, so 

lu + (1-U) Fl < Jul + 0.1682(1 + lul)2 < (1 + lul)2. 

Since also II - ul2 < (1 + IUu)2, we immediately obtain the desired upper bound. 

(Remember that lu = Iqla) 

For the lower bound we use the estimate 

u + (1-U) Fl > I_1-1-Ul-1-ul2F 

> 1 - 11 - ul - 0.168211 - ul2 

to obtain 

maxlu + (1- U) Fl, 11 -l } 

> max{I - 11 - ul - 0.168211 - Ul2, 11 - U12} > 0.34976. 

The minimum value of the middle expression occurs at 11 - ul = 0.5914... . 

Substituting into (24) completes the proof of (b). 

(c) The local height A(z) is given by the formula 

i(Z) = -B2(a)nlogql-log>l-ul1 

(25) -Elog |(I - q nU)( -qnU )1 

n>1 
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(Cf. [6, Chapter I, Theorem 8.1].) Applying Lemma 5.1 twice, once with t = u 
and once with t = u , gives 

_ 1 ~~jq Il+a I q 1l-ci 

- qj I 1 - _ ql_+_ _ I_- jq - aj t 

< logI(1 -q qu)(1 - qful Vl ' 1 lql jc1{ 1 + I+ql} 
n>1 q 

For 0 < a < , both sides of this inequality are extreme at a = which gives - - 22'hcgie 
the estimate 

(26) -0.0711 < log I(1 -q u)(1 -qnU1)| < 0.0665. 
n>1 

Combining (25) and (26) gives the desired inequalities and completes the proof 
of (c). o 

We next estimate the difference of the local heights for the classical Weier- 
strass equation. 

Proposition 5.4. We have 

-0.973- 8 log+ jj(T)l ' A(Z) - 
I 

log | 
P(Z, 

| < 1.07 + I2 log+ jj(T)I . 8 2 A -)161 

Proof. Since j(T) and P(z, T) 6/A(T) are SL2(Z) invariant, we can apply a 

linear fractional transformation to T to ensure that it satisfies the condition 
(*). We then choose z modulo ZT + Z so that 

1 Im z 1 
-_ 

< a(z) = linT 
- 2 - ( 

M 
) IT - 2 

Since A(-z) = A(z) and 0(-z, T) = P(z, T), we can replace z by -z, if 
necessary, to ensure that 0 < a < 2 Thus we may assume that also 
holds. 

We begin by applying Lemma 3.1 with 

a= | 112 P(Z, T)6 and b= A2 A(T) 
(27ri)' (2r)1 

Note that Lemma 5.2(c) and (*) give the estimate 

log b < log jqj + 0. 1045 < -7rf-+ 0.1045 < 0, i.e., bIb < 1, 

so in this case Lemma 3.1 says that 

0 < log+ 
a 

-log+ a < -logb. 

Multiplying this by - 2 gives 
11 12 _ _ _ 

1 
lo 

I 
A(T) lo 1 P(ZT)6 ?0 12 (27)) 

121Ogl(2l~l2/\(T~l< _ 121 A~lP(^(2)) 

+ 2Ilog+| (Z ' T)| < ? . 
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Now add (27) to the estimate in Lemma 5.3(c), and then subtract half of the 
estimate in Lemma 5.3(b). Many of the terms cancel, and after a little bit of 
algebra we are left with 

- 0.0665 - log(1 + jq) + 
I 

log (2 2(T) 

1 
++O1Z, T)16I 

12 A(T) 2 2(a)log qj < 0.5964 

Next subtract the B2 term and, in the lower bound, use Lemma 5.2(c) to replace 
2 log IA(T)/q(27r) 12 1 by -0.105. This finally gives 

- 0. 1715 + (-0 a).log qj-log(l+lql) 

(28) 1 + P(Z <05964-B 

12 A(T) - 2 2(a)loglql. 

We first deal with the upper bound. Using Lemma 5.2(b) and B_(a) < 6 

valid for 0 < a < 1, we find 

0.5964- B2(a) log Ijq < 0.5964-- 1 log jqj 
< 1.0697 + 1 log+ li(T)l . 

This and (28) complete the proof of the upper bound in Proposition 5.4. 
To prove the lower bound, we use Lemma 5.2(b) and (*), respectively, to 

obtain 

a( - 
2a) log jqj > -2.8898a(1 - a) - Ilog+ jj(T) , 

- log(I + lqlc') > - log(I + e-' AX) . 

Substituting these into (28) gives the lower bound 

(29) -0.1715 - 8 log+ j(T) I - 2.8898a(1 - a) - log(1 + e6 3a) 

Now we reap the reward of keeping track of a in our estimates. Since the 
quantities a(1 - a) and log(1 + jqja) cannot both be large, we gain (a bit) on 
the final estimate by considering them together. Precisely, one can check that 

2.8898a(1 - a) + log(1 + e -7r) < 0.8010883 ... for all a E R. 

the supremum occurring at a = 0.407582.... Substituting this into (29) com- 
pletes the proof of Proposition 5.4. 5 

It remains to use the change-of-variable formula to go from a classical Weier- 
strass equation to a general equation. 
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Theorem 5.5. Let E/C be an elliptic curve given by a Weierstrass equation 

(30) E:y +axy+a3y =x 3+a2x 2+a4x+a6. 

Let A, i, b2, and 2* be as in the statement of Theorem 1.1. Then for all 
P E E(C), 

- loge - 8 log 2 ji - 2 log+ b2/121 - 2 log 2* - 0.973 

A(P) - I log+ JX(P)l 

< 
121 log+ A1l + 2log+ jl + log+ b2/121 + I log2* + 1.07. 

Proof. Choose a T with j () = j(E), and let E' be given by the equation 

E:Y2 = 4X3-g2(T)X-g3(T). 

Thus there is an isomorphism 
C -, 

E' (C), z_ ( P(Z5 T), 5 /(Z. T)) . 

Choose c E C* and r, s, t E C so that the map 
2 3 2 

X = CX + r, y= Ic3Y+sc2X+t 

gives an isomorphism E'(C) _ E(C). Let z E C/(ZT + Z) be the point corre- 

sponding to P E E(C). Then 

A(P) - 
, 

log+ Ix(P)l = A(z) - log+ IC20(z, T) + rl. 

The usual change-of-variable formulas [10, Chapter III, ? 1] give b2 + 1 2r = 

c2b/=0 and A=c 12 
A(T) . Hence, 

(31) 1(P)- 
I 

log+ x(P)1 = 1(z)- log+ A1/6 P(z, r T) b2 

It is easy to check that 

maxf Ip(z , T) /A(T) 1/6 1, 1} 

max{IA-"/6l, 1} 1.2* *max{lb2/121, 1} 

< maxA1/ 
6 P(Z ZT) - b2 1l <max1 

~A1' ~) 1/6 12 

<max { | ;AT6 |1 } *max{fA11/| 1}.2 *max{ | , 1} 

Taking logarithms and substituting into (3 1) gives 

1 
log+ A - Ilog2* - I1og+b 2 

< {i(P) - Ilog+ X(P)}- {i(z) - Ilog 
+ 

P(Z) 
5 } 

1 2+21A1*T111/b 

<?I log+ A + Ilog2* + log+ b2 

Now applying Proposition 5.4 gives the desired result. o 
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6. PROOF OF THE MAIN THEOREMS 

In this section we add up our local estimates to prove the global theorems 
stated in ?1. 

Proof of Theorem 1.1. The canonical height h(P) is equal to the weighted sum 
of the local heights over all absolute values: 

.1 I~~~ 

vEMK 

Similarly, for any t E K, the ordinary height is 

h(t) = [KIQ E n log+ Itlv. 
VEM 

In the lower bound in Theorem 5.5, we split the I log+ IiI as 

1 log+IjI - ilog+ jjI + 1 log+ jil 8o 24_ 12 ii 
Summing the estimates provided by Theorems 4.1(a) and 5.5 then gives 

-'h(j)- i(E) - 0.973 < h(P) - Ih(x(P)) < A(E) + 1.07. 

In the lower bound, note that h. (A) = h (A), since by assumption A is con- 
tained in the ring of integers of K. Likewise, in the upper bound we have used 
the identity h (A) = h (A'I) . This completes the proof of Theorem 1.1. o 

Proof of Theorem 1.3. For equation (7) we have 

2 =?, c = -2 3A, A = -24(4A3 + 27B) j = 123 4A3 2 c4=-3+2B,4A 3+27B 2 

The conditions on A and B ensure that c4 and the denominator of J are 
relatively prime; and the denominator of j is square-free. In other words, for 
every prime p E Z dividing 4A + 27B2 we have 

ordp(j) = -1. 

This means that in adding up these non-Archimedean local heights, we can use 
part (b) of Theorem 4.1 instead of part (a). We obtain the estimate 

312 2 112log14A3 + 27.B 1?< E P P-1 ~log+ Ix(P) I ) 
p 

Next we look at the unique Archimedean place. We apply Theorem 5.5 
directly, which yields 

- I log+ 116(4A3 + 27B 2)1 -. log+ IiI. - 0.973 

< A. (P) - 
I 

log+ Ix(P)K. 
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Adding the last two estimates then gives 

-8 log+ Jji - 1.205 < h(P) - 'h(x(P)). 

This completes the proof of the first inequality in Theorem 1.3. 
We suppose now in addition that A > 0. Then the above formula for j 

shows that IiIj < 1728. The second inequality in Theorem 1.3 is then imme- 
diate from the first. o 

7. AN APPLICATION: GENERATORS FOR THE MORDELL-WEIL GROUP 

It is still an open problem to give an effective algorithm for computing gener- 
ators of the Mordell-Weil group of an elliptic curve. The proof of the Mordell- 
Weil theorem falls into two parts. In the first part, if one is lucky, one finds 
generators for the quotient E(K)/mE(K) for some small integer m (typically 
m = 2). It is then possible to refine this set into a set of generators for E(K) 
itself; and this refinement process is effective. However, in practice one needs 
an effective estimate for the difference h- Ih(x) . We will illustrate this process 
for the three elliptic curves described in Examples 2.4, 2.5, and 2.6. For other 
examples, see [1, 3]. 

Example 7.1. Let E/Q be the elliptic curve 

E:y =x -x+ 1 
considered in Example 2.4. Since #E(F3) = 7 and # E(F5) = 8, we see that 
E(Q) has no torsion. A standard descent (cf. [2]) shows that the rank is at most 
1, and a brief search for rational points turns up 

(32) (-1, 1), (0, 1), (1, 1), (3, 5), (5, 11). 
Hence E(Q) has rank 1, and it remains to find a generator. 

Using the algorithm in [11], we compute the canonical height of these five 
points. The point P = (1, 1) has the smallest height, h(P) = 0.0249... , and 
one can then check that the five listed points are (in order) 2P, -3P, P, -4P, 
5P. We would like to show that P generates E(Q). 

Suppose not. Then P = nR for some n > 2 and some R E E(Q). Further, 
since x(P) E Z, we see that also x(R) E Z. If such an R exists, then its height 
satisfies 

h (R) =2h(P) < h(P) = 0.0061... . 

Now we use the estimate (15) from Example 2.4, which says that 

h(x(R)) < 2h(R) + 3.84 < 3.86. 

Hence, if R exists, then it satisfies x(R) E Z, and Ix(R)I < e3.86 < 48. Now 
it is a simple matter to check all integer values for x between - 1 and 48. (If 
x < -2 then x3 - X + 1 < 0.) The only points which appear are the five points 
in (32). Therefore R does not exist, which completes the proof that 

E(Q) = Z( 1, 1). 
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Notice our computation uncovered all points with integral coordinates and 
canonical height less than 0.0061. In particular, it would have found any tor- 
sion points, which gives an alternative proof that E(Q) is torsion-free. 

The computation in Example 7.1 proceeded especially smoothly because 
E(Q) had rank 1. When the rank is greater than 1, the following (unpublished) 
observation of Don Zagier is often helpful. 

Proposition 7.2 (Zagier). Let K be a number field and E/K an elliptic curve. 
For any real number B, let 

S(B) = {P E E(K): h(P) < B}. 

Suppose that there is an integer m > 2 such that S(B) surjects onto the group 
E(K)/mE(K). Then S(B) generates E(K). 

Proof. Let G = SpanzS(B). If G 54 E(K), choose a Q E E(K)\G with 
minimal height. This is possible, since h(E(K)) is a discrete subset of R. 
Since Q 0 S(B), we have a strict inequality h(Q) > B. 

Choose a P E S(B) so that P and Q have the same image in E(K)/mE(K), 
and write P = Q + mR with R E E(K). Note that R 0 G. We will show that 
h(R) < h(Q), which will contradict the choice of Q having minimal height, 
thereby proving that G E(K): 

11 I ^ 2 
h(R) = 2h(P - Q) < 2(h(P) + h(Q)) 

m m 
2 

< -2 (B + h(Q)) (since P E S(B)) 
m 

<* h(Q) (since Q 0 S(B)) 
m 

? h(Q) (since m > 2). o 

Example 7.3. Let E/Q be the elliptic curve 

2 3 _ E:y =x -x+15 

considered in Example 2.5. Since #E(F3) = 4 and #E(F5) = 8, we see that 
E(Q) has at most 2-torsion; it is easy to check that E(Q)[2] = 0. Hence E(Q) 
is torsion-free. 

A standard descent (cf. [2]) should show that the rank is at most 2 (although 
I have not actually done the calculation), and a brief search for rational points 
turns up 

(33) P= (6, 15) and Q= (-2, 3). 

We also note that 

P+Q= -7 -27 
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Using [11], we compute the heights h(P) = 1.0217... , h(Q) = 0.7229, 
and h(P + Q) = 1.4092... , and then the height regulator 

det (P' 5 ) P ) -0.7105... . 
((P5 Q) (Q, Q)) 

Since the regulator is nonzero, P and Q are linearly independent. 
Using the same procedure as in Example 7.1, it is easy to check that P, Q 

and P + Q are not in 2E(Q). Hence the map 

{O, P, Q, P+Q}- E(Q)/2E(Q) 

is surjective, assuming, as always, that E(Q) has rank 2. Incidentally, this 
surjectivity proves anew that P and Q are independent. 

We now apply Proposition 7.2, which says that E(Q) is generated by the set 

S = {R E E(Q) : h(R) < h(P + Q) = 1.4092 ... } . 

From ( 16), any point in S satisfies 

h(x(R)) < 2h(R) + 2.444 < 5.27. 

So if R E S, and if we write x(R) = a/d2 in lowest terms, then 

max{alI, d2}<e <195. 

So finally we see that E(Q) is generated by the set 

S= {Q, ) E E(Q) : Jal < 194, 1 < d < 13, b > 0} 

Using a microcomputer, one finds that 

S'= {(-2 3), (6, 15), (! 27) (11 24)} 

={Q, P -P- Q, -P+Q} 

This completes the proof that 

E(Q) = Z(- 2, 3) e Z(6, 15) , 

subject to the assumption that rank E(Q) = 2. 

Example 7.4. We conclude by considering the curve 
2 3 

E:y =X -28x-48=(x+4)(x+2)(x-6) 

from Example 2.6. It is proven in [10, Chapter X, Example 1.5] that the group 
E(Q)/2E(Q) is generated by the three points 

P=(-353), Ql=(-2,0), Q2=(-4?0). 

Here, Q, and Q2 are points of order 2, and P has infinite order. We wish to 
show that P, Q1, Q2 actually generate E(Q). 
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Suppose that they do not generate E(Q). Since Q1, Q2 have order 2 and 
since P, Q1, Q2 do generate E(Q)/2E(Q), it follows that 

P = mR for some odd integer m > 3. 

(That is, we must have P + T = mR for some T E E[2] and some odd m, 
and then P = m(R + T).) Hence, 

11 I 0.7222 ... 
h(R)= 2h(P)= 2 < 0.080... . 

m m 
It then follows from (17) that 

h(x(R)) < 2h(R) + 6.54 < 6.7. 

Since also x(R) E Z, we must look for all points R E E(Q) with x(R) E Z 
and Ix(R)J < e67 < 813. A computer search finds all such points, namely 

{(-4, 0), (-3, 3), (-2, 0), (6, 0), (14, 48), (16, 60)} 

= {Q25 P, Q15 Q1 + Q2, P+ Q1, -P+ Q2}. 
This concludes the proof that 

z z 
E(Q) = Z(-3, 3) eZ(-4, 0) eZ(-2, 0) - Ze eD f 2Z. 
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