
MATHEMATICS OF COMPUTATION 
VOLUME 56, NUMBER 193 
JANUARY 1991, PAGES 141-148 

DEGENERATE KERNEL METHOD 
FOR HAMMERSTEIN EQUATIONS 

HIDEAKI KANEKO AND YUESHENG XU 

ABSTRACT. The classical method of the degenerate kernel method is applied to 
numerically solve the Hammerstein equations. Several numerical examples are 
given to demonstrate the effectiveness of the current method. A brief discussion 
of a number of methods to decompose the kernel is also included. 

1. INTRODUCTION 

This paper is concerned with the problem of finding numerical solutions of 
the Hammerstein equation 

(1.1) X)- k(x,y)(y, (y))dy = f(x), x E [0, 1], 

where k, f, and yi are given functions and (0 is the solution to be determined. 
Several numerical methods for approximating the solution of (1.1) are known. 
The classical method of successive approximations was introduced in the 1950's 
[7]. A variation of Nystr6m's method was presented in [5]. A new collocation- 
type method was developed in recent papers [3, 4]. In this paper, we employ the 
degenerate kernel method, which plays an important role in the study of numer- 
ical solutions for the Fredholm integral equations of the second kind. A unified 
theory to present various degenerate kernel methods within the framework of 
the projection method was recently presented in [2]. In ?2 we present the degen- 
erate kernel method and consider the problem of existence and uniqueness of 
the solution of the new Hammerstein equation associated with the degenerate 
kernel. The problem of convergence of the numerical solution is also considered 
in ?2. Some examples are considered in ?3. In ?4 we approximate a given kernel 
by several specific degenerate kernels and obtain convergence rates for the cor- 
responding approximate solutions of equation (1. 1). The idea of approximating 
the kernel by Boolean sums is also included in this section. A comparison of 
the performance of the Boolean sum approximation scheme with that of the 
tensor product approximation scheme (?3, Example 4) will be given in a future 
paper. 
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In order to guarantee the existence of a unique solution to equation (1. 1), we 
assume throughout this paper that the following conditions (i)-(iv) be satisfied: 

(i) k(x, y) E C([O, 1] x [0, 1]); 
(ii) VI(y, u) is continuous in y E [0, 1] and u E (-oo, oo), and 

1 ~~~~~~1/2 

{ ;1 1(Y (y)) 12 dy } < All f12 

where 11 112 denotes the L2 norm; 
(iii) VI(y, u) satisfies the Lipschitz condition Iy,(y, U) - VI(y, v)l < 

Blu-vl; 
(iv) k is bounded by Ik(x, y)I < C with BC < 1. 

Under these conditions there exists a unique solution in L2[0, 1] for equa- 
tion (1. 1). This can be proved by the Banach contraction mapping principle. To 
obtain a higher-order convergence rate, we need to assume higher-order smooth- 
ness conditions on k. 

As the first example in ?4 shows, the method of degenerate kernel described in 
this paper may be applied to integral equations with multiple solutions. Hence, 
conditions (i)-(iv), which guarantee the global uniqueness of the solution, are 
perhaps too strong for deciding whether our method is applicable. A reader 
interested in a more local property of the solution can find a related discussion 
in [3]. 

2. DEGENERATE KERNEL METHOD 

Suppose that k,(x, y) is an approximation of the kernel k(x, y), and that 
it is of a degenerate kernel form, 

n 

(2.1) kn(x, y) = Bi (x)Ci(y), 
i=l1 

where the set of functions {Bi(x) } is assumed to be linearly independent. We 
also assume that 

(2.2) { jj Ik(x,y)-kn(x,Y)I2dxdy} 0 as n -4 oc. 

It is natural to expect the solutions of the following equation (2.3) associ- 
ated with the degenerate kernels kn (x, y) to converge to the exact solution of 
equation (1. 1), 

(2.3) (Pn (x)- kn (x Y) V(Y 5(n (y)) dy f(x) , X E[O,1]. 

To solve equation (2.3), substitute kn(x, y) into (2.3) and find 
n 

(2.4) n (x)-E Bi (x) i C(y) tV(y, Cn (Y)) dy 1 (x), [ 
i=l 
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Let 

(2.5) ac = / C(y)y(y, I(n(y)) dy. 

Then (n can be expressed as 

n 
(2.6) (on(x) = f(x) + E aiBi(x), 

i=l1 

where the a 's are constants to be determined. Once the a 's have been ob- 
tained, (2.6) gives the solution of (2.3). Upon substitution of (2.6) into (2.5), 
we have 

p1 (n ) (2.7) a1=1 Cj (y) /yi 5j f(y) + a1Bi(y)) dy for j =1, 2,. n. 

Define 

(2.8) TFj(aj , a2 **' an) =| Cj f(y)ll ( aiBiy dy 

Then (2.7) becomes a system of nonlinear algebraic equations 

a1 [F 1 a2, ... , a,n) 
(2.9) [2 = 1'a2' * an) I 

Lan I Fn (oz 1 5 2 'z 2 *.. * ' n)- 

or, in vector notation, 

(2.10) c =F(ci), 

where cT=(T , (a2, ... 'a ) and F(a)T= (Fl(a),F2(), ... F 
We shall show that the unique solution of equation (2.10) corresponds to the 

unique solution of equation (2.3) for each n under some mild assumptions. 
Equation (2.10) can be solved by a number of standard numerical methods, 
such as Newton's iterative method or modified Newton's iterative method. 

Now we consider the existence of a unique solution of (2.3). We recall that 
assumptions (i)-(iv) are standing assumptions throughout the rest of this paper. 

Theorem 1. Let kn (x, y) E C([0, 1] x [O, 1]) satisfy condition (2.2). Then there 
exists an integer N > 0 such that, for each n > N, equation (2.3) has a unique 
solution (on E L2 [0, 1] . 
Proof. In view of assumption (iv) and condition (2.2), there exists an integer 
N such that for each n > N, 

{ j' j' Ikn(x y)I2dxdy} < C. 
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For each n > N, define 

(Tn ()(X) = kn (x , Y) V (Y p (y)) dy 

and 

(Tn ()(x) = (Tn ()(x) + f(x). 

It is straightforward to verify from (ii) that II Tn (p112 < CAII(o112 for all (o E 
L2 [0, 1]. Hence, Tn is a bounded nonlinear operator. Also, for I ,2 E 
L2[O, 1], 

IITnOP - Tno2112 = IITno1 - TnSP112 

I I 1 ~~~~~~~~~~~~~~~~~~1/2 
< { Ikn (X, Y) I2 dx dYfI I (Y (P (Y))Y-(Y I 2 (Y)) f dy 

< CB I I (o - 2I112 by (iii) and (iv) . 

Since 0 < CB < 1 by assumption, Tn is a contraction operator. It follows 
that there is a unique fixed point of Tn , which is of course the unique solution 
of equation (2.3), and (Pn E L2[0, 1]. O 

Theorem 2. Let 

(2.11) M=B{Ej 1Bj(x)12dx} {zJ ICi(x) 2dx} 

and assume M < 1. Then the nonlinear algebraic equations (2.10) have a 
unique solution a* = (a*, a, . , ax*), and 

n 

(2.12) (on(x) = f(x) + ZeaBi(x) 
i=l 

is the unique solution of equation (2.3). 
Proof. Define, as usual, the discrete 12 norm by Ia Il1 = {Zi= Ia'I2}"2 for 

ax = (, a2,. , n)T E 12(n) . For a (1) = (ca(1, ... c,(l)) and (2) = 

x{Ej ICi(x)2dx}IIa(1)-(2) 
n 1112 

Consequently, F is a contraction operator in 12(n), since M < 1. Hence, F 
has a unique fixed point a*, i.e., F(a*) = a* . For this a**, it is obvious that 
(Pn(x) defined by (2.12) is a solution of (2.3), and by Theorem 1, 5on(x) is the 
unique solution of (2.3). o 
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Theorem 3. For 
1 ~~~~~~~~~~1/2 

(2.13) IlK -KII2 ; Ik(x, y) - k 2(x,) dxdy {IK011 nI II 
assume that condition (2.2) holds. Then, 

(2.14) 1P - (PnII2 < AIIlII2 IIK -KnII2, 21 -CB 

(2.15) 1P - Pn112 <AII(o IIK-Kn112 - 

Proof. Since l1 
-CB 

2 
Therefore, Son converges to (0 in L2[O, 1]. 
Proof. Since 

(p(x)-q' (x)n = I [k(x, y)-kkn(x, y)]yi(y, (o(y)) dy 

+ f kn(X, y)[k(y, I((Y)) - g(Y I (on(y))] dy, 

we have 
1(P - On112 < AIIK - KJ1211(1I2 + CBIko - (Pn 112 

By virtue of the condition 0 < CB < 1, 

II(P-("nII2 < _CBIlK -KnII2. 
The proof of (2.15) is quite similar. Since IlK - KnII2 -+ 0 as n oo, 
Io- nII2 -? as n -oo. 0 

The inequalities (2.14) and (2.15) can be viewed as a priori and a posteriori 
estimates, respectively, of the error of the approximate solution. 

3. EXAMPLES 

Example 1. First we substantiate the claim made earlier that uniqueness of the 
solution is not necessary for the current method to be applicable. Consider [5] 

(O(x) - xy(o2(y) dy = 3x, x E [0, 1]. 

The actual solutions are op (x) = x and (P2(x) = 3x. The kernel function is 
already degenerate and we obviously take B1 (x) = x and C1 (y) = y. Upon 
substituting (Sn(x) = -x + ax into (2.5), we obtain a2 - 5 a + 9 = 0. Solving 
this equation, the exact solutions are obtained. 

Example 2. Consider 

(p (x) - 1; (1+x)2(y) dy = 3 x -5 3 x E [O, 1] . 

Again, the kernel is degenerate. We take B1 (x) = 1 and B2(x) = x. The Ci's 
are chosen in the same way. Upon substituting (Sn = (-x - 3) + a1 + a2x into 
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(2.5) and solving the resulting equations, we obtain a1 = 3 and a2 = . The 
exact solution (x) = x is obtained by substituting these values of a, and a2 
in the expression (0n above. 

Example 3. Consider [5] 

flxy ~2( eXl-1 
9(X) - Je e dP y)dy = %?x - , XE[0, 1]. 

The exact solution is (x) = /:fx. We approximate eXY by 1 + xy + (xy)2/2 + 
* + (xy)n/n !. An approximate solution 

x-l _ +X x2 nn 

( n (X) = 8/i- X- +a(> + (>2X + at3 2 + + ('nI fl ̂ ! 

is obtained by solving (2.5). For example, for n = 2, we obtain a 1 = .634038, 
a2 = .266290, a3 = .1 14898. The errors en for different values of n are listed 
below. The en's are approximated by the composite Simpson's formula. 

-n en = II 1?- (qn-12 

2 7.218E- 2 
3 9.847E - 3 
4 2.013E- 3 

Example 4. Consider the same equation as in Example 3. Now the kernel is 

approximated by I2 
n 

2_ eXYJBi (x)Cj(y), where the Bi's and Cj's are linear 

B-splines with knots 0 = xO < x1 < < x2" = 1, where xi = i/2n for 
i= 0, 1, ... , 2n . The approximation 

exI 1 +n 
Pn(x) = - x - +EaiBi(X) 

i=O 
is obtained upon solving (2.5) and gives rise to errors en shown below. 

n en = 11(--qnI2 

2 6.203E - 2 
3 1.553E - 2 
4 3.768E - 3 
5 9.432E - 4 

4. APPROXIMATIONS OF THE KERNEL 

The examples in ?3 are mainly concerned with the method of approximating 
the kernel k(x, y) by degenerate kernels having the form of tensor products of 
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univariate functions. In this section, we present another approach, a variation 
of tensor products, to decompose k(x, y). 

Let LX be a projection of C([O, 1] x [0, 1]) onto X, x C[O, 1], where Xn 
is an n-dimensional subspace of C[O, 1]. Similarly, let My be a projection of 
C([O, 1] x [0, 1]) onto C[O, 1] x Ym, where Ym is an m-dimensional subspace 
of C[O, 1]. Define 

(4.1) Rxk(x, y) = k(x, y)- Lxk(x, y) 

and 

(4.2) R yk(x,y) k(x,y)- Myk(x,y). 
Then Lxk and Myk provide two degenerate kernels that approximate par- 

tially k(x, y) with respect to x and y, with respective errors Rxk and Ry k. 
Then LxMYk gives a complete approximation of k(x, y) in both x and y, 
with error term 

(4.3) R(LxMy)k = Rxk + Ryk - RxRyk. 
Thus, the rate of convergence depends on the approximation powers of LX and 
My , In order to enhance the speed of convergence, we define the Boolean sum 
of LX and My by 

(4.4) LX X My = Lx + My- LxMy. 
Then (Lx ? My)k approximates k with the error 

(4.5) R(LX 0 My)k = RxRyk. 
To see (4.5), we have by the definition of Lo M 

k -(Lx My)k = (I- Lx)k +(I- My)k -(I- LxMy)k 
= Rxk + Ryk - (Rxk + R,k - RxRyk) = RxRyk. 

Thus, this new approximation of k by (LX X My)k enhances the rate of 
convergence. More specifically, let Xn be the space of spline functions of degree 
n1 - 1 with knots at O = xo < xi < < xk < Xk +l = 1 , where n? + k1 =: n. 
Similarly, let Ym be the space of spline functions of degree ml - 1 with knots 
at O = YO < YI < Yk, < Yk2+1 = l, where ml + k2=: m. Chapters 4 and 12 
of [6] are particularly useful in relation to our current discussion. 

Let Lx and My be the interpolatory operators onto Xn and Ym. respec- 
tively. Assuming k E Cn'[O, 1] x C[0, 1], we have 

(4.6) supIR k(x, y)I < JC1(y)IhQn < Clh'n, Cl a constant, 
and similarly, when k E C[O, 1] x Cm [0, 1], then 

(4.7) suplR k(x, y)I < IC2(x)lhm' < C2hml, C2 a constant, 

where hx = max{xi - xi l: i= 1, 2, ..., kl+ 1 } aiid hy = max{Yi - Yi- 1:i= 
1, 2, ..., k2+ 1}. 

The following theorem is an immediate consequence of the preceding discus- 
sion. 
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Theorem 4. (i) Let k E Cn,[0, 1] x C[O, 1], and let (n be the solution of (2.3) 
with kn(x,y):=Lxk(x,y). Then Ikq-qn 112<C1hx. 

(ii) Let k E C[O, 1] x Cm'[O, 1], and let (Pm be the solution of (2.3) with 
km(x, y):= Myk(x, y). Then II(q-SmII2 ?C2h> 

(iii) Let k E Cn' [0, 1] x Cm' [0, 1], and let q'n be the solution of (2.3) with 
k (x, y) := LxM k(x, y). Then 1n" - SnII2 ? C3hn2, where h = max{hx, hy} 
and n2 = min{n1, m1}. 

(iv) Let k E Cn,[o 1i x CmI[O 1], and let (n be the solution of (2.3) with 
k (x, y) = (Lx ( MY)k(x, y). Then 11 ko-oIn 112 < C4h 
Proof. Proofs of (i)-(iv) of this theorem are quite obvious from the discussion 
in this section and Theorem 3. We demonstrate the proof for (iv) only. By 
(4.5), (4.6), and (4.7), 

Ilk - (Lx MY)kII < C4hX hy' 
By Theorem 3, 

1k" - fn 112 ? AII(m ? C4hn'Im', where C4 - AC4II(o 1 11P-(PI2< B -l1- CB 

There exists only a small number of papers which use the Boolean sum ap- 
proximation technique. These papers are mainly in the area of approximation 
of eigenvalues of certain operators (see, e.g., [1] and references cited therein). 
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