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CONTRACTIVITY-PRESERVING IMPLICIT
LINEAR MULTISTEP METHODS

H. W. J. LENFERINK

ABSTRACT. We investigate contractivity properties of implicit linear multistep
methods in the numerical solution of ordinary differential equations. The em-
phasis is on nonlinear and linear systems %U(t) = f(t, U(1)), where f sat-
isfies a so-called circle condition in an arbitrary norm. The results for the two
types of systems turn out to be closely related. We construct optimal multi-
step methods of given order and stepnumber, which allow the use of a maximal
stepsize.

1. INTRODUCTION

In this paper we will study the contractivity of implicit linear multistep meth-
ods in the numerical solution of ordinary differential equations. Consider the
initial value problem

(1.1a) - ZLvw=re vy @20,
(1.1b) U(0) = u,,

where u, € K° and the function f with values in K’ are given (K stands
consistently for R or C in this section) and s > 1. To approximate the
solution to (1.1), we want to use the linear multistep method

un - hﬂkf(tn s un>

(1.2) k!
= Z("aiun—k+i B Sy esis Un_iesi)) (n2k).
1=0

The vector u, is an approximation to U(nh) (n = 0,1,...), h > 0 is
the stepsize, k is the stepnumber, and u;, ..., U, _; € K’ are given initial
approximations. Further, o; (0 < i < k—1) and B, (0 < i < k) are
coefficients in K specifying the method. The method is explicit if f, =0, and
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implicit if B, # 0. The order of the method is the largest integer p such that

k-1
(1.3) (1 -hBy)exp(kh) = (e, +hp,) exp(ih) + @(h**") (for h — 0).
i=0
We assume (see, e.g., [20, p. 390] or [4, 8, 10, 11, 13, 14, 17, 18, 19]) that f
satisfies, for some p > 0, the circle condition

(1.4) 172, x) = f(2, ) + plx =) < pllx =yl (for x, y €K).

Here, || - | stands for an arbitrary norm in K’. This circle condition implies
(cf., e.g., [20])

(1.5) [V (t) = W) < IV () = W)l (fort, 2 ¢, > 0),

for any two solutions ¥ and W of (1.1a).

In view of (1.5) it is natural to ask for a multistep method (1.2) which guar-
antees a similar property for the numerical approximations u, . Such a property
is also favorable with respect to the propagation of errors. Therefore, we call
the k-step method (1.2) contractive (cf. [4, 8, 11, 13, 17, 19]) for a function
f, astepsize h, and a norm || - || if for any two sequences (v,),sq> (W,),>o
satisfying (1.2) we have

(1.6) v, —w,|| < max v

5. e IR CEY S S B

Two test equations will be considered. One of them is obtained by choosing
for the function f

(1.7) ft,x)=4Ax (>0, xek’).

Here, A is an s x s matrix with coefficients in K such that (1.4) holds for
some p > 0. The contractivity of (1.2) when applied to this test problem is
related to the choice of the stepsize # by Theorem 3.3 in [19]. In fact, (1.2) is
contractive for all s > 1, each matrix 4, and each norm||-|| on K’ such that
(1.4) is satisfied, if and only if

(1.8) h<Rp .
The factor R (0 < R < o0), which in [8, 11, 13, 19] is called the threshold
factor, is given by
R=inf{-a,B '|0<i<k-1and 8, > 0}
(1.9) if ,>0and o, <0, o8, <P, (0<i<k-1),
R =0 (otherwise).
We define, for k > 1, p > 1, the optimal threshold factor R, , by

R, , =sup{RJR is the threshold factor (1.9)

(1.10)
of a k-step method (1.2) of order p}.
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In the definitions of the threshold factors, we put, as usual, inf& = oo and
sup@ = —oco. A k-step method (1.2) of order p will be called optimal for
(1.1), (1.7) if its threshold factor R equals R,

One also arrives at a stepsize restriction Wthh involves the threshold factor
(1.9) if one aims at the conservation of positivity in the numerical solution of
ordinary differential equations (see [1]). This factor (1.9) is necessarily finite
when the order p is larger than one (cf. [1, 15, 19]).

A threshold factor with a similar property as R given by (1.9) can be defined
for methods that do not belong to the class of methods (1.2) (e.g., for explicit
or implicit Runge-Kutta methods, cf. [19, p. 283]). For rather general one-step
methods, the size of the corresponding optimal threshold factor was studied in
[8, 11]. In [13], this was done for explicit linear multistep methods. One of the
purposes of the present paper is to study the size of optimal threshold factors

for linear multistep methods that are implicit.

We arrive at another natural test equation if we choose K = C and

(1.11) ft,x)=a(®)x (t>0, xeC)

in (1.1a). Here, a(-) is a function with values in C such that (1.4) holds for
some p > 0. This scalar test equation was also dealt with in, e.g., [2, 17, 18].
Also when (1.2) is applied to the second test equation, i.e., (1.1), (1.11), the
contractivity is related to the choice of the stepsize /. It was proved in [17,
18] that (1.2) is contractive for all functions a(-) satisfying (1.4) for some fixed
p > 0 if and only if
h<Sp!

The constant S, which we also call a threshold factor, is given by

S = inf{-o,8 '|0<i<k—1and g, >0}
(1.12) ifa, <0(0<i<k-1), §,200<i<k),
S =0 (otherwise).

In fact (cf. [17, 18, 20]), method (1.2) is contractive for any norm | -|| and any
function f satisfying (1.4) if and only if the stepsize /4 is chosen in conformity
with the latter stepsize restriction.

Similarly to (1.10), we define for k > 1, p > 1 the optimal threshold factor

Sy, = sup{S|S is the threshold factor (1.12)

1.13
( ) of a k-step method (1.2) of order p},

and we say that (1.2) is an optimal k-step method of order p for (1.1), (1.11)
if the threshold factor S of this method is equal to Sk’ e

In the numerical solution of (stiff) differential equations, stepsize restrictions
that are imposed in view of contractivity or positivity requirements can be quite
restrictive and embarrassing.

In view of the above considerations, it is natural to study the size of optimal

threshold factors R, , and S, » and to construct optimal linear multistep
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methods. Methods that are optimal with respect to .S among a subset of k-step
methods of order p were found in [17], but here we shall consider optimality
with respect to all methods.

Optimal methods for (1.1), (1.11) will be constructed in §2. The size of
S, ,, for fixed p, when k tends to infinity, is considered in §3. We will prove,

for p=2,4,6,that S,  is maximal for k = p2 /4. On the other hand, for
p=23,5,7, it turns out that S, » is a strictly increasing function of k with
lim, _, Sk,p Sp—1)/a,p-1

The implicit Euler method is optimal for both test equations when p = 1. In
fact, forall k > 1, wehave R, | =S, | =oc. This was shown in [15, 17, 19].
We will show in §4 that the equahty R =5 x.p also holds for p =2,4,6

and k>p /4.

For p =2 and any k > 1 we will prove that the trapezoidal rule (i.e., (1.2)
with B, = B, =1/2, oy, = -1, B;=0a; =0 (0 <i < k—2)) has
optimal threshold factors R and S. This reveals another optimal property of
this method, which is already known to have optimal properties with respect to
A-stability (cf. [3]).

Further, for 1 <p <7, R, , can be only slightly larger than S, » (cf. §4).

A numerical example is presented in §5, where one of our optimal methods
is compared with a BDF-formula (cf. [12]). Finally, some technical lemmas
are formulated in §6.

2. DETERMINATION OF OPTIMAL METHODS FOR (1.1), (1.11)

2.1. An algorithm to find optimal methods.  This and the following subsection

are devoted to the construction of optimal methods (1.2) for (1.1), (1.11). By

“threshold factor” etc. we mean the term which refers to this test equation.
We use the notations

a=(1,i, .., b)=(,i+x, i +2x, ..., +gxi® T,

1 1
DT, dx) =G+ x, 4 2ix, e, i qix®hT
Here, i is an integer and x is a real number. The length of these vectors will
not always be indicated explicitly.
By co(X) we mean the convex hull (see [16]) of a subset X of a linear space.
The relative interior (see [16]) of such a subset X will be denoted by ri(.X).

For r >0, k>1,and p > 1, we define in R’
K'(r)=co{c;, d,(r )0<i<k-1, 0<j<k}.
Further, #(Y) denotes the number of elements of a set Y. For several other
notions, and Carathéodory’s theorem, the reader is referred to [16].
Consider a method (1.2) with g, > 0. From (1.3) it follows, for r > 0, that
(1.2) is of order at least p if and only if the equality
k-1

(2.1) > (—a; =B +Zr/3b =b,(-B,)

i=0

.2
¢ =(,1,...
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holds in R”*'. Equivalently, we have (in R*™')
k—1 k
-1 —1 -1
(2.2) Z(—ai —rB)(1+B,r) "a,+ Zrﬂi(l +Ber) b(r )=a,.
i=0 i=0
We shall use this relation most often with a,, b,, and a, replaced by ¢;, d,,
and ¢, , respectively.

Let k> 1, p>1,and r be given with 0 < r, < co and ¢, € K(r)).
From the definition of K?(-) it can be seen that
(2.3) K"(r,) c K"(ry) (forall rywith0<r, <r,).

Suppose method (1.2) has a threshold factor S with 0 < r; < § < oco. It
follows from (1.12) and (2.2) that ¢, € K”(S). Thus, by (2.3), with r==:,
we have ¢, € K(r,).

Assume r is a real number with 0 <r < .S, . We have for each ¢ € (0, r)
that ¢, € K?(r —¢), by (1.13) and the preceding conclusion (with Fo=Tr—¢).
It can be seen that this implies that ¢, € K”(r).

Conversely, if ¢, € K?(r) for some r with 0 < r < co, we can use (2.2) and
(1.12) to construct a k-step method (1.2) of order at least p with threshold
factor S > r. Hence,

(2.4) S, >r iff ¢, eK’(r) (forall r with 0 <r < ).
k,p k

Since the implicit Euler method is known to have Sl | = R1 ; = oo and Sk
00, R, , < oo for methods of order p > 2, the restriction r < oo in (2. 4) is
not important

As a consequence of (1.12), (2.2), (2.4), and Theorem 2.3 in [17], we have
the following existence theorem for optimal methods.

Theorem 2.1. (i) Let k > 1, p > 1. If there exists a k-step method (1.2) of
order at least p, then there exists a k-step method (1.2) of order at least p that
is optimal for (1.1), (1.11).

(ii) For all p > 1, there exists an integer k(p) such that S, , >0 Jor all
k> k(p).

We now give four lemmas which enable us to devise an algorithm to compute
optimal methods.

Lemma 2.2. Let k > 1, p>2, and r be given with S p>0and 0<r<oo.
Then dim(K?(r))=p.

Proof. Since S, , >0, there exists a stable (cf. [9]) k-step method of order p.
Hence p < 2+k by Theorem 5.9 in [9]. Using [7, p. 122], and some elementary

operations, it can be seen that the first p + 1 vectors of the sequence of vectors

. +1
in R? 1

—1 —1
b()(r ),ao,bl(" ),al,...,bk(r )
are linearly independent. Hence the first p + 1 vectors of the sequence
-1 -1 -1
d()(r )’coadl(r ),Cl,...,dk(r )

are affinely independent and dim(K”(r))=p. O
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Lemma 2.3. Let k> 1, p>2,andlet S be areal number, 0 < S < co. Then
S =S, , ifand only if ¢, is an element of the boundary AK”(S) of KP(S).

Proof. Assume S =S, . By (2.4), we have ¢, € K”(S). If ¢, were contained
in the interior int(K”(S)) of K”(S), there would exist r > S with ¢, € K”(r).
However, since § = S, , this cannot be the case, by (2.4). Hence ¢, €
OK”(S).

To prove the converse, let ¢, € dK?(S). Then S 28 (cf. (2.4)). Assume
Sk,p > §. Since p > 2, we know that Sk,p < oo (cf. §1). A contradiction can
be derived as follows. Let G be a face of K”(S) with ¢ .n(G)=p-1,¢, €G.
This is possible by Lemma 2.2. There exists a method of the form (1.2) with

threshold factor Sk,p (cf. Theorem 2.1). For some I c {0,1,...,k— 1},
Jc{0,1,..., k}, we have by (2.2) (with r =5, ) that
(2.5) 6= DA+ m,d (S ),

i€l JEJ

with >°. ;4 ,+Zjejﬂj= 1,4 >0 (iel) and ;>0 (j€J). Theset G
is a face of K”(S), ¢, € G, and, by (2.3), K”(S, ,) C K”(S). Hence,

{c;, d, kp[lel JjeJ}CG.

Since d. (Sk p) € I'l(CO{ (S_l)}) and ¢ a’j(S'l) € K?(S), we also have
¢;€G and d, ) (S~ ) S G for all j € J. The convexity of G then implies that

(2.6) {c;,d(r )|z€IUJ JeEJ, re[S,co)}CqG.

Assume k € J. Then Sp, = span{a,, bj(r_l)[i eluJ\{k},jeJ\{k}}
is independent of r provided r € (0, co). Further, by (2.5),
(1= )~ (@ = by (S ) = b= (1 = )™ 'S ) € Sy
Consequently, Sp = span{a _l)li e IUJ\{k}, je J} is independent of
r, provided r € (0, o0).

The last assertion also holds when k ¢ J.
There exist r, with 0 <r,<oo and I, CcIUJ\{k}, J,CJ such that

l’j

B(r)={a,, b,(r i€y, jely}

is a basis of Sp when r =r;. From (2.6) we know that dim(Sp) < p, so that
#(B(r;)) < p. Furthermore, there exists a neighborhood U of r; such that
B(r) is a basis of Sp for all r € U. Since g, € Sp (cf. (2.5)), we see that
there exist indices

iM<i2) < --<i(m) and j(1)<j(2)< - < j(n)
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such that

—1
det(a,.(,) R ai(2)’ cees a,'(m)a bj(])(r )s

bj(z)(’_l)’ e b/(n)(’_l), a,)=0 (forallreU).

Hence, the determinant must vanish for all r > 0. However, it follows from
[7, p. 122] that this cannot hold.

Therefore, the assumption Sk’ » > S cannot hold and we must have Sk, =
S. O

The condition stated in Lemma 2.3 is necessary and sufficient for a method
(1.2) to be optimal. However, from a computational point of view, this lemma
is only useful to show whether or not a given method is optimal. In Algorithm
2.7 below, candidates for optimal methods will be obtained by Lemma 2.5. In
the proof of this lemma we need

Lemma 24. Let s> 1, X = {x(1), x(2),...,x(n)} cR’, K=co(X),d be
the dimension of K, and let v belong to the relative interior ti(K) of K. Then

(i) A={(A(1), 4Q2), ..., Am) v = T/, A0)x (i), Tp A = 1, A0 20
(1 <i< n)} is a convex set whose dimension equals n —d — 1.

(ii) Foreach i (1 <i<n), thereexistsaset Y C X of affinely independent
vectors such that x(i)e Y, #(Y)<d + 1, and v €ri(co(Y)).

Proof. 1t is easy to see that A is convex. Further, there exist numbers A(i) > 0
such that v = Z:’zl A(i)x(i). By using elementary linear algebra, it can then be
seen that dim(A) = n —d — 1. This proves part (i).

To prove part (ii), let 1 <i<n. If v = x(i), the assertion holds for this
value of i. Otherwise, let £ > 0 be such that w = v +&(v — x(i)) is contained
in the relative boundary (cf. [16]) of K. Apply Carathéodory’s theorem to w
andaface F of K, F # K, with w € F,anduse v = (1+&) (w+&x(i)). O

In the following lemma, k > 1 and p > 2 are given with S, » > 0. By
Lemma 2.3 we have ¢, € 0K”(S, _p) - Hence we may denote by F the smallest
face of K’ (Sy,,) such that ¢, € ri(F). The dimension d of F satisfies

d <p-1. By Lemma 2.2 (with r = §, < oo) there exists a (p — 1)-
dimensional face G of K’ (Sk. p) such that ¥ C G. Further, we introduce

I={il0<i<k-1and c;€F} and J={jl0<j<k and d,(S; ) €F}.
Lemma 2.5. (i) The coefficients
(—ap =S¢ B 1+ BSe ) oo (may =S, LB )L+ BSe )

S ,Bo(1+ BeSi ) s S B+ BS )

in (2.2) of the class of optimal k-step methods (1.2) of order p form a convex
set in R*! of dimension #(I) +#(J)—d — 1.
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(ii) To each Iy C I, JyC J with #(1,) +#(J,) = 1, there exist I, J,, with
Lol cl,JycJd cJ, suchthat Y ={c,,d (S )il jeJ} isaset
of at most d + 1 affinely independent vectors and ¢, € ri(co(Y)).

(iii) Let 1, J, be as in (ii). There exists a unique optimal method (1.2) such
that for the coefficients in (2.2)

(—0; =S, ,B)1+B,S, ) =0 (foralli¢l,),
S B+ BS, ) =0 (forall j¢J,).
(iv) For each 1,, J, as in (ii) there exist

L={i(1),iQ2),...,im}c{0,1,...,k=1},
J2={](1)’](2)9 ,j(fl)}C{O, 13 cees k},

with I, C I,, J, C J, and such that X = {c,, dj(Sk_,lp)|i €l,, je J,} isaset
of p affinely independent vectors and G is contained in the affine hull aff(X) of
X. :
W) I #GN{c;, d,(S{)I0<i<k—1, 0<j<k})=p, then the optimal
k-step method (1.2) of order p is unique.

(vi) Let I,, J, be as in (iv). Then Sy, is a simple zero of the polynomial

nh
P(ry=r det(a,.(l) s Qyays s Aymy s

-1 -1 —1
bj(l)(r ), bj(z)(r Yy euns bj(n)(r )s ay).
Proof. Each optimal k-step method (1.2) of order p corresponds in a one-
to-one fashion to an expression of a, as a convex combination (2.2) (with

r =35, ,) of the vectors a;, b;(S; "p). This is an immediate consequence of
(1.12), (1.13). Since F is a face of K”(S, ,) with ¢, € F, the coefficients in
(2.2) corresponding to i ¢ I, j ¢ J are zero. We may now use Lemma 2.4
with s =p, X ={c;,d,(S; ' )liel, jeJ}, K=F,and v =c,. Parts (i)
and (ii) of Lemma 2.5 follow from parts (i) and (ii) of Lemma 2.4, respectively.

Part (iii) follows from part (ii) of Lemma 2.5 and formula (2.2).

Since F C G, part (ii) also implies part (iv).

Assume the condition of part (v) is fulfilled. Since dim(G) = p — 1 and
F C G, we necessarily have #(I) + #(J) = dim(F) + 1 = d + 1. Thus, we can
apply part (i) to prove part (v).

As for part (vi), it follows from (iv) and the inclusion ¢, € G that P(S, )=
0. Some computation, using Lemma 2.2 (with r = §, ) > shows the fact that

G is a face of K”(Sk‘p) ,and [7, p. 122], that

dP —1 —1 1
(2.7) E(Sk,p)det(ai(l)’ s Ay s bj(l)(Sk,p)’ e bj(n)(Sk,p)’ (’U)) <0

for all v € K”(S; ,)\aff(X). Hence S, , is a simple zero of P. O
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Corollary 2.6. Let k> 1, p>2, S, >0, and let I, J, and d be as above.
An optimal k-step method of order p is unique if and only if #(I)+#(J)=d+1.

In the following algorithm, we supply integers k& > 1, p > 2. Using the
algorithm, we can find all optimal k-step methods of order at least p for which
there exist sets [, and J, as in part (iv) of Lemma 2.5. In particular, if the
optimal threshold factor is positive, we obtain at least one optimal method.
The sufficient condition in part (v) of the same lemma is convenient to show
the uniqueness of an optimal method.

Algorithm 2.7. 1. Give integers kK > 1,p > 2.

2. Find a (new) pair of integer sequences I = {i(l), i(2),...,i(m)} C
{0,1,...,k=1},J={i(1),j2),...,j(n)}c{0,1,...,k} with m+n=
p . If such a pair does not exist, then stop.

3. Compute positive roots, at least all those that are simple, of the polynomial

n
P(r)y=r det(a,.“) s Qyays e s Qi s

—1 1 1
bjon(r ), bjy(r )5 e by ()5 @) -
4. Verify whether for any of these roots, say r,

(@ V = {c,dr )|z € I, je J} is a set of p affinely independent
vectors in R”
(b) K”(r) lies on one side of the affine hull aff(V) of V',
(c) ¢, € K”(r).
If these conditions hold, r =S, . Determine coefficients o, (0<i<k-1)
and B, (0<j<k) ofan optlmal method (1.2) from equauon (2.2) and

(o, —rB)(1+B,r)" =0 (foralligl),
rB(1+pn =0 (forall j¢J).

If, in addition, ¢, ¢ aff(}V') (for i ¢ I), dj(r_') ¢ aff(V) (for j ¢ J), a
unique optimal method has been found. Stop.
Otherwise, return to step 2.

2.2. A survey of optimal threshold factors and optimal methods. We can apply
our algorithm with & > 1,p > 2 to find Sk and corresponding optimal
methods. For order p = 1, optimal methods can be found “by hand”, using
(1.12) and (2.1). Table 1 lists the positive threshold factors S, » obtained in
this way for &k < 20,p < 8. We will also give some of the corresponding
optimal methods.
(i) k>1,p=1. S, ,=0cc and (1.2)isan optimal method for (1.1), (1.11)

whenever

k—1 -

a,<0, B,=00<i<k-1); Y a,=-1, B =) ia+k.
1=0
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In case k = 1, we have the so-called implicit Euler method.
(i) k>1,p=2. Sy, =2 and (1.2) is a unique optimal method with
oy =-1, B_=B=1/2, o;=4,=0 0<i<k-2).
If k=1, this is the so-called trapezoidal rule.
(iii) k> 2,p=3. Sp.p= 2k - 3)(k — 1)~1 and (1.2) is a unique optimal

method with nonzero coefficients

"k-1)77,

ag= — (2k+1)”
a_ = —kQ2k=3)(k-1)"2k+1)7",
B =k k+1)"k-1)"",

B, =k(2k+1)".

(iv) k =35, p = 6. This is a rather exceptional situation in that there exists a
l-parameter set of optimal methods, with Ss =1 /2. From the results of the
application of Algorithm 2.7 one can deduce that (1.2) is optimal if and only if
A€[0, 1] and

'13;‘399 “"’”%’ by '1327:)% (1_’1)2_19%’
& = Ag5en =535
0= A+ (1= D, By=Agags + (1 =232,
a3=0 By =0,
/35=/1%(1)—8+(1—/1)i—2-

(v) For all other values of k and p in Table 1, we found a unique corre-
sponding optimal method. The coefficients of some of them are listed in Tables
2,3, 4.

Although, for reasons of convention, we gave the coefficients «; and B ; in
the above enumeration, the preceding theory suggests we use, instead of the
classical form (1.2), the equivalent form

k—1
Z Vil _kvi
i=0

A — -1
+ Zéj (un—k+j +hS Sty _iesjs un—k+j))
=0

(2.8a) u, —hp, f(t,,u,) =

(n=k,k+1,...). Here we assume that Sy, p < oo and
(2.8b) v =-—o; =S B 0<i<k-1),
(2.8¢c) d; =S, ,B; 0<j<k-1).
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TABLE 1
Optimal threshold factors S, , for k-step methods (1.2) of order p
p 12 3 4 5 6 7 8
k
1 oo 2
2 oo 2 1.0000
3 co 2 1.5000 1.0000
4 co 2 1.6667 1.2432  0.6667
5 oo 2 17500 1.2432  0.7955  0.5000
6 oo 2 1.8000 1.2432  0.9294  0.6597  0.3000
7 oo 2 1.8333  1.2432 1.0056 0.7837 0.4676  0.1965
8 oo 2 1.8571 1.2432  1.0524 0.8683  0.5500  0.3450
9 oo 2 1.8750 1.2432 1.0837 0.9053 0.6420 0.4426
10 co 2 1.8889 1.2432  1.1061 0.9053  0.6901  0.5328
11 oo 2 1.9000 1.2432 1.1229  0.9053 0.7329  0.5803
12 oo 2 19091 1.2432 1.1361  0.9053 0.7644  0.6249
13 co 2 19167 12432 1.1466 0.9053 0.7810  0.6620
14 co 2 19231 1.2432 1.1552 0.9053 0.7946  0.6920
15 co 2 19286 12432 1.1624 0.9053  0.8057 0.7138
16 co 2 19333 1.2432 1.1685 0.9053 0.8149  0.7189
17 co 2 19375 1.2432  1.1737 0.9053 0.8226  0.7189
18 co 2 19412 1.2432 1.1783 0.9053  0.8291  0.7189
19 co 2 19444 12432  1.1822 0.9053 0.8346  0.7189
20 co 2 19474 12432 1.1858 0.9053 0.8394 0.7189
TABLE 2
The nonzero coefficients of optimal k-step methods of order 4
k=3 ay,=-5/32 B, =3/32
o, =—27/32 B, =27/32
By=3/8
k=4 «o,=-0.044656443869 p,=0.035920310223
o, = —0.032287478509 B, = 0.025971083765
ay = —0.923056077622 B, = 0.742478750864
B, =10.394174143773
These coeflicients can easily be obtained from the tables with
Sk.p= /By
as it has turned out that y,_, = 0 for optimal methods of order p with 2 <

p<8.



H. W. J. LENFERINK

TABLE 3

The nonzero coefficients of optimal k-step methods of order 5

k=4 ay=-3/35
a, = -8/35
oy = —24/35

k=35 a, = —0.024644773737
—0.049099680927
—0.166384720704
a, = —0.759870824632

Q Q
Ryl
([l

k=6 a,=-0.005965846424
a, = —0.062219568345
ay = —0.107893579835
oy = —0.823921005396
k=7 a,=-0.001899283695
oy = —0.063432086540
o, = —0.079765609816
o, = —0.854903019949
k=8  a,=—0.000746897457
a, = —0.062185187770
ay = —0.065188908644
o, = —0.871879006129
k=9  a,=-0.000340789183
ag = —0.060559712643
o = —0.056750393804
ag = —0.882349104370
k=10 a,=—0.000173264587
a, = —0.059033126258
a, = —0.051416380337
oy = —0.889377228819
k=11 a,=-0.000095614309
a, = —0.057700216566
ag = —0.047811920852
a,, = —0.894392248273
k=12 a,=-0.000056258666

ag = —0.056558096984
ay = —0.045247851084
a,, = —0.898137793267

B, = 12/35
B, = 36/35
B, = 12/35

B, =0.061720193877
B, =0.209152015371
B, =0.955186952991
Bs =0.352588416898

B, =0.066948740947
B; =0.116094333637
Bs = 0.886545429648
Be = 0.362686592593

B, = 0.063077153883
B, = 0.079319283337
B, = 0.850119431442
B, = 0.368707312757

B, = 0.059089849737
B = 0.061944057008
B, = 0.828480242782
B, = 0.372647513271

Bs = 0.055882324853
Bs = 0.052367222428
Bg = 0.814200020652
By = 0.375456671066

B, = 0.053370030451
B, = 0.046483965160
B, = 0.804058548035
B, = 0.377578977080

B, = 0.051383050339
B, = 0.042577350348

B, = 0.796471913807
B,, = 0.379248320000

B, = 0.049784569697
B, = 0.039828864761
B,, = 0.790574753235
B,, = 0.380600650748
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The nonzero coefficients of optimal k-step methods of order 6

TABLE 4
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k =35 one parameter set
as described above

k=6 «a,=-0.039244965860 p, = 0.024348556303

a, = —0.076331008461 B, = 0.115708903958

ay; = —0.196586017197 B, = 0.298001468104

oy = —0.687838008482 B, = 1.042682176830

Bs =0.337648783882

k=7 «a,=-0013219720715 B, =0.010637484589

ay; = —0.084824895181 B, = 0.108232169095

a, = —0.141412093193 B, = 0.180434500388

ag = —0.760543290911 B¢ = 0.970413814127

B, =0.346899228021

k=8 a,=-0.005219538160 p,=0.005143493020

a, = —0.083655994035 B, = 0.096341243207

as = —0.108421088766 B = 0.124861614544

a, = —0.802703379039 B, = 0.924422001734

Bg = 0.353578574250

k=9 a,=-0.001642953120 pB,=0.001814860688

a, = —0.001731087076
ag = —0.081210958324
o, = —0.096236043942
~0.819178957538

B, =0.001912216389
B5 = 0.089708326990
Bs = 0.106305536547
B = 0.904892335991
By = 0.356732920744

For each kK > 1 and p > 2 with S, b > 0, there exists an optimal k-step
method of order p with at most p of the coefﬁcwnts Bis Vi 61 0<i,j<
k — 1) not equal to zero (cf. part (iii) of Lemma 2.5). For k =4,p=235, the
optimal method even has only four nonzero coefficients.

We found a remarkable method for k=1,p =2 and for k =4, p =4 and
for k=9, p =6. In these cases, all the y;, (0 <i <k — 1) vanish. By storing
the fixed linear combinations u,+h4S, ’lp S(t;, u;) (instead of the usual vectors u,
and f(¢;, u;)), and using these in (2.8a), we obtain an efficient implementation
of these methods. Other interesting features of these methods will be exhibited
in §§3 and 4.
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We conjecture that also for k = 16, p = 8, the coefficients 7, of the cor-
responding optimal method vanish. However we have no complete proof of
this.

3. ASYMPTOTIC BEHAVIOR OF Sk » WHEN k TENDS TO INFINITY

To a given k-step method (1.2) we adjoin, for [ > k, the [-step method

1—1

(3.1) w, =B f(t,, 1) =Y (=, +hB S sty 1)) (n21).
i=0

Here, Bj = B,_y_py -k <i<D), ol=0o_,, (-k<i<i-1),and

Bl=al=0 (0<i<i-k).

Inspired by the manifest regularities in Table 1, we will derive two theorems
concerning the form of optimal methods for fixed order p when k tends to
infinity.

Theorem 3.1. Let k > 1, [ >k, p>2, p even, Sk’p > 0. Let (1.2) be an
optimal k-step method of order at least p such that
(3.2) —a; =8, B;=0(0<i<k-1) and #{i|f,#0}=p.

Then:
(1) There exist indices j, < j, <--- < Jpp2 such that

UlB,#0y =1 i+ 1 dys iy + 1o dpas Jppp + 13

(1) S, , =S, ,. and the l-step method adjoined to (1.2) is an optimal [-step
method of order at least p .

(iii) An optimal [-step method of order at least p is unique if and only if (1.2)
is a unique optimal k-step method of order at least p .

Proof. Let j(1) < j(2) < --- < j(p) be such that [)’j(m) #0 (1 <m<p).
Since Sk’p < oo for p > 2, we can define

—1 -1 1
(33) £, (v) = det (bj(l)+n(Sk,p)’ s b (S ) (11))
(forallv eR’ and n € 7).

By (2.2), (3.2), and the fact that ﬂj(m) >0 for 1 <m <p (cf. (1.12)), the
vector ¢, is contained in ri(co{dj(m)(Sk_,lp)ll < m < p}). Using Lemmas 2.3
(with §=.S, ), 6.2, and 6.1, it can be seen that K”(Sk‘p) lies on one side of
aff{d,\,(S; ), ..o d, (S L)} It follows from Lemma 6.4 (with i =y =0,
X = Sk_,lp) that f,(v) >0 for v =¢,. Therefore, we must have

(3.4) folv) >0 (forallv e K°(S, ).
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In particular, we may choose v = a’j(Sk_ ,' ), 0 < j < k. Part (i) follows by
interchanging columns in (3.3) and using Lemmas 6.1 and 6.2.

To prove part (ii), we appeal to Lemma 2.3 with kK =/ and S = Sk,p . We
will show that ¢, € 9K” (S, ).

Let v = ¢, for some { with 0<i</-1. Then f_,(v) = fo(ci_(,_k)) by
Lemma 6.3. This last value is nonnegative by Lemma 6.4 and (3.4). Similarly,
Ji_x(v) >0 for v—d(Sk_') (0<j<!),by Lemmas 6.1 and 6.2 and by part
(i). Consequently, f,_,(v) >0 for all v € K”(S, ). Further, ¢, € K* (Se.,)
and f,_,(c;) = fy(c,) =0, by (2.2) and Lemma 6. 3 (part (1)).

Therefore, ¢, € oK” (Sk ). An application of Lemma 2.3 shows that Sk =
S, . Part (ii) now follows 1mmedlately

Fmally, part (ii1) can be seen to follow from Corollary 2.6, using (3.3) and
Lemmas 6.1, 6.2, 6.3, 6.4. O

Corollary 3.2. Let p=2,4,0r 6, and k > p2 /4. There exists a unique optimal
k-step method of order p . It is equal to the k-step method adjoined to the optimal
p2 /4-step method of order p .

Proof. The unique optimal methods of order 2, 4, 6 and stepnumber 1, 4, 9,
respectively, obtained in §2.2, satisfy condition (3.2) of Theorem 3.1. O

Theorem 3.3. Let k > 1, p > 2, p even, S, 5> 0. Let (1.2) be a unique
optimal k-step method of order p. Let (3.2) be satzsﬁea’ and

(3.5) det((0, ..., 0, 1,07, b, (S )svnn by (i) @) <0,

with j(1), ..., j(p) as in the proof of Theorem 3.1. Then:

(1) For | large enough, there exists a unique optimal [-step method (1.2) of
order at least p + 1.

(i) S; 0 =S, =" (for | - c0).

If af 0<i<i-1), ﬂf (0 < i <) denote the coefficients as in (3.1) of the
method in (i), then:

(ii1) For [ large enough,

(3.6a)  —ai-S,,. =0 (forl<i<l-1), -al>0,
(3.6b) By >0 (forl<m<p), B =0 (iotherwise).

(iv) —aq =@U""Y) (for 1 = 0), Bl iii= By =" (for [ — oo,
1<m<p).

Proof. The proof will be given in four steps.
1. Define for s > 1, x >0, and v € R*""

1
g(s, x,v) =det (a_s, b,1y(x)s b)) (x) 5 s by (), (v)) .
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From the implicit function theorem, (2.7), Lemma 6.4 (with i =y =0, x =

) and (3.5), it follows that, for s large enough, there ex1sts a unique
xs > Sk’ » with g(s, x_, ¢,) = 0 in some neighborhood of S . It can be
verified that x; Sk_lp =0(s ) (for s — 00).

2. Let s be large enough. From Lemma 6.4 (with i=s, y=0, x =x ) and
Theorem 3.1 (part (i)), we see that g(s, x,, d (x )) > 0 for j not equal to any
j(m) and —s < j < k. Likewise, g(s, x,, c_,.) >0 for 1 <i<s,byLemma
6.5 (withj = s, x = x,). Finally, g(s, X;,¢)>0for 0<i<k-1,since s
is large enough and using Lemma 6.4 (w1th i=y=0, x=x), Lemma 2.3

(with § =5, _p)» the fact that (1.2) is a unique optimal method and Corollary
2.6.

Applying, then, Lemma 6.3 s times, we see that K” +I(xs) lies on one side
of aff{c,, 1(1)+s(x ), dj(2)+s('xs)’ e a’j(p)ﬂ(xs)}.

3. The vectors a__, bj(l)(xs) Y eees bj(p)(xs) in R°*? are linearly independent
(use Lemma 6.4 with i =5, x = X,, ¥y =0). Since g(s, x,, ¢,) = 0, there
exist unique coefficients y, and &, (1 < m < p) such that (in R”*?)

D
(3.7) QG =7a_+ Y b, (x,).
m=1

Standard perturbation analysis, (2.2), (3.2), and the result of step 1 show that
y, =@(s""*Y) and
S =Sk pBimy(1+ BSi )" =(s™") (fors o0, 1<m<p).

Further, 5fn (1 < m < p) are positive when s is large enough. By the substi-
tution (3.7) it is evident that y_ > 0 if and only if

(3.8) det(a_,, b () e bj(p)(x ) - det(a, , bj 1y (X )y enn (x,))>0.

’ J(p)
We may use (2.7) with m=0, n=p, v=c¢,. Smcex>S (for s — o0),
we obtain from (2.7) and Lemma 6.4 that (3.8) holds (for s — oo) Therefore,
7, > 0 for s large enough.

4. Let [ be large enough. We choose s = / — k, and determine coefficients
aﬁ, BJI. such that

/ -1 I —1,—1
(=g =X B+ Byx, ) =74
—ol-x\p=0 (<i<i-n),
-1 5 I —1,—1

X Bk L+ Bix ) =38, (1<m<p),

,b’j[. =0 (if there is no m with j = j(m)+ 1 — k).

(3.9)

Let (3.1) be the /-step method with these coefficients. This /-step method is of
order at least p + 1, by (3.7), Lemma 6.3 (part (i), applied / — k times), and
(2.2) (in R”*? and with k =1/, r = x_L).
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From Lemma 2.3 (with k =/, p replaced by p+1,and S = xl__lk) , (3.7),
Lemma 6.3, and the result of step 2, it follows that this is an optimal method
and that S, ., = X lk . Part (ii) of Theorem 3.3 thus follows from step 1.

The uniqueness of this optimal method can be shown by applying Lemma
2.5 (part (v)) and using step 2 and Lemma 6.3. This gives (i).

Finally, parts (iii) and (iv) follow from step 3 and (3.9). O

The optimal methods of stepnumber 1, 4, 9 and order 2, 4, 6, respectively,
satisfy the conditions of Theorem 3.3. Hence, a description of the structure of
optimal /-step methods of order 3, 5, 7 is provided by this theorem for / large
enough. We found that the coefficients of the optimal /-step method satisfy
(3.6) for [ > 2,5, 13, respectively.

4. OPTIMAL METHODS FOR TEST EQUATION (1.1), (1,7)

4.1. Order relations. In order to derive optimal methods for test equation
(1.1), (1.7), we will first give convenient order relations, similar to (2.1), for
test equation (1.1), (1.11).

Let (1.2) be a method with f, >0, and let » > 0. Then (1.2) is of order at

least p if and only if (in R”*")

k—1
(4.1a) S (ibi(=B) + 35,07 )) = b(=By),
where -
(4.1b) yi=(—o,—rB)(1+rB)™  (0<isk-1),
(4.1¢) 6, =r(B,—a,B)(1+rB)"  (0<i<k-1).
The threshold factor R given by (1.9) is at least r if and only if
(4.2) y, 20, 8,20 (0<i<k-1).

4.2. A sufficient condition for optimality. In this subsection we give a lemma
which is helpful in verifying whether a given k-step method (1.2) of order p is
optimal for (1.1), (1.7). To this end, we define the subset of R’

K’(r,y)=cof{vlv =d,(-y) orv = di(r"l)
for some i with 0 <i<k-1}.
Clearly, K"(rl ,y)C Kp(ro, y) forall y >0 and r,, r, with 0<r,<r <oo.

Lemma 4.1. Let k > 1, p > 2, and assume y, >0 and r > 0 are given such
that:

(4.3a) There exist index sets I,J c {0,1,...,k—1},J not con-
tainedin I, I={i(1),i(2),...,im)}, J={i(1), j(2),...,
j(n)}, m+n=p—1, with (inR")

dy () € ri(co({d,(~yp)li € IYU{d,(r i€ T}).
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(4.3b) S, = {d,(-yy)li € IYU{d,(r"")j € JU{k}} isasetof p affinely
independent vectors in RY .

(4.3¢) S,(») = {d(-y)li e TU{k}yu{d,(r™")|j € J} isasetof p
affinely independent vectors in R’ for all y >0 with y # y,.

(43d)  Theset {d(-y)0<i<k-1,i¢ I}u{d,(r")0<j<k-1,
J & J} does not intersect with, and lies on one side of, aff(S,).

(4.3e) For each y with 'y >0, y # y,, the following property holds:
the set {d,(~y)|0 < i <k-1,i¢ DU{d(r)0< )<
k-1, j ¢ J} does not intersect with, and lies on one side of,
aff(S,(y)) .

Then there exists a unique k-step method of order at least p which is optimal
for (1.1), (1.7). Its threshold factor equals R, ,=r. The coefficients a;, B; can
be found by putting

3, =0, 6,=0 (0<i,j<k-1;i¢I, j&lJ). B.=y
in (4.1) and solving for the remaining coefficients.

Proof. From (4.3a), (4.1), (4.2), it can be seen that there exists a k-step method
(1.2) of order at least p with threshold factor R given by (1.9) with R > r.
Assume (1.2) is such a method. By virtue of (4.1), (4. 2) we have d.(-B,) €
K?(r, B,). However, conditions (4.3c, e) imply that d,(-y) ¢ K"(r,y) for
y€(0,y,) or y € (yy, o). Therefore, B, =y,.

Next we show that r = R, . It can be verified that (4.3a, b, d) imply that
di(-B,) & K°(r;,y,) for r<r <oo.Hence r=R, ,.

Finally, we obtain from (4.3a, b, d) that {i]y; #0} C I, {J|6 # 0} c J for
the coefficients in (4.1). Conditions (4.3a, b) guarantee that there exist unique
coefficients «;, B; satisfying the order relations (4.1) with y, =0 (i ¢ I), 6, =
0 (j ¢ J). Thus, we have obtained the unique k-step method (1.2) of order
at least p which is optimal for (1.1), (1.7). O

4.3. Comparison of R, k.p and Sk As an immediate consequence of defi-
nitions (1.9), (1.10), (1. 12) and (1 13) we have

Theorem 4.2. Let k> 1, p > 1. Then:

(1) For any method (1.2) with threshold factors R and S given by (1.9) and
(1.12), one has R > S. If the method is explicit, then R=S.

(i) Ry ,> S,

At first sight, it mlght be expected that R, > S, forgiven k> 1, p>2.
Theorem 4.3 below, however, rather shows the opposite.

Theorem 4.3. Let p=2,4, or 6, k2p2/4. We have:

W) Ry p=Ryeyq =S50 -
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(ii) There exists a unique optimal k-step method (1.2) of order p for (1.1),

(1.7). It is the k-step method (3.1) adjoined to the optimal p2 /4-step method of
order p for (1.1), (1.11).
Proof. Let p € {2,4,6}, k > p2/4, and let (1.2) be the optimal k-step
method of order p obtained in §3. Let j(1) < j(2) < --- < j(p—1) <k be
such that Bj(,.) #0 (1 <i<p-1). We will verify condition (4.3) of Lemma
4.1 with I ={ilo, +S, B, #0} =2, J ={jlf, #0} = {j(D1 <i<p-1},
and r==5S ,» Vo= By -

Recall that d, (- B,) € ri(co{d,
Hence (4.3a) holds.

Condition (4.3b) follows from Lemmas 6.1, 6.2. Further, the determinant
of the p x p matrix made up of the vectors bj(i) (S, ’lp) and b, (—y) is a linear
function of y and vanishes only at y = 8, . So also (4.3c) is satisfied.

In order to prove (4.3d), we consider the function

HSEI < i< p=1}) (cf. (1.12), (2.1)).

-1

Ly, 2)=det(b (=), b, (g ) o b1y (Se ) be(=2)).

We have, by Theorem 3.1, part (i), and Lemmas 6.2 and 6.1,
1

(4.42) L8, =5 )>0 (foro<s<k-1, s¢J),
(4.4b) £(=S¢ . =S¢ ,)=0 (forselJ).

We also see that £ f,(0, —Sk_"p) >0. For s =0,1,...,k—p/4, this
follows from Lemmas 6.3 and 6.4, whereas for s = k — p2/4 +1,..., k-1,

this can be shown by Lemma 6.3 and brute force computation.
The function f is linear in y. Therefore, we also have

(4.4¢) LB =S )>0  (0<s<k-1).

The inequalities in (4.4a, ¢) imply (4.3d).
Finally, we prove (4.3¢). Since the function f is linear in z, it follows from
(4.3a), (4.4a, b), and the positivity of £ f(0, —S; ) that

(450 sign(£,(v, »)) = sign(£,(v, =S; ,) (B = »)) = sign(B, —¥)
(forally >0, y# B, and0<s<k-1).

Similarly, the linearity of f in z, (4.3a), Theorem 3.1, part (i), and Lemmas
6.2 and 6.1 imply

sign(f,(=S; . ¥)) = sign(£,(=S; |, =S ) (B, — »)) = sign(B, — y)
(forally >0, y# f,, and0<s<k-1,s¢J).

Condition (4.3e) is satisfied because of (4.5).
Hence, condition (4.3) of Lemma 4.1 is satisfied, and (1.2) is the unique
k-step method of order p which is optimal for test equation (1.1), (1.7). O

(4.5b)
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TABLE 5
Optimal threshold factors R, , for 2 <k <20

k R ;5 k R, 4
2 1.225 11 1.904
3 1.572 12 1.913
4 1.703 13 1.920
5 1.772 14 1.926
6 1.815 15 1.931
7 1.844 16 1.935
8 1.865 17 1.939
9 1.881 18 1.943
10 1.894 19 1.946
20 1.949

Remark. The unique k-step method (1.2) of order 2 which is optimal for test
equation (1.1), (1.7) is the trapezoidal rule. This was already proved in [5] by
using the “Greek-Roman” transformation (cf. [9, p. 230]).

In general, the optimal threshold factors Rk and S, o need not be equal.
Compare, e.g., Table 1 and Table 5. The opt1ma1 methods (1.2) for (1.1), (1.7)
of order 3 were found by setting , =0 (1<i<k-1),d,=0 (0<i<k-2)
n (4.1), solving for the remaining coefficients, and applying Lemma 4.1.

On the other hand, for p=3,5,7 and k > 1, R, ., cannot be substantially
larger than S, , as follows from Corollary 4.4. ’

Corollary 44. Let p=2,4, or 6. We have R
k — 00).

Proof. From Theorem 4.2, the definition of the threshold factor R, and Theo-
rem 4.3, one obtains the inequality

2
Sk ps1t SRy i SRy, =82, , (fork>p’/4).

The corollary follows from this 1nequality and Theorem 3.3, part (ii). O

=S8,, +0k") (for

k,p+1 p°l4,p

5. A NUMERICAL EXAMPLE

For the amplification of errors in the numerical solution u, (n=0,1,...)
in the application of (1.2) to (1.1) it can make an essential difference whether
the stepsize restriction (1.8) is satisfied or not. We wish to illustrate this by a
simple numerical example.

Consider the system of ordinary differential equations

d

(5.1a) EU(t)=AU(t)+b(t) (t>0),
(5.1b) U0) = u,.
Here, 4 = (; ;) is an s x s matrix with nonzero coefficients a; ;, = -1

(1<i<s),a, ;=1 (2<i<s),and uyeR’.
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TABLE 6
Amplification factors 7y,

n | 1 8 32 128 512
method (i) 10x 100 20x100 67x10"  48x10° 1.4 % 10°

method (ii) 1.0x10°  1.0x10° 9.6x107" 27x107" 0
We might use method (1.2) with exact starting values g, u;, ..., %,_, t0
obtain approximations u, (n =0, 1,...), or with slightly perturbed starting
values v, v,, ..., V,_, to obtain approximations v, (n =0,1,...). The
difference w, = v, —u, (n=0,1,...) will satisfy (1.2) with f(z, x) = Ax
and initial values w,, w,, ..., w,_, . What is of interest to us is the maximum

norm of w, . Therefore, we consider (5.1a) with b(¢) = 0. Further, for n > 1,
let the amplification factor y, be the smallest real number such that

Wi h-illoo < 7 max{[[wollog > 1w lloo s -5 Wy lloo}
forall w,, w,, ... satisfying (1.2).
Two methods (1.2) for solving (5.1) with s = 40 are compared, viz.
(i) The backward difference method of order 6 (cf. [12]) with stepsize & =
0.9052 . The coefficients in (1.2) for this 6-step method are

0y =10/147, o, =-72/147, a,=225/147, oy = —400/147,
o, = 450/147, ag=-360/147, B,=0(0<i<5), B, =60/147.

The region of stability S of this method (cf., e.g., [10]) is the set of complex
numbers defined by

S = {4 the roots {, of 3°_a,z' + (1 - 1f,)2° =0
satisfy |{,| < 1, and if |{]| = 1, then {; is a simple root}.

The eigenvalues of #4 are contained in int(S). Hence max, ., 7, is finite. On
the other hand, the threshold factor R in (1.9) equals R=0.

(ii) The optimal 9-step method of order 6 (cf. Table 1, Corollary 3.2, The-
orem 4.3). The matrix A satisfies (1.4) with p = 1. So (1.8) is fulfilled with
stepsize 4 = 0.9052. Thus (1.6) holds, and 7, <1 forall n > 1.

In Table 6, 7, is given for various values of n for both methods. Clearly,
from a practical point of view, it is desirable that the y, be of moderate size.
However, this is not the case for method (i). The table thus reveals the superi-
ority, in the present example, of our optimal method (ii) over the well-known
backward difference method (i).

6. TECHNICAL LEMMAS

Here we give lemmas which were repeatedly made use of in the proofs in the
previous sections.

Lemma 6.1. Let real coefficients 0 < a, <a, <---<a, and a, <a, < <a
be given. Then the determinant of the matrix M = (u; i) defined by u; i = af' ,
1<i,j<s, is positive.
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For the proof we refer to [6, p. 118], where the transposed matrix MY s
considered.

Lemma 6.2. Let s > 1, x €R, and let the s x s matrix S = (0, ;) be given by
0,;=1 (1<i<s),0,, =@-1)x (2<i<5),0, ;=0 (otherwise). Then:

(i) Sa; =b,(x) for all i€l

(ii) det(Sv,, Sv,,...,Sv) = det(v,,v,,...,v,) (for all v ,v,,...,
v, €R’).
Proof. S is a triangular matrix with unit diagonal elements. Hence det(S) =
1. O
Lemma 6.3. Let s > 1, and let the s x s matrix T = (t; ;) be given by T, =
(,’ D) <), T ; =0 (otherwise). Then:

(i) Ta,=a,,, and Tb(x) b, (x) forall ieZ, x€R.

(ii) det(Tvl s Tvy, ..., Tv) =det(v,, v,, ..., v,) (forall v,,v,,...,v €
RY).
Proof. T is a triangular matrix with unit diagonal elements. Hence det(7) =
1. O

Lemma 6.4. Let i >0 and x,y be real numbers with x > 0. Let 0< j(1) <
Jj(2) < --- < j(s) be a sequence of integers. Define

F) =det (b_ (=), by (%), by (X),s -+ by (X)) -
Then f(y)>0 and £ f>0 forall y>0.

This lemma can be proved by using Lemma 6.2, expanding the determinant
along the first column, and by applying Lemma 6.1.
Lemma 6.5. Let i, j, s be positive integers with i < j. Let 0 < j(1) < j(2) <
- < j(s) be a sequence of integers, and let x € (0, c0). Then
det(a_,, a_,, b;,y(x), b (x), ..., b;(x))>0.
This lemma is closely related to Lemma 3.3in [13].
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