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LARGE-TIME BEHAVIOR OF SOLUTIONS 
OF LAX-FRIEDRICHS FINITE DIFFERENCE EQUATIONS 
FOR HYPERBOLIC SYSTEMS OF CONSERVATION LAWS 

I-LIANG CHERN 

ABSTRACT. We study the large-time behavior of discrete solutions of the Lax- 
Friedrichs finite difference equations for hyperbolic systems of conservation 
laws. The initial data considered here are small and tend to a constant state at 
x = ?oo . We show that the solutions tend to the discrete diffusion waves at the 
rate O(tG3/4+1/2p+a) in ip 1 < p < oo, with a > 0 being an arbitrarily small 
constant. The discrete diffusion waves can be constructed from the self-similar 
solutions of the heat equation and the Burgers equation through an averaging 
process. 

1. INTRODUCTION 

In numerical calculations of a shock wave in gas flows, one usually observes 
some noise emitted from the shock wave. At large time, noise usually forms 
certain shapes and moves at constant speeds. When one uses first-order finite 
difference methods, this noise looks like humps and spreads out, but the I1 - 
norms do not decay. If one uses second-order methods, the noise appears as 
wiggles or solitary waves. In dealing with hyperbolic systems of conservation 
laws, one encounters noise not only in the calculation of a shock wave, but 
also in the calculation of a rarefaction wave, or even in a flow near a constant 
state. The noise patterns, or error waves, move at constant characteristic speed 
in large time and decay slowly. They are a primary source of error and may 
ruin the downstream flow pattern. It is therefore important to understand their 
formation and propagation. Furthermore, understanding these error waves is a 
key step in the study of stability of discrete entropy shock waves and discrete 
rarefaction waves for a finite difference scheme. It is also a key step in un- 
derstanding the persistence of a nonentropy shock in some second-order finite 
difference schemes. 

In this paper, we study the error waves of the Lax-Friedrichs scheme for 
general hyperbolic systems of conservation laws. We characterize these error 
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waves as discrete diffusion waves. In the simplest case, these waves are the large- 
time asymptote of solutions of the Lax-Friedrichs finite difference equations, 
with initial data being a perturbation of a constant state. Thus, we wish to 
study the large-time behavior of solutions of the Lax-Friedrichs finite difference 
equations 

U(j, n) - U(j - 1, n - 1) + U(j + 1, n - 1) 

)+ 2f (U( 1 - , n - 1)) - f(U(j + 1, n -))) 

UeRN, n >0, j+n=even, 
subject to the condition on the initial data, 

U(j, 0) -* constant as Ijl - oo. 

Without loss of generality, we may take this constant state to be the zero state: 

(1.2) U(j,0) -*O asIljl-oo. 
System (1.1) is the Lax-Friedrichs discretization of the following system: 

(1.3) ut + f(U)x = 0, uERx R ,N- <x< ,t>0, 

with A being At/Ax. At and Ax are, respectively, the temporal and spatial 
mesh widths of the scheme. System (1.3) is assumed to be strictly hyperbolic, 
which means that f'(u) has real and distinct eigenvalues A (u) < ...< AN(U) 

with right eigenvectors ri(u) and left eigenvectors li(u), i = 1, ... , N. In 
(1.1), A > 0 and is required to satisfy the following strict Courant-Friedrichs- 
Lewy condition: 

(1.4) min { - (AAi(u))2} > v > 0. 

Because of (1.4), the Lax-Friedrichs scheme introduces a positive amount of nu- 
merical viscosity. Its solution is expected to have a qualitative behavior similar 
to that of the solution of the following viscous conservation laws: 

(1.5) ut + f(u)x = (Bux)x , 

with initial data 

(1.6) u(x,0) -0 asjxj -oo. 

Here, B is some viscosity matrix and satisfies certain parabolic conditions [5]. 
In this continuous system, the decay of solutions of (1.5) and (1.6) in L2 and 
L? has been studied in [5, 8] (see references therein). The solutions do not 
decay in Ll because the mass is conserved: 

J u(x, t) dx = constant. 
-00 

Indeed, the solutions tend to a linear or nonlinear diffusion wave in each charac- 
teristic direction [ 1, 2, 6]. Each nonlinear (linear) diffusion wave is a self-similar 
solution of the Burgers (heat) equation. This is analogous to the N-waves in the 
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system of hyperbolic conservation laws [7]. In this paper we show that, in the 
discrete case, the solutions of ( 1.1 ) and ( 1.2) decay in l'p, 1 < p < o0 . Further, 
the /1-asymptotes of the solutions consist of the discrete diffusion waves in each 
characteristic direction. They are analogous to those diffusion waves produced 
by the continuous viscous conservation laws. Indeed, discrete diffusion waves 
can be constructed from the continuous diffusion waves through an averaging 
process over the spatial grids, and they can be determined from the initial data 
a priori. Specifically, our main theorem, presented in ?3, states that the solu- 
tions of (1.1) and (1.2) converge to these discrete diffusion waves at the rate 
0(1 + n) 1/4+a in 1l , with a > 0 being an arbitrarily small number. 

Notation. The discrete functions considered here are defined over either odd 
or even integers. The 1p space consists of all such functions with the finite lp 
norm 

iiuii1P = (iluwi)lp < 00. 

Here, the summation is over either odd or even integers depending on the do- 
main of U. We define the following operators on the lp space: the translation 
operator (TU)(j) = U(j + 1), the average operator A = (T + Tl), and the 

difference quotient D = (T - T 1). 

2. DISCRETE DIFFUSION WAVES 

Let us briefly explain the formation of the discrete diffusion waves of (1.1) 
and (1.2). We abbreviate the discrete functions U(., n), W(., n), etc., by 

U(n), W(n), etc., and Ai(?) ri(O), li(O) by Ai, ri, ii, respectively. In (1.1), 
we decompose U(n) into E Ui(n)ri and expand the flux function f into a 
Taylor series about 0 up to second order. Then the ith component of (1.1) in 
the ri direction is 

(2. 1) Ui(n) = Li Ui (n - l) -D ( ju(n - l)Uk(n - 1) + Hi(U(n - 1))) 

Here, Li = A - A)iD, bijk = i *l f"(0)(rj, rk), and Hi represents the higher- 
order terms of f. Roughly speaking, the formation of the discrete diffusion 
waves is due to two factors. First, mass is conserved; i.e., E Ui(j, n) = mi 
Vn > 0. Second, system (1.1) becomes decoupled at large time, because of the 
strict hyperbolicity (this will be justified in the proof of our main theorem be- 
low). From this decoupling principle, one expects that at large time, in (2.1), the 
high-order terms Hi and the transversal interaction terms EZjk biikUj(n - 1). 
Uk (n - 1) become less important. 

The primary nonlinear term in the ith equation is biiiUi(n - 1)2, and the 

second most important term is Zk# ibikkUk (n -- 1) . One expects that the pri- 
mary term of the solution Ui(n) of (2.1) should satisfy the following scalar 
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equation: 

(2.2) 91E(n) = Liei(n - 1) - AD (bfi2(n- 1)), 

(2.3) (j 0) Mi = O, 
05 otherwise. 

Thus, this primary wave &Ji carries the conserved mass min. 
The second most important term of the solution Uj(n) should come from 

the following equation: 

(2.4) (>-0i(n) = Li_i(n- l)-AD 2 Ek(n 1)) 2 
ki 

(2.5) -i(j ,) = ?. 

Our strategy is to write U1 = e9i + - i + Wi and then to estimate E3i and -i and 
to show that Wi is small at large time. 

Notice that (2.2) and (2.3) of the primary wave Ei is the Lax-Friedrichs 
discretization of the inviscid Burgers equation. We wish to have an exact ex- 
pression of E9i because it will be the large-time asymptote of the solutions of 
(1.1) and (1.2). Unfortunately, an exact expression is difficult to find. Never- 
theless, an average over spatial grid cells of the continuous diffusion wave 01, 
defined by 

(2.6) 0 +Ao, + bi (02)X iol' 
it ix 2 X 2, Axx' 

(2.7) oi(x, 0) = mi6(x) 

(2.8) '= 1-(AA )2 

can serve as an approximate solution of (2.2) and (2.3) at large time. This 
continuous diffusion wave has the following exact expression [4]: 

1 x x-Alt 
0i(x, t)- =* (tX/)/t') 

in1.e 7 ifb.. =0, 

(2.9) 0*(X) i= 

1-b..'(lnnvi'(T))' if b11 $0, 

b ( eb"2 | eY2/2 b + ebm/2 e00 2 
-00x 

The ith discrete diffusion wave is then defined by 
1 

j e (2.10) oi(j 5n)_ /Oi(j +x ,(n+ I)A) dx, j+n= even. 
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Clearly, E> Oi(j, n) = mi Vn. Thus, Oi carries the conserved mass min. 

Therefore, it does not decay in 1/ . The following lemma justifies that O0 is a 
good approximation to E9i in large time. 

Lemma 2.1. The discrete wave Oi has the following optimal estimates: For all 
p with 1 < p < oo, 

(2.11) iio,(n)llp = O(mi)(I + nvi) as n -* oo. 

Furthermore, 01 satisfies 

(2.12) Oi(n) = LI di(n - l ) - AD (2i Si (n - 1 ) - Ei(n - 1 )) 

with the error Ei having the following estimate: For all p with 1 < p < oo, 

(2.13) JJEi(n)JJ1p = O(mi)(1 + nvi) 3/2+1/2p as n -* oo. 
Proof. From (2.9), OI has the following optimal estimates: For all p with 
1 p < oo, and for all a > 0, 

(2.14) (f 0UaOi(X, t) dx) = O(mi)O( ,it) as t -* 00. 

Thus, (2.11) follows from (2.10) and (2.14). We now expand the function 01 
of (2.12) in a Taylor series about (j - AAi, nA) and then use (2.6), (2.8), and 
(2.10) to obtain the expression of Ei(j + 1, n - 1) as follows: 

Ei(j + 1, n - 1) 

- biii (20(j+lnA)*)Ki+K ) 
2 

i~~~~~~~~~~ 
-Af(11I 11Q3 3 biiit'iQQ + -iO 

(2.15) 4 4 A i i+ 4A2 ixx 

(j+ 1?(s- 1)AAi, (n+s)A)ds 

+ 4, d o(l -y)2(1 +{{)2Q (1+1 + Ai(y - 1) +y, n{) 

-(I - ad oi (i + I+ AA(y - ) - y nA)) dy 

where 

(2.16) K= (j (ly I0 (+- y, nA) +f (j + I+y ,nA)) dy. 

Then (2.13) follows easily from (2.14)-(2.16). o 

This averaging process can also be applied to find an approximate solution 
for the wave -I of (2.4)-(2.5). We consider the following equation: 

(2.17) + A + (k b L2) = 
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(2.18) j(x, 0) = 0. 

We define 

(2.19) Xi(j, n) = 2f (i + x, (n + 1)A) dx. 
2-1 

Lemma 2.2. The discrete wave Qi has the following estimate: For all p with 
1 < p < oo, and a > 0 arbitrarily small, 

(2.20) 1IXi(n)IIp = O(m2)(I + nv -3/4+1/2p+a 

Furthermore, ,i satisfies the following equation: 

- - ~~~~~~~b_kk 2 

(2.21) Xi(n) = LjXi(n -1) -AD (2 Ok (n-l)-Fi(n- 1)) 
k#4i 

The error Fi has the following estimate: For all p with 1 < p < oo, 

(2.22) IIFj(n)IIip = O(mi)(1 + nv i) 3/2+1/2p as n -- oo. 

Proof. The continuous function Qj has the following estimate [3, 2]: For all p 
with 1 < p < oo, for all a > 0, and for a > 0 arbitrarily small, 

/ ap /p _/p2-3/4+1/2p+a 

(2.23) ( x |I (X, t) dx) = O(mi)O ( Lt) as t x-+0. 

Then, (2.20) follows from (2.19) and (2.23). To show (2.22), we expand Xj of 
(2.21) in a Taylor series about (j - ALi, nA); we then use (2.17), (2.19), and 
(2.21) to obtain 

Fi(j + 1, n - 1) 

b [20k(i +1, nA) Kk + Kj 
k#i 

I (z(b4kk k bikk (0 + Vi) 6k) 

(2.24) + ( )2)) 
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Here, Kk is defined by (2.16). Then (2.22) follows from (2.14) and (2.23)- 

(2.24). o 

3. MAIN THEOREM 

We write Ui =QUi + Xj + Wi . From (2.7), (2.10), and (2.18)-(2.19) we have 

E6j(j, n) = Uj(j, n) = mi, Ei(j, n) =O Vn. 

This implies Ej W;(j, n) =0 Vn > 0. Therefore, Wi can be written as DVi 
with VJ/(?oo, n) = 0, where 

(3.1) Vi(j + 1, n) = E (Ui(k, n) - Oj(k, n) - Qj(k, n)). 
k<j 

From (2.1), (2.12), and (2.21), Vi satisfies 

(3.2) 
Vi(n) = LijVj(n - 1 ) 

+ A(Ei(n - 1) + Fi(n - 1) - Ni(6i(n - 1), Zi(n - 1) + DVJ(n - 1))), 

where 

Ni(a, b)-li (f(a + b) -f(O) -f (0)(a + b)) - 2 Zbikkak 
k 

(3.3) bijk 3 12), 
= E 2 ajak + E bijkajbk + 0(lal + Ib 

jIk 

and V=ZViri, =EZ6iri, E=Z jri . Ourgoalistoshowthat DJVi decays 

at the rate 0(1 + n)-3/4+1/2p+u in 1p, with a > 0 being arbitrarily small. 

Theorem 3.1. Consider the system (1.1) with the initial condition (1.2) and with 
A satisfying (1.4). Let the discrete diffusion waves Oi(j, n), i = 1, ... , N, be 

defined by (2.10). Then there exists a constant e0(v) > 0 such that if the initial 
data U(O) satisfy 

(3.4) IU(0)H1| + IIV(0)111, < E0, 
where V(O) is defined by (3.1), then the solutions of (1.1) and (1.2) converge 
to discrete diffusion waves. That is, for all p with 1 < p < 6o, and a > 0 
arbitrarily small, 

N 

(3.5) U(n) - ZO0E(n)r| < C(1 + nv)314+112p+a as n -* oo, 

for some positive constant C independent of n. 

Remark. From (2.11) and (3.5), we have that for all 1 < p < oo, IIU(n)111p = 

0(1 + nv) 1/2+112p as n -* oo. Thus, U(n) decays in 1p for 1 < p < oo, but 
not in 11 . This decay rate is optimal because the estimate (2.1 1) is optimal. 
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Proof of Theorem 3.1. Let Gi(j, n) be the fundamental solution of the linear 
part of (3.2), i.e., 

(3.6) Gi(n) = LiGi(n - 1), 

(3.7) Gj(j O ) 
I if i = 

O, 

Then (3.2) can be converted into an "integral equation" through the help of G1 
as follows: 

VK(j, n) = S Gjj-k, n) V(k, 0) 
k 

n-i 

+ATi, E Gi(j - k, n - m)(Ei(k, m) + Fi(k, m) - Ni(k, m)), 
m=O k 

i=1,... ,N. 

Here, Ni(k, m) is an abbreviation for Ni(O, 4 + DV) evaluated at (k, m) . 
We can also rewrite this formula in the following vector form: 

n-i 

(3.8) V(n) = G(n) * V(0) + A E G(n - m) * (E(m) + F(m) - N(m)), 
m=0 

where G = GE rG,li . Let us define a norm for V: Given any arbitrarily small 
r > 0, let 

(3.9) IIVII IVI0,00 + IV11 I + IV11,O0, 

where 

(3.10) IVI000 = sup(l + nvz) /4-aIV(n)||100 

(3.11) 1 VI l,P = sup(l + nv)314"1/2p- fIIDV(n)Illp, 1 < p < X. 
n>O 

Clearly, from (2.20) and (3.1) our theorem follows if we can show that the 
solutions of (3.8) satisfy I I V I I < C. 

We need two lemmas. 

Lemma 3.2. The fundamental solutions Gi, i = 1, . . .,N, have the following 
estimates: for a = 0, 1, and all p with 1 < p < oo, 

(3.12) IDa G(n)IIjp < C(1 + ni) -a/2- 1/2+1/2p i = 1, ... , N. 

Proof. G1 is the binomial distribution that has the following exact expression: 

Gi(j, n) = ((n )P(n+j)2q()-j) j + n = even, 
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where p = (I + Abj)/2 and q = (-1-Aj)/2. Let m, r be such that m = np + r, 
-q < r < p. Further, let jm =2m - n, k = (j - 2m + n)/2. Then 

G1(j n) =G(j n) (n -m)!m! kq-k 

DGj(j, n + 1) = r k q 1Gi(j n). (np?r?k?1I)q 

By applying the Stirling formula when n or m + k or n - m - k is large, we 
obtain that for large n and -np + nv,/2 < k < nq - nv1/2, 

1 ( k2 
Gi(j 5 n) - /exp - k 

k 1 (k 2 
DGj(j, n + 1) - -,,- 2 x (n k\n ) 

For k outside the above domain, Ge = Q(eynf) and DG1 - O(e yn) for some 

positive number y. Then (3.12) follows from these expressions and the Lp 

estimate of the heat kernel. o 

The next lemma follows easily. 

Lemma 3.3. Let a, ,B, 5y, 5v be positive constants. Then 
(i) EZn'2j( + (n - m)v)-f(l + m)-y= 0(1)(1 + nv)- if a < /B, a < 

,+ y- I , y :A 1, or if ax < ,B, ax < ,B +y-1,y =1 

(ii) En=[(/2]+(1( + (n - m)v)yf(1 + mv)y= 0(1)(1 + nv)- if a < y, 
a < ,B +y - 1, ,B :A 1, or if ae < y, ae < ,B +y - 1B=1 

(iii) EnZ=0(l + (n - m)v)fie-Ymv = 0(1)(1 + nv)- if a < ,B. 

Now we use (3.8) to estimate IV(n)llH1, IDV(n)l1 l, and I DV(n)llH1 as 
follows: 

JIV(n)ll10- < JjG(n)jjlO_glV(0)jj,00 

(3.13) n-I 
+ A E JIG(n - m)jjc,(H E(m)jj1, + HjF(m)jj1i + LjN(m)jljl) ) 

m=O 

HIDV(n)lli < DIIDG(n)jj1HjjV(O)jj11 
(3.14) ~~~n-i 

(3.14) ++A E I JDG(n - m) I H11 (I HE(m) I H1 + I IF(m) I H1 + I IN(m) I II,), 
m=O 
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IDV(n) lloo < | IDG(n) lloo1lV(0)11 
[n/21 

+A E JIDG(n - m) ll,-(lE(m)l11 + HIF(m)l11 + IN(m)l1l) 
(3.15) k=O 

+~ ZE I IDG(n - m)lll(IIE(m)lllo + IIF(m)lloo 
k=[n/21+ 1 

+ IIN(m)IIioc). 

From (3.3), the nonlinear term N has the following estimate: 

|IN(O, +DV)Iljp = 0(1) ( E0jok + 110HUI12 ) 

(3.16) + 0(l)(O011oo1-lZlp + 11OH11PIHZHio + RlloolHHip) 
+ 0(l)(IIOII1 + II||Ioj)IIDVII1p 
+ 0(l)(II0II1p + IIXIIjp)IIDVII10 
+ O(l)llDVIll-llDVllp. 

Let us call I I U(0) I I by 3 . Then 

Im il= Ii * 
1: U(j, 0)| ' ,.. N. 

From (2.9)-(2. 10) and the fact that Ai :A Ak we have for all p with 1 < p < oo, 

(3.17) IIO(f)O(flIIn 
(3.17)~~~~~ I Oj (n) fk(n)l ljp = O(J2-3n 

for some f, with 0 < ,B< min IA- AkI* 
From (3.13), (3.16)-(3.17), (3.11), and Lemmas 2.1-2.2 and 3.2-3.3, we 

have 

IIV(n)ll1- < 0(1 + nv) 1121V(0) 
n-I 

+ O(1) (1 + (n - m)v) -1/2 
m=O 

* {( + 32 + 3)(I + MV)- + 2e-flmv 

3 63(l + mv)-3/4+a + 64(l + mv)-1+24 

+ (?(1m + WV) + 62(1 + mv) )(IVI 1 + IVI1 oo) 

+(1 + MV)- 1+171 VI 
I 
VI} 

K 0(1 + nv)1 /4+H||V (0)|1 + (1 + nv)-1/4+a 

*(0(6) + 0(6)H,Vll + 11V112). 
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Similarly, we have 

IDV(n)lHl, < 0(1 + nv) 
1/+a7IV(0)II" 

+ (1 + nv)-1l/4+7 (o + 0(5)IVI + V IIVH2)I. 

From (3.15)-(3.17) (3.1 1), and Lemmas 2.1-2.2 and 3.2-3.3, we have 

IDV(n)lHl, < 0(1 + nv) -1 IV(0)111, 
[n/2] 

+ 0(l) E(I + (n -m)V) 
m=0 

*{( + (2 + 63)(i + mv)-1 + 62eflmv 

3 63(l + MV)-3/4+a + 64(l + mv 1+2a 

? ((1 + mv) + ? (1 + mv) )(I VI + I VI 

+(/ + MV)-1+2a1 VI IVI } 

n 

+ 0() E (1 + (n - m)v)7112 
m=[n/2]+ 1 

*{( + 62 + 63)(I + MV)-3/2 + 2e-,Bmv 

3 (l + 5/4+a + 64 + mV)-3/2+2a 

+ (6(1 + mv) /4+a + 62(1 + mv)-3/2+2a)IVI 

+(1 + mV)-3/2+2a I V12} 

< 0(1 + nv)-3/4+,V(O)II 

+ (I + nv)- 3/4+7 (0(o) + 0(@)11 VI + IV112) 

We sum over these three inequalities and apply (3.9)-(3.1 1) to obtain 

iiVii < C(HIV(0)H111 + ( + (11VHI + IIVII2) 

for some positive constant C. Hence, if ( + 11V(0)1I is small, then IIVII is 
bounded. This completes the proof of Theorem 3.1. o 
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