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SOME GRID REFINEMENT SCHEMES 
FOR HYPERBOLIC EQUATIONS 

WITH PIECEWISE CONSTANT COEFFICIENTS 

T. LIN, J. SOCHACKI, R. EWING, AND J. GEORGE 

ABSTRACT. Discontinuities in the coefficients of hyperbolic equations occur 
both naturally and artificially and must be treated in numerical schemes. 
Schemes for handling these discontinuities are derived. An interesting stability 
result is derived and the schemes are shown to be exact under certain restric- 
tions. 

1. INTRODUCTION 

In this paper, we consider finite difference approximations of the following 
hyperbolic partial differential equations: 

(1.1 ) A(x)Ut(x, t) = (B(x)U)x, (x, t) E D, 

(1.2) U(x, 0) = UO(x), 
where D = (-ox, ox) x (0, oo), and A and B are piecewise constant 'matrices' 
which are discontinuous at points x = d1, ..., d . The d 's are called the 
physical interfaces of the above hyperbolic systems. Usually, according to the 
physical properties of the process described by this class of hyperbolic equations, 
the solutions are required to satisfy the following conditions at the physical 
interfaces: 

(1.3) B(d1-)U(d1-, t) = B(di+)U(di+, t), t> O, i= 1, ... , m. 

Two examples of these equations occur in geophysics and elasticity. The 
linearized acoustic wave equations are used in geophysics; in this context, the 
physical interfaces are the boundaries of geological structures occurring in the 
earth. The linearized elastic equations can be interpreted as the displacements 
of a "string" made up of materials of different composition connected together. 

The example from acoustics is 

Pt+c2(PV)x= , vt +px =0, p 
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where A 
I 

C0), B= -(?P), p is the density, c is the speed of sound, p 
p 1 0 

is the pressure, and v is the velocity. p and pv are required to be continuous 
at the interfaces. The elasticity examrple is 

a 
p(x) Vtt = ax (8(x) VX) 

where V and jVx are required to be continuous at the interfaces. If we let 
V = Vt and w = , we obtain 

pVt = wx -wt = vx 

and A = ( o 1/, ) B = ( 0). Here, / is the modulus of elasticity and c2 = 

is the speed of propagation of waves. 
In finding approximate solutions to the above hyperbolic equations by finite 

difference schemes, the main difficulty occurs at the interfaces. The disconti- 
nuities of the coefficients at the interfaces prohibit us from using simple finite 
difference schemes to approximate the PDE within the usual order of accuracy. 
On the other hand, complex higher-order approximation schemes are usually 
more expensive and, very often, will result in instability. Since hyperbolic equa- 
tions model wave propagation, their finite difference approximations must also 
have propagation properties. Even though we have many accurate finite differ- 
ence approximation schemes for interior points, x : di, i = 1, ... , m, the 
error generated at the interfaces may propagate out and detrimentally impact 
the computational results. 

Another difficulty in the application of finite difference schemes in large-scale 
modeling is that we need very fine grid sizes to resolve the dramatically changing 
physics in some area of the domain, but we cannot afford to use such fine grids 
on the whole computational domain. One example is in seismic modeling, where 
the induced sources near the earth's surface generate high-frequency waves. If 
we want to compute these high-frequency waves accurately, we must use small 
grid sizes; however, using small grids in the whole modeling process will be 
too expensive, since the computational domains are usually very large. On the 
other hand, at locations far away from the source, where the high-frequency 
waves die out, we can model the physics accurately without using very fine grid 
sizes. Thus, in order to simulate the physics efficiently as well as accurately, 
we want to find schemes which use different grid sizes in different regions of 
the computational domains. This requirement introduces another difficulty: the 
numerical interfaces. In this paper, we want to discuss how to use the physical 
properties of hyperbolic equations to develop more accurate finite difference 
schemes that can handle both real and artificial interfaces. 

Finite difference schemes for wave propagation problems containing physical 
and numerical interfaces have received significant attention in the literature. 
Brown [3] considered the wave propagation problem with piecewise constant 
coefficients and constant space and time step sizes. Vichnevetsky [13] discussed 
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a scheme for (1.1) in the scalar case and analyzed the reflection from the physical 
and numerical interfaces. Trefethen [10] analyzed the 'GKS' stabilities [71 of 
some difference approximations to (1.1) with multiple interfaces. Berger [1], 
Oliger [2], Browning, Kreiss, and Oliger [4], and Ciment [5] discussed difference 
approximations to (1.1) with numerical interfaces. Sundstrom [9] addressed 
(1.1 ) for problems related to geophysics and noted that variable grid size could 
improve the accuracy of the finite difference solution to (1.1). De Moura [6] 
also considered a continuous variable grid scheme for the scalar case of (1.1) 
in dealing with weather prediction. Starius [8] derived some difference schemes 
for hyperbolic systems with variable grid size and proved their 12 stability. 

In this paper, we deal with the interfaces by using integral identities and 
characteristics. Since both ideas have physical motivations, they enable us to 
obtain schemes that can handle both types of interfaces satisfactorily. They are 
not only accurate enough (their local truncation errors are second-order on the 
whole computational domain), but they are also stable and can represent the 
transmitted and reflected waves very well. 

To simplify the notation, we concentrate on the discussion of the following 
model problem with one physical and numerical interface at x = 0 only: 

(1.4) a+ut(x, t) = b+ux(x, t), x > 0, t > 0, 

(1.5) a_ut(x, t) = b_ux(x, t), x < O, t > O, 

(1.6) u(x, 0) = f(x). 

We impose the physical interface condition 

(1.7) b_u(O-, t) = b+u(O+, t), t > 0. 

The schemes derived for this model problem can be easily extended to more 
general problems with multiple physical and numerical interfaces, in which these 
two kinds of interfaces may be located at different places in the computational 
domain. Also, the ideas for deriving the schemes for the model problem can 
be applied to the second-order acoustic wave equation, since the second-order 
equation can be decomposed into a first-order equation system. The outline of 
the paper is as follows: In ?2 we derive several schemes for the model prob- 
lem and discuss their accuracy and extensions to more general and complex 
problems. In ?3 we prove some corresponding stability results for the schemes 
derived in ?2. In ?4 we supply several numerical experiments for the schemes 
derived in this paper. 

2. FINITE DIFFERENCE SCHEMES 

We first introduce some notation. Let h_ and h+ denote the step sizes in 
the x variable on each side of the interface x = 0, let k denote the step 
size in the t variable, tn = nk, n = 0, 1, 2,..., and let Xj = Ihsign(j 



64 T. LIN, J. SOCHACKI, R. EWING, AND J. GEORGE 

j = 0, I1, ?2, ?3, . Let uy' and v'. denote the finite difference approxi- 
J I 

mations of u(xj, t') and v (xj, t'), with ug_ and ug+ denoting the approx- 
imations of u(O-, tn) and u(O+, tn) at x = 0. We also let a1 = a(xj) and 
b1 = b(x1). 

The first scheme for the model problem is based on an integral identity satis- 
fied by the hyperbolic equation at the interface. To obtain this integral identity, 
we integrate the partial differential equation (1.4) from -h_/2 to h+/2, 

rh+/2 rh+/2 
(2.1) f! a(x)ut(x, t)dx= f (b(x)u(x, t))xdx. 

J-_/2 Jh/ 

Since b(x)u(x, t) is continuous across the interface, the right-hand side of the 
above identity satisfies 

(2.2) f (b(x)u(x, t))x dx = b+u (2+ t) - b_u (- t) 

Then, the integral identity has the form 
r? h+/2 

a] ut(x, t) dx+a+ ut(x, t)dx 

(2.3) h2 
0 

(2.3) = ~~b+ u (+ t) - b_ u - - 
' ) 

Now, we approximate the above identity term by term. For the first term on 
the right-hand side, we easily see that 

h U(Xj , t)+ u(O?,~ t) 
(2.4) bu (+ , t) bu(x1, t) 2 
and similarly, 

(2(h_ ) u(x_I,t)+u(0-, t) 
(2.5) b u(- ~t) b2 

Based on the trapezoidal rule of integration, we have the following approxima- 
tion for the second term on the left-hand side of (2.3): 

{h+ /2 

a+j ut(x, t)dx 

a+ 4 (ut(2, t) + ut(0+, t)) 

(2.6) ~~~h+ (Ut(xj , t) + ut(O+, t) +u(+ ) 

=a+-8 (ut(xl , t) + 3ut(0+, t)) 
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Similarly, for the first term on the left-hand side of (2.3), we have 

a 0 h (u(x_j, t + k) - u(x_l, t - k) 
a ut (x ,t)dxta 8zz a 2k- 

(2.7) -/2 
+2 7 

u(O, t + k) - u(O-, t - k)') 

Combining (2.2)-(2.7) yields 

l +(Un + Un+) -(Un + un_) 

2 16 1 0+_ 0+ a+h+ n+l n-I n+l n-I 
+6k [u -ul + 3(u0+ -u0 )], 

a_h_- 
[- 

n+ 
_Un-1 + 3(uo_ - uo_ )], 

which is a second-order approximation of (1.4). For the finite difference ap- 
proximation at the grid points not on the interface, we have many well-known 
schemes. For example, we use the following Leap Frog (LF) scheme: 

n+1 n-I ,n n 

asign(J) = b j+ Uj_1 
sgj 2k sign(j) 2hsign(j) 

which is a second-order approximation of the model equation. Since we use 
a ? sign to indicate the grid function on the left- and right-hand sides of the 
interface, we need the following interface condition to complete the scheme: 

n?I n+l 
b_ uol = b u+ 

U . 

In summary, the finite difference scheme based on the integral identity for the 
model problem is the following 

Scheme I. 
un+I n-Il n un 

(2.8) a b =b u 0 
sign(]) 2k sign(j) 2hsign(j) 

n?1 n+l (2.9) b-uo0 = b u0++U, 

0(bun -bu1)= b+6u [u+ - u1 n + 3(un+ I-ug t)] 
(2.10) a_ h_ I+n+l n -+3(n+l-l] 

(2.10) 2 + ~ ~ 16k [I~ 

n i n+I 
This scheme is a semi-implicit scheme. To compute ug , we compute uj 

j 54 0, by equation (2.8); then we use equations (2.9) and (2.10) to compute 
uon0 and un+0l. 
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Remark 1. We can also approximate the terms on the left-hand side of (2.3) as 

r?h1 h/2 

a_ J Ut(x, t) dx +a+ ut(x, t) dx 

h h 
(2.1 1) a_ UtO- t)2 +ut(O+, t)2+ 

a h 
rd4k- (u(O-, t + k) - u(O-, t - k)) 

ah 
+ 4k (u(O+, t + k) - u(O+, t - k)). 

Combining this with (2.8) and (2.9) results in the following interesting scheme 
for the model problem: 

un+I1 - n-I U Un 

(2.12) asi(j) b ' =b. sgj) 2k sign(]) 2hsign(j) 0 
n+1 n+1 

(2.13) b_uo0 = b+u0+ 

24 1 b Ub_Un a+h+(Un+1 nl-I a h n+I n-I 
(2.14) 2(+ I- b_u l -I 04+ ( - UO+ l + 4-(u0_ - uo_) k~~~~) ~~~4k ~~ 4k(0 -o) 

Obviously, this scheme is less accurate than Scheme I from the point of view of 
local truncation error; however, this scheme gives the exact solution at the grid 
points if the initial function f(x) has compact support in the region x > 0 
and A. = 1, where 

(2.15) b? k 

In fact, for this case, the analytic solution of the model problem is 

u(x, t) = { b_ f(c_+ (x + c_t)) for x < 0, 

f(x + C+ t) for x > 0, 

and if A = 1 , the values of this function at grid points become 

(2.16) u(jhsign(j), nk)= b b_<((+n)h4, 1<0 

f((j +n)h+), j >0, 

where c =b?/a?. Then, by substituting (2.16) into (2.12)-(2.14), we can 
easily show that the values of u(x, t) at the grid points satisfy the difference 
equation. This means that the solution to the difference equation gives the 
analytic solution to the partial differential equation for any number of physical 
interfaces if we keep A = 1 for all grid points. Unfortunately, it is very hard 
to see how we can extend this scheme to more general cases, such as variable 
coefficients and/or higher-dimensional spaces, so that this property can still be 
preserved. 
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We now make a change of variables, which is not necessary, but will make 
the proofs for the stability results easier. Let 

(2.17) v(x, t) = bsign(x)U(X, t). 

Then v (x, t) is required to be continuous at the physical interface and satisfies 
the following equations: 

(2.18) asign(x)vt(x, t) = bsign(x)Vx(XI t), x $0, t >0, 

(2.19) v(x, 0) = bsign(x)f(x) , x = 0. 

We call these equations the modified model equation. Since the modified 
model equation is equivalent to the model equation, the two finite difference 
schemes derived below are for this equation only. This time, we use the idea 
of characteristics to treat the interface. The characteristic segment for (2.18) 
passing through (xo, tn+l) on the right-hand side of the interface is 

(2.20) (x - xo) + + (t - tn+1) =0. a + 

Since this segment lies completely on the right-hand side of the interface for 
t < tn+1, the property of the characteristic segment suggests that we should 
be able to compute vn+1 from vn and vin, vn+l, for j > 0. Physically, 
this means that, since the wave described by the modified model equation is 
left-going, the displacements of the wave on the left-hand side of the interface 
have no influence on the displacements of the wave at the interface. In fact, 
integrating equation (2.18) over the volume element 

0 < < + tn < t < tn+1 

gives 

(2.21) +j+/2(v(x,tn+1 )-V(X,tn))dx 

=b (v +, t)-v(0, t)) dt. 

Expanding the terms in these integrals gives 

v(x2 t n2))-v(x,tn+ t ) 

(2.22)~ ~ 
Il v(0, 

tn+1) 
_v(0' 

tn) + V(vx(, tn)v(,) 
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for 0 < x < h+, and 

h+~~~~~~~~~~~~ 

v ( 2+ v t) - v()) t) 

a v fh+ n tn+Vl(-, tn) + hvt(O, tn)k]dx +n)O (t tn) 
t X21t )t 2+v 2 - ttn) h+ 

2 2~ 
b (h~h 

(2.23) b+f [ ht+(t _ ) 

txv(h2,t )v2+- tn)2v(O,tn)+ 

modifid mode at th inefae 

+ Vtx ( + tn)+2 ) 

for tn < t < tn+d . The corresponding approximation for equation (2.21) is 

a+(v(O, tn+) _(O, tn))h 2 +a+(v(h+, t 
n+ 

(h+ , )n 

-v(+, tn+1) + v(O, tn)) 8 

rrl a a + j [v (O,t), t t)+ xt(,t )kx] dx + 0(h+ + k) 

t 
n+1 

h n+1 hn+1 

b+ vx (2 ' tv 2v t 2 t 8 

+VXt(2 tn) +(2 ) dt 

b+(v(h+ , t)-( 2 n) 

-a(v(h, t n+1) - v(h+ tn) _V (O, tn+1) + v (O, tn)) h+ 

+b (v(h, t n+1 )-v(h+ tn) _V(O, tn+1) +V(0' tn))k 

Using algebraic manipulation, we obtain the following approximation of the 
modified model at the interface: 

(I1 + +)Vn+l = (I 1 ' +)Vn+ + (I1 + A+)Vn -(I 
_ 

-+)Vn , 

which is a second-order approximation to (2.18) at the interface. To update 
vOn+1, we use the continuity condition 

n+1 n+1 
v 0+ = V_ .- 
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For the approximations at the interior points, we can use some well-known 
schemes to complete the computation. For example, we use Leap Frog (LF) 
and Lax-Wendroff (LW) schemes. For LF, we have 

Scheme II. 
n+1 n-I n _Vn 

(2.25) asin, ' ' =b. } $o- 0 
(225sign() 2k sign(j) 2hsign(j) 

(2.26) vn+ = vn+1 

(2.27) (1 + i)vn+ = (I _ A+)Vn + (I + A+)vn -( A+ )vnl 

Using LW, we then have 

Scheme III. 
A2 

(2.28) 
n+1 sign(j) sign(j) vn +(I 

-2 n 
i 2 j_12 sign(j)Jj 

+sign(j) + sign(j)v n 
+ 2 V+1~ j0, 

(2.29) v n+1 = v 
n+1 

n+1nnn1 
(2.30) (I1 + .A+)vo+ = ( 1 -A+)vo+ + (I1 + A+)vl -( 1 -A+)vl 

Like the first scheme, these two schemes are also semi-implicit. The stability 
for these schemes will be proved in the next section. 

Remark 2. Since the condition that the physical and numerical interfaces are 
at the same point, x = 0, is not a crucial assumption in the derivation of the 
three schemes above, they can be easily extended to treat the cases with multiple 
interfaces, in which the physical and numerical interfaces may or may not be 
at the same places. 

Remark 3. The ideas used in deriving the above schemes can be extended to the 
cases in which the coefficients are functions of x. For example, let us consider 

(2.31) a(x)ut(x, t) = (b(x)u(x, t))x, 
(2.32) u(x, 0)= f(x), 

with the interface condition 

b(0-)u(0-, t) = b(O+)u(0+, t). 

We derive the following scheme for this variable-coefficient problem. It is sim- 
ilar to Scheme II. 

u(3 - ' i = bj+uj+l -bj_u 
(2.33) aj jk 

- j+ j+ jl 
'J 2k 2h~~~~~~sign(j) , j0 
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(2.34) b(O-)un_l = b(0+)un+1, 

(Unj' nUa)12+ a0+ h~ + 
Un+1 n n+1 n_a_h 0U+ - UO+) 1/2 2 ?+2+ + ( - ul - UO++ + U 0+) l8+ 

(2.35) n n ~k n+1 n U+1I n h 
~~~~~(2.35)=(b lu l- bo+ uo+) _2 (a, (U I + u) - ao+ ( 0++ - uo+))8 

(2.35) I(b1u uu -u1)-a0((uu -)) 

Schemes similar to Scheme I and Scheme III for the first-order equations can 
be derived for variable coefficients by similar arguments. 

For the applications to the second-order acoustic wave equation with piece- 
wise constant coefficients, we consider the following simple case with one inter- 
face: 

(2.36) utt(x, t) = Csign(x)uxx(x t), x : 0, t > 0, 

(2.37) u(x, 0) = g(x), 
(2.38) ut(x, t) = f(X), 

and the physical interface conditions 

(2.39) u(0-, t) = u(0+, t), 

(2.40) c2 UX(0-, t) = c2ux (0+, t) . 

In order to apply the ideas for first-order equations to this second-order problem, 
we decompose it into a first-order system as follows. Let 

(2.41) v(x, t) = ut(x, t) + Csign(x)Ux(x, t), 

(2.42) w(x, t) = ut(x, t) - Csign(x)Ux(x, t). 

Then v(x, t) and w(x, t) satisfy 

(2.43) vt (x t) - Csign(x)Vx (x , t) = 0 , 

(2.44) wt(x, t) + Csign(x)Wx(X , t) = 0, 

(2.45) v(x, 0) = f(x) + Csign(x) (X) 

(2.46) w(x, 0) = f(x) -Csign(x) (X) 

and interface conditions (2.39) and (2.40). Then, we derive the following 
scheme for equations (2.43)-(2.46) that is similar to Scheme III. 
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Scheme IV. 
n+l / an a \ n 

v n+l} "sign(j) -7sign() 0 v 

(.i 1 2 n1 
w 0~~~~~f esignu) "signti) 'LV 

J 
2~~~~ 

/\ 
n 

(2.47) +( 1-sign(j) ?() (;;;) 
0 i+sinj orsign(j) +l A 2 

sign(j) sigsign(j) 0 n ( vw+n 0 2 1+1 

(2.48) (1+ ar+)vn+ = (1-a o+)Vn+ + (I + oa+)Vn -(1 +)Vnl 

(2.49) (I1 + ar_ )Wn+ = ( 1-_ or)Wn + ( 1-_ or) wn _- 1-_ )wn 1 

n+1 n+1 2c n+1 n+1 (2.50) w0+ = 0+ - (v0+ -w0 ), 

(2.51) vn+ = 0- + (vg0+ -wg-'), 

where 

ck 
(2.52) U= h 

This scheme is also semi-implicit, and its stability requirements will be ob- 
tained in the next section. 

Remark 4. As in Remark 1, if we apply the integral identity idea to (2.36) and 
use the simple first-order difference approximations, then we obtain a scheme 
which gives the exact value of the solution to the wave equation (2.36)-(2.38) 
under the conditions that a? = I . In fact, as in Remark 1, we can define the 
scheme as follows: 

n+1 Un + n-I Un Un Un 
Ui -2u + j = a(uJ+1-2u +uj_), 

n+l n+l 
uo_ = Uo+ 

(2.53) E2. flfl h n1 n - 

h (Ul-Uo+)-- (Uo- -U 1) =k(u0 -2u + o) 

+ +22(UO+ -2uog + uogi). 
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If g(x) = 0 and f(x) has compact support on the left-hand side of the 
interface, then the solution to (2.36)-(2.40) is given by 

1 
2 2(f(x +Ct)+f(x-c_t)O 

(2.54) u(x, t) 2(c C c )f 

f 
c 

- 
c (x - c+t)) x > O. 

Since a = l, the values of u(x, t) at the grid points become 

(f ((j + n)h_) + f ((j - n)h_)) 

(2.55) U(jhsign(j) nk) = 2(c + cf ( <( j 0 

l f((j - n)h_), j > 0. 

By substituting (2.55) into (2.53), we can easily see that the values of the 
solution to (2.36)-(2.40) on the grids satisfy the above difference equations. In 
other words, we have shown that these difference equations give us the exact 
value of the analytic solution of (2.36)-(2.40) for any number of physical inter- 
faces, if for fixed k we can keep a = 1 at each grid point. If the integration 
done here and in Remark 1 is applied to the elastic equation of ? 1, the analytic 
solution for any number of interfaces is also obtained (if a = 1 and k is fixed). 

3. STABILITY ANALYSIS 

In this section, we state and prove several stability results for the schemes 
derived in the last section. The results are based on stability theorems of Tre- 
fethen [10], which are extensions of the well-known 'GKS' stability theorems 
[7]. 

Throughout this section, we use Ui only to indicate the solutions to Schemes 
I-III. In order to apply Trefethen's theory, we begin with a discussion of the 
general solutions to Schemes I-III of the form u'n = z n j . By substituting this 

J 
solution into Schemes 1-4II, we see that it can be represented as 

(3.1) UJ PlI sign(j)Z X + P2sign(j)Z X2sign(j)' 

where X1? and x2? are either the roots of 

(3.2) %2 _ - I = 0 

or the roots of 

(3.3) zx= X + i+(x2 _ 2 + ? 
( _ 1)2 2)#X-12 
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We classify the wave components Zn' sign(j) and Z'%xisign(j) in (3.1) into left- 
going and right-going waves, according to their group velocities, which are de- 
fined [11] as 

1 Xi? dzo 
(3.4) i = 1, 2 

?i A z dX , = 

where zo and X satisfy (3.2) or (3.3), with corresponding i3 and i. The 
definitions from [1 1] are 

Definition 1. For i = 1, 2, if JXj+ = I = 1 and its corresponding C+' < 0 

(C+' > 0), then z xi+ is called left-going (right-going). Also, if Iz> 1, X1i+ > 
ni 1 (I z> > 1 Xi+1 < 1) , then z J is called left-going (right-going), independent 

of C+ . For z X'- we have the same definitions. 

In order to classify the wave components, we need the following lemmas, 

which are due to Gustafsson, Kreiss, and Sundstrom [7]. 

Lemma 1. The roots of (3.2) have the following properties: if zI > 1, then 
x1+1 < 1l %X2+1 > 1; if z=e then 

x1+1 <1, IX2+1 >1 for Isin60 > A+, 

%1X+1-=1 IX2+1 = 1 for Isin?L < A+, 

XI+ = - 1 x2+=I ford = 0, 

XI+ = 1 % X2+ =- 1 ford = 7r, 

XI+ =%2+ = Ai for sin 0 = ??. 

The same conclusions hold for X1- x X2-, and the corresponding A_. 

Lemma 2. There exists a 6 > 0 such that the two roots of (3.3), XI+ and X2+ 
for A+, satisfy 

I. if A+ > 0, then 

XI+j <1I - O for lzl > 1, 

%X2+1 >I for lzl > 1, z : 1, 

%2+ = l for z=1, 

II. if A+ < 0, then 

1XI+l <1 forlzl>1, z=1, 

%1+ =1 for z =1, 

JX2+1>I+? forlzl>1. 

The same is true for X1I and X2- with the corresponding A. 
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Using the above definition and lemmas, we prove 

Lemma 3. For Schemes I-III, z Xi +, z are right-going and z xJ+, z J 
are left-going. 

Proof If znx sign(j) and ZnXj are the wave components for the general 

solution Zn qj to Schemes I and II, then X1I? %x2? aIe solutions of equation 

(3.2). If zIz > 1, then by Lemma 1 we know that z Xj? are right-going and 
n 

z x2J are left-going. If z = e and I sin(6) > i , then we have the same 

conclusion by Lemma 1. If z = eio and Isin(6)l < i , then by Lemma 1, 

IXI? = IX2?1 = 1 Since X1?2? = -1 , we have 

ReX1? Re z < 0 < Re%2? Re z; 

then by (2.4) of [ 1 1 ] we know that the group velocities of these wave components 
satisfy 

I1 _ I? + 1 /X1+= Re Xi? > 0 
Ci z+1I/z Re z- 

c2 X2? + I_ -2? ReX? <X 0 z+ 1/z Re z- 

By the definition, z x are right-going and Xj? are left-going. The results 

for Schemes I and II are then verified. If zn%X and znXi are the wave 
components of the general solution znoJ to Scheme III, X1? x %2? are solutions 
of equation (3.3). In this case, if IzI > 1 and z # 1 , then Lemma 2 guarantees 
the results of this lemma. If z = 1, then by Lemma 2, z are right-going. 
For zn , we consider its group velocity. Let z0 be the function of X defined 
by equation (3.3); then one can easily see that dzo/dXlz 0=1 ,=1 = 1. Thus, by 

(3.4) and Lemma 2, we know that C2 = -1 / < 0, Zni are left-going. The ?~~~~~2 
results for Scheme III are then verified. o 

Definition 2. The general solutions u'n to the schemes are called purely outgoing 
from the interface if there are no wave components moving toward the interface. 

We now discuss GKS-stability for the schemes. The results below are mainly 
based on Trefethen's group velocity version of the GKS-stability theorem. For 
completeness, we state Trefethen's stability result [10] as follows. 

Theorem 1. A difference model for an initial value problem is GKS-unstable if 
and only if it admits a solution znoj which is purely outgoingfrom the interface. 

The first stability theorem is for Scheme I with constant coefficients and a 
uniform grid size. 

Theorem 2. If a+ = a-, b+ = b_, and h+ = h_ = h, then Scheme I is GKS- 
unstable for any ;.+ = A = A > 0. Moreover, if A+ = A_ = A > VT5/4, then 
Scheme I is even 12-unstable. 
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Proof. In order to find a purely outgoing solution to Scheme I, we substitute 

( 3 5 ) n { ~~~P l+ Z Xi j > ? 5 (3.5) >0 I 

into the interface conditions (2.9) and (2.10) of Scheme I. After some simplifi- 
cations, we end up with 

PI+ - P2= , 

and 

_ (XI+l+ 3) 2 X+] PI+ + [ 1 ( 3 + 2 = 0. 

Note that the conditions a = a+, b_ = b+, and h_ = h+ are used in the 
above equation. To obtain nonzero PI+ and P2_, i.e., nonzero u defined by 
(3.5), we must have 

1 -1 

(z2_1)(X + 3)- zx (z21) (x2-+ 3) + =0. 

This yields 

16A2 (/+ 2 ) -22 (X+ X) 0 

Since A_ = A+ = A in (3.2), we have X1I = -1/X2_ . Then, 
2 

Solving for X1+ and z, using this equation and equation (3.2), gives 

82 /60 - 64L2 3 5 
z 

2 v'-5 2 v/-1 % X+ = 5 +31 %2- = F3 
For these z, x1+, and %2-, we can choose P1+ = 

P2- 
= 1 so that u n defined 

by (3.5) is a purely outgoing solution to Scheme I, since we can easily see that 
Iz = 1 for the z chosen as above. Hence, Scheme I is GKS-unstable, according 
to Theorem 1. 

Moreover, if A_ = A+ = A > VT/34, we can easily see that 

8Ai /60- 64A2 

2~/ 5 2 V 

satisfies Izl > 1; thus, the corresponding U'n in (3.5) contains strictly outgoing 
eigensolutions of Scheme I. By the Godunov-Ryabenkii theorem [12], Scheme 
I is 12-unstable if A+ = A_ = A > V//4. o 

Remark 1. Since GKS-instability usually does not imply 12-instability [1 1], we 
conjecture that Scheme I is 12-stable if the conditions in Theorem 2 are satisfied 
and A < V15/4. Our numerical experiments support this conjecture. For the 
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general case with piecewise constant coefficients and nonuniform space steps, 
our numerical experiments suggest that Scheme I is stable when max(i_, A+) < 
\f/4 . 

Theorem 2 characterizes the stability of Scheme I under rather strict condi- 
tions, but the results are very interesting. Under the conditions of Theorem 2, 
we can use LF to approximate the PDE, and the stability for the LF scheme 
is A < 1; however, the interface scheme in Scheme I requires that A < V'5/4 
for Scheme I to be stable under the conditions of Theorem 2. This shows that 
interfaces (physical and/or numerical) may require more restrictive stability 
conditions than normal interior points. In particular, it is important to note 
that a CFL condition of unity yields an unstable interface condition! 

Theorem 3. Scheme II is GKS-stable for any i, satisfying 0 < i< 1 . 

Proof. We prove this theorem by showing that Scheme II does not allow any 
purely outgoing solutions. Suppose it does; then, by substituting U>n defined in 
(3.5), into the interface equations of Scheme II, we have 

PI+ - P2_= 0, 

and 

(1 + A+)Zp1+ - [(1 - +) + (1 + A+)x1+ - (1 - +)zx+Il+ = 0 

If (P1+, P2-) is not zero, then we must have 

(1 +2+)z= ( 1 -A) + (1 + A+)x1-(l - x+)Zx1+' 

or, equivalently, 
_ ( -A+) - (1 + A+)Z 

XI+ - 0 - A+)Z - (I1 + A+) 

Solving this together with 

2 z21 
x1+- x+ %1+- 

for z and XI+ we have z = I1 and the corresponding X1I = ?1. But, 
according to Lemma 1, we must have XI+ = -1 when z = 1 and XI_ = 1 
when z = -1 . This contradiction tells us that Scheme II has no purely outgoing 
solution; hence, it is GKS-stable by Theorem 1. o 

To prove the stability of Scheme III, we need the following lemma. 

Lemma 4. For 0 < A < 1, the function 

w(z) = (I -1 ) - (1 +A)z 

maps the unit circle of the complex plane to itself and maps the inside of the unit 
circle to the inside, the outside to the outside. 

Proof. These results follow from the fact that w (z) is a Mobius mapping. 
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Theorem 4. Scheme III is GKS-stable for any i, satisfying 0 < , <_ 1 . 

Proof. If U'n given by (3.5) is a purely outgoing solution to Scheme III, then by 
substituting it into the interface equations of Scheme III we have 

PI+ 2- = 0, 

and 

(1 + )+)ZP1+ - [(1 - +) + (1 + A+)xl+ - ( - +)zxl+]pl+ = 0 

The existence of nonzero (P1+, P2-) requires that 

(1 + A+)z = (1 - A) + (1 + A+)xl+ - (1 - ?+)Zxi+, 

or, equivalently, 
(1 - A) - (1 + A+)Z 

X1+ - ( - A+)Z - ( + A+) 

Hence, we must have I1 XI > 1 when Izl > 1, according to Lemma 4. But, by 
Lemma 2, we know that x1X+j < 1 - 5 when lzl > 1 for some 5 > 0. This 
contradiction means that Scheme III admits no purely outgoing solution; hence, 
it is GKS-stable by Theorem 1. o 

If we apply the techniques used to derive Schemes I-III to hyperbolic systems, 
we obtain similar systems of finite difference equations, and the proofs for the 
stability of the systems of finite difference equations are essentially similar. 
To show how this can be done, we prove the stability of Scheme IV of the 
last section. We start with the general solutions to (2.47)-(2.51) of the form 
U = Z%k1 ,where 

_#n (Vi 

2 n2 

and Oj is a vector in R2 . By substituting 
iP 

into (2.47), we have 

4 

(3.6) U1 = zi EPijsign(j)Xisign(j)V,i5 
i=l1 

where the vectors vi are 

%1- and x2? are solutions to 
2 

(37) ~ ~ ~~~~1? 2 \?,(x\2 (3.7) ZX = X + (x _1) + X_1), 

and X3? and X4? are solutions to 

2 

(3.8) ZcI 2 (x + (x -1) 

The following lemma classifies the components of ij. 
I 
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Lemma 5. z'%x V1 and Zn3 V are right-going, and zn]2? v2 and z%x4 v4 
are left-going. 
Proof. We choose X1I- and x3, to b the first roots of (3.7) and (3.8), and x2? 
and x4, to be the second roots of (3.7) and (3.8), respectively. By Lemma 2 

and Definition 1, we can easily see that z xIv71 are right-going and z 4 v4 

are left-going. Also, if z # 1, then z'% xv2 are left-going and z X3 v3 are 
right-going. If z = 1 , then x2? = 1 and 3, = - 

, and we can easily show that 

dzo = T >0 
z=l,X=l 

when zo is a function of X defined by (3.7). Similarly, 

dzo 
dX Z=1,X=l 

when zo is a function of X defined by (3.8). By (3.4), when z = 1, the group 
jZn . ni J velocity of z'x2v2 is -1, and the group velocity of z X3 v3 is 1. Hence, 

z% X2?v2 and z are still left-going and right-going, respectively, when 
z=1. O 

Theorem 5. The scheme defined by (2.47)-(2.5 1) for the second-order hyperbolic 
equations is stable for 0 < ci < 1. 
Proof. According to Lemma 5, the purely outgoing solution to the scheme must 
have the following form: 

n P2-Z 2-V2 + P4z X4_V4, j<0 

u ~t P1+Z +v nX1+p3+Z i+ V3, j > 0. 

Substituting u'n into the interface equations of the scheme yields 
J 

/ 2c- 02c_ 

t c +c+)PI+ P3+ + +c P4- = 
0 

(2c c)2c? 

c+ cPI+ -P2- ( c +c P4- 
=0, 

PI+[(' + U+)Z - U' 
- +) + (1 + U+)%1+ - U-+)Z%1+]] 0 O 

and 

p4_ [l __- ( - a_ + (1 c + -= 

Since (PI+ 5 P2_, 5p3+,5 p4_) iS nonzero, we must have 

( + a+)z -[(1 - a + (1 + +)x1+ -(1 -+)ZX1+] = 0 

and 

(+ _)Z - [ -) + (I + 1 (1 - l)Z 0 
' [ ' '~~~~X4 X4- 
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This is equivalent to 

(I - 
+) 

- (I + U+)z 1 (1- ) - (1+ 6_)z 
xi____ _i (-a ) -(l +a) 
1+=(I - a+5Z - (I + a,) X4- ( -Z-( - 

Since the variable z in our discussion satisfies Iz > 1 , by Lemma 4 we should 
have 1x1+I > 1 and 1x41 <? 1. But, according to Lemma 2, these are impossi- 
ble. This contradiction means that this finite difference scheme does not admit 
any purely outgoing solution; hence, it is GKS-stable by Theorem 1. o 

4. NUMERICAL EXAMPLES 

In this section, we apply the schemes derived in ?2 to several examples and 
then make some comments. 

Example 1. Theorem 2 shows that finite difference schemes with numerical in- 
terfaces usually have more restrictive stability conditions than those without 
numerical interfaces. In this example, we apply Scheme I to compute u(x, t) 
in 

ut(x, t) = UX(X, t), u(x, 0) = f(x), 

where 

f(x) = IlOOOexp ((l~8) f(x = ???XP(x -0.15)(0.85 -x)) 

We first use h = 0.01 and k = 0.0096 to compute u(x, t) and plot the results 
in Figure 1 and Figure 2. Figure 1 is plotted before the wave peak hits the 
numerical interface at x = 0. Figure 2 is plotted after the peak passes the 
interface. Since A+ = = A < Vam/4, the computation is stable. Now we 
choose h = 0.01 and k =0.01. Since A+ = A_ = 1 > V/4, when the wave 
peak meets the interface the computation generates an instability that eventually 
blows up. This is plotted in Figure 3. To see that A+ = A- = A < /4 is really 
necessary, we let hi = 0.01 and k = 0.009683; then AA = A_ = A = 0.9683, 
which is only slightly larger than V15/4. After 1200 time steps, we can see the 
error build-up at x = 0. This result is plotted in Figure 4. If we let h. = 0.01 
and k = 0.009682, then A+ = A_ = A = 0.9682 is slightly smaller than V5/4. 
The computational result at time step 1250 is plotted in Figure 5. The error 
does not accumulate at the interface x = 0, due to the stability of the scheme. 

Example 2. In this example, we apply Schemes I-III to the following problem: 

ut(x, t) = bSign(x)Ux(X, t), u(x, 0) = f(x) 

where 
b ~ 1, x < , 

bsign(x) {2, x > 0, 
and 

f (x) = l 000(x - 0.15)4 . (0.85 - x)4. 
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FIGURE 1 

In addition to the physical interface, we introduce a numerical interface by let- 
ting h+ = 0.011, h_ = 0.022, and k = 0.01 . Figures 6-8 are the snapshots of 
the numerical results from Scheme I and the true solutions at the time levels be- 
fore the wave peak reaches the interface, when the wave peak is at the interface, 
and after the wave peak has passed the interface. The accuracy is apparent, and 
the numerical results from Schemes II and III are as accurate. 

Example 3. Even though Schemes 1-111 all seem to be able to handle the phys- 
ical and numerical interface quite well, Scheme I is less capable to treat the 
numerical interfaces than Schemes II and III. To see this, we apply Schemes 
I and II to the problem in Example 1. There is no physical interface in this 
example. We choose h_ = 0.04, h+ = 0.0025, k = 0.0024. Figure 9 is the 
numerical result using Scheme I. The wave has passed the numerical interface 
x = 0. In this picture, we see that Scheme I generates spurious waves at the 
interface, and these spurious waves have moved into the fine-grid region on the 
right-hand side. The numerical results from Scheme II are plotted in Figure 10. 
Scheme II nearly eliminates the spurious waves at the interface; the computa- 
tional result in the fine-grid region is not contaminated. The schemes based on 
characteristics are seen to be more accurate in handling numerical interfaces. 



GRID REFINEMENT SCHEMES FOR HYPERBOLIC EQUATIONS 81 

.45 

.40 A-True 
B - Scheme I 
a_ = a+ = b_ = b= 

.35 k = 0.0096 
h- = h+ = 0.01 
Interface: x = 0.0 

.30 

.25 

.20 

. 150 

.10 

85 

05 , 
-10 -.8 -.6 -.4 -.2 0 2 4 6 8 10 

x 

FIGURE 2 

A-True 
4 B - Schenie I 

a_ = a+ = b- = b+- 
k = 0.01 
h- = h+ = 0.01 

3 Interface: x ,0.0 

-.2 -. . . . 2 . 6 . . 

x~~~~~~~~~~~ 
.2 

x 

FIGURE 3 



82 T. LIN, J. SOCHACKI, R. EWING, AND J. GEORGE 

5 

4 A-True 
B - Scheme I 
a_ = a+ = b- = = 1 

.3 k = 0.000683 
h_ = h+ = 0.01 
Interface: x = 0.0 

, -.1__ 

.2 

co ~ ~ ~ ~ ~ 1 
-3 

-D 

3 JI 

-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 
x 

FIGURE 4 

.5 

4 A-True 
B - Sclheme I 
a- = at. = b = = 1 

3 k = 0.000682 
h_ =h+ = 0.01 
Interface: z = 0.0 

.2 

- .14_ 

-1 

-.2 

- .5 , I , I , I , I. | , X , I , I f 

-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 

x 

FIGURE 5 



GRID REFINEMENT SCHEMES FOR HYPERBOLIC EQUATIONS 83 

.6 * 1 IIIII III 

A - True 

.5 
~~~~~B - Scheme I 
a.. = a+= 1, b.. = b+= 2 
k =0.01 
h-~ = 0.011, hi+ = 0.022 
Interface: z 0.0 

.4 

- 3 

.2 

0 E 

-2.5 -2.0 -1 .5 -1 .0 -5 0 5 1.0o 1 5 2 0 2 5 
x 

FIGURE 6 

.6 

A - Truje 

.5 B - Schieme I 
a... a+. = 1, b- = =+ 2 
k; = 0.01 

h-= 0.011, h. = 0.o022 Interface: z 
0.0 

.4 

.3 

.2 

0 - . 6 e 

-25 -2 0 -1 5 -1 0 -5 0 5 10 15 2 0 2 5 
x 

FIGURE 7 



84 T. LIN, J. SOCHACKI, R. EWING, AND J. GEORGE 

.6 t I I f I I * I ,-1it I' I-,*I - - I 

A - True 
B - Scheme I 
a_ = a+ = 1, b. = b+ = 2 
k = 0.01 
h_ = 0.0l, ht+ = 0.022 
Interface: x = 0.0 

.4 

- .3 

.2 

0 

-2.5 -2.0 -1.5 -1.0 -.5 0 5 1 0 1.5 2 0 2.5 

x 

FIGURE 8 

.45 

.40 A- Scheme I 
a_ = a+ = b. = b 1 
k = 0.002-1 

.35 h =- 0.04, = h = 0.0025 
Interface: x =0.0 

.30 

.25 

.20 

.05 

0 A- - *;0 

- .05 1f 
-1.0 -.8 -.6 -.4 -.2 0 .2 .4 .6 .8 1.0 

x 

FIGURE 9 



GRID REFINEMENT SCHEMES FOR HYPERBOLIC EQUATIONS 85 

.45 

.40 A- Scheme 1I 
a_ = =b+ = 1 
k = 0.0024 

.35 -h_ = 0.04, h+ = 0.0025 
Interface: x 0.0 

.30 

.25 

.20 

x15 

10 

- 05 
-1.0 4-.8 -.6 -.4 -.2 0 2 6 .B 1 0 

FIGURE 10 

BIBLIOGRAPHY 

1. M. Berger, Stability of interfaces with mesh refinement, Math. Comp. 45 (1985), 301-318. 

2. J. Oliger, Hybrid difference methods for the initial boundary-value problem for hyperbolic 
equations, Math. Comp. 30 (1976), 724-738. 

3. D. L. Brown, A note on the numerical solution of the wave equation with piecewise smooth 
coefficients, Math. Comp. 42 (1984), 369-391. 

4. G. Browning, H.-O. Kreiss, and J. Oliger, Mesh refinement, Math. Comp. 27 (1973), 29-39. 

5. M. Ciment, Stable difference schemes with uneven mesh spacings, Math. Comp. 25 (1971), 
219-227. 

6. M. de Moura, Variable grids for finite difference schemes in numerical weather prediction, 
Pontificia Universidade Catolica de Rio de Janeiro, 1987. 

7. B. Gustafsson, H.-O. Kreiss, and A. Sundstrom, Stability theory of difference approximations 
for mixed initial boundary value problems. II, Math. Comp. 26 (1972), 649-686. 

8. G. Starius, On composite mesh difference methods for hyperbolic differential equations, Nu- 
mer. Math. 35 (1980), 241-255. 

9. A. Sundstrom, Efficient numerical methods for solving wave propagation equations for non- 
homogeneous media, Stockholm Report, 1974. 

10. L. Trefethen, Stability of finite difference models containing two boundaries or interfaces, 
Math. Comp. 45 (1985), 279-300. 

11. ., Instability of difference methods for hyperbolic initial boundary value problems, Comm. 
Pure Appl. Math. 37 (1984), 329-367. 



86 T. LIN, J. SOCHACKI, R. EWING, AND J. GEORGE 

12. L. Trefethen, Wave propagation and stability for finite difference schemes, Ph.D. Disserta- 
tion, Department of Computer Science, Stanford University, 1982. 

13. R. Vichnevetsky, Wave propagation analysis of difference schemes for hyperbolic equations: 
a review, Internat. J. Numer. Methods Fluids 7 (1987), 409-452. 

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WYOMING, LARAMIE, WYOMING 82071 

DEPARTMENT OF MATHEMATICS, JAMES MADISON UNIVERSITY, HARRISONBURG, VIRGINIA 

22801 
E-mail address: ewing@lode.uwyo.edu 


