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ROSENBROCK-TYPE METHODS ADAPTED 
TO DIFFERENTIAL-ALGEBRAIC SYSTEMS 

CLAUS SCHNEIDER 

ABSTRACT. We consider the numerical solution of differential-algebraic systems 
of index one given in Kronecker canonical form. The methods described here 
are derived from the Rosenbrock approach. Hence, they do not require the 
solution of nonlinear systems of equations but one evaluation of the Jacobian 
and one LU decomposition per step. By construction, the s-stage method co- 
incides with a solver for nonlinear equations of order s + 1 if the stepsize is 
set to zero. In this sense, the adaptation to differential-algebraic equations is 
performed. The special structure of the method leads to simplified order con- 
ditions and to an easy implementation. Some particular methods up to order 4 
are given. Especially, an embedded 4-stage method of order 4 (3) is derived. 

1. INTRODUCTION 

In this paper we will be concerned with differential-algebraic equations 
(DAE's) of the Kronecker canonical form 

(1.1) y' =f(y,z), 0=g(y, z), 

(1.2) y(x0) =y0, z(x0) = z0, 

where the initial values (1.2) are assumed to be consistent, i.e., g(y0, Zo) = 0. 
Furthermore, we assume that f and g are sufficiently smooth functions and 
that gl/Oz has a bounded inverse in a neighborhood of the exact solution, i.e., 
the DAE is of index one. Then local existence, uniqueness, and regularity of the 
solution are assured (cf. [3, 10, 13]). Obviously, the case of an implicitly given 
ordinary differential equation F(y, y') = 0 is included in ( 1.1 ) with f(y, z) := 
z and g := F. For the numerical solution we will study a Rosenbrock-type 
method (ROW method), i.e., a linearly implicit Runge-Kutta method applied 
to (1.1). But the ROW method will be modified in such a way that it contains a 
high-order solver for purely nonlinear equations. Other approaches have been 
published in [1, 2, 4, 6-8, 11]. 

The paper is organized as follows. In ?2 we describe the ROW methods and 
their applications to DAE's. In ?3 we discuss the order of such a method in the 
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context of DAE's, also for especially simple DAE's with f = 1 and y(x0) = xo 
(i.e., for the problem of following the implicitly defined function z), and for the 
solution of nonlinear equations. This leads (in ?4) to a class of ROW methods 
adapted to DAE's. Finally, in ?5, some particular methods of order 2, 3, and 4 
are given. 

2. ROW METHODS 

ROW methods are linearly implicit Runge-Kutta methods and may be con- 
sidered as modified Rosenbrock methods. They were introduced by Wolfbrandt 
in [16] and extensively studied by Norsett and Wolfbrandt in [9] and by Kaps 
and Wanner in [5], who also described a transformed version which is more 
suitable for numerical computations. ROW methods are easy to derive from 
singly diagonally implicit Runge-Kutta methods (SDIRK): Let A be a lower 
triangular matrix with diag(A) = yI, y $4 0. Then the first step of an s-stage 
SDIRK for the solution of the initial value problem 

(2.1) y' =f(y), y(x0) = yo 
is given by 

(2.2) k,=hf yo+E i k) i=1(I)s, 

(2.3) Y, = Yo + E ,ki 
i=l1 

Now linearize (2.2) with respect to F, where A = a + F, a and F lower 
triangular matrices, diag(a) = 0, diag(F) = yI. This process yields the ROW 
method 

/ i-l i 

(2.4) ki = hff yo + h<EY k1 1= l ( l )s, 
j =1 J =1 

where denotes the Jacobian of fat y0. F= diag(A) leads to the classical 
Rosenbrock process (cf. [15]). Since F is regular, the transformed version of 
Kaps and Wanner is achieved by setting Ki E'=, yijkj = l(l)s: 

(I - hy<y)Ki = yhf Yo + (ar l)ijKj 

(2.5) l J=1 

-y ET - )ijKj, i = l(l)s, 
j=1 

(2.6) Y1 = yo + (UTF )iji. 

i=1 
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Hence, the matrix-vector product in (2.4) is avoided. Only one LU decompo- 
sition of (I - hyJy?) per step is required, independently of s-the number of 
stages. The ROW method is defined by A = a + F and ,u. Now Roche applied 
this method to the DAE given in ( 1.1). Furthermore, he derived order condi- 
tions and computed the coefficients of some numerical methods in his excellent 
paper [14]. Then (2.4), (2.3) read as follows: 

1-1 i-1 

(2.7) ai := Yo + E Z ikj, bi := ZO + E ajlj, i = l(l)s, 
J=1 J=1 

i I 

(2.8) ki = hf(al, bi) + hf, yE jk1 + hfJZ yijlj, i = l(l)s, 
I I j=1 j=1 

i i 

(2.91i)i + E yijk + gz i 1 i = 1()s, 
J=1 J=1 

s s 
(2.10) Y, = Y0 + iki, zi = Zo + E ili 

i=l = 
Now the matrix 

l gy 9z 
has to be decomposed in every step. Obviously, a transformed version may be 
deduced in this case too. But it is not at all obvious why the same matrix F 
is used in (2.8) and in (2.9), which are linearizations of two basically different 
types of equations. This choice has some practical benefits, as will be seen later, 
but it is not compelling. Therefore, we will replace (2.9) by 

I i 

(2.11) 0 = g(ai, bi) + g? 6--k- + gz? Eij X lls 
J=1 j=1 

with B := a + A, IA a regular lower triangular matrix. Furthermore, we no 
longer assume Yii = y for i = 1(1)s. Then the matrix to be decomposed 
becomes 

hI - hyi -hyllt 

l gy gz 
at stage i, showing that it makes sense to require only yi, E {Y, 0}, Y t 0, 

i = l(I)s. If diag(F) = 0, then (2.8) is an explicit equation. The same is true 
in a method with F = 0 studied by Rentrop, Roche, and Steinebach in [12]. 
There, a, uL are taken from an explicit Runge-Kutta-Fehlberg method, and A 
is used to fulfill the remaining order conditions. The coefficients of a 6-stage 
method of order 4 are also given in [12]. We intend to use the matrix A as a 
tool for the efficient solution of nonlinear equations-(2.7)-(2. 10) reduces to 
such a problem if h = 0. Then a, F, and ,u are the remaining parameters 
(just as in Roche's approach), which have to be chosen such that a high-order 
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method is achieved. The order equations for the methods (2.7)-(2.10) and 
(2.7), (2.8), (2.11), (2.10) are summarized in Table 1, where the following con- 
ventions are used: e denotes the vector (1, 1, .I . , 1)T e RS; if y, x E Rs and 
v EN , then xv denotes the vector (x , , x )T , and x *y the vector 

(XlYly, ., x5ys)T 

TABLE I 
Order conditions for order p 

p y-component z-component 

1'' (1) PT e = 1 
T T -1 2 

2 (2) pu Ae= 1/2 (3) p B _((ae) = 1 
T 2 T- 3 

3 (4) ' (ae) = 1/3 (7) B-' (ae) =1 

( T) , A e = 1/6 (8) 
p B [(Ee)* (caAe)] = 1/2 

- - - - - - - - - - - - - - - - - - - - - - - (9) 'UTB -1[(ae) * (aB I(ae)2)J= 1 
T 1 2 

(6) p AB-' ((e) = 1/3 

4 (10) pu (ae)3 = 1/4 (19) PT B (ae) 
4 1 

(11) P T[(oe). (aAe)]= 1/8 (20) pUTB B[(ae)2 (caAe)]= 1/2 
T 2 T 1 (e)-(aa )2 3 (12) p A(ae) = 1/12 (21) p B [(ae) (a(ae) )J = 1/3 
T3 T 1 [e) 2 

(13) p A e = 1/24 (22) p B [(-e) (aA e)] = 1/6 

(14) UT [(oie) (sB -I(ae)2)J= 1/4 (23) pTB B(aAe)2 = 1/4 
T -1 2 1 2 ------ - - - - - - - - --------- (24) p B- [(ae) (aB (ae) )]=1 

T 2 1 2 T -1ae (15) p A B ((ae) = 1/12 (25) p B [(e) 
* (aB- I[(ae ) * (aAe)])] =1 /2 

T 1 3 T 1 (Ae 1 2 
(16) pU AB (ae) = 1/4 (26) p B [(Ae)* (aB (ae) )] = 1/2 

1T - T 1 [ e) - 1 3 
(17) pt AB [(ae)* (aAe)] = 1/8 (27) p B [(ae) (caB (ae) )]= 1 

(18) pu AB l[(ae) (cuB (Be) )] = 1/4 (28) T B 1[(ae) 

(caB I[(cxe) (cxB 
- 

(cae)2)I)I1 
(29) ,TB- 1(,B-l1(,r)2)2 _ 1 

T 1 -1 2 

(30) p B 1[(ae) ((xABe (ae))] = 1/3 
5 (31)-(63), cf. Remark (i) 

Remarks. (i) The order conditions (1)-(5) and (7)-(14) are given in [14], and 
(6), (15)-(18) in [12]. The remaining conditions (19)-(63) have been computed 
by W. Link (University of Mainz, private communication) according to the rules 
of [14]. His results show that the not explicitly given conditions (31)-(63) may 
be deduced from the conditions (10)-(30) in the following manner: 

(a) If p TX = a is condition (i), i e {1 0,. , 30}, then condition (21 + i) 
has the form uT Ax = a/5. 

(b) If 'UTB x = a is condition (i), i? {19, ...I , 30}, then condition 

(33 + i) has the form T x = a/5. 

(ii) The order equations without B describe just the order conditions for 
the ODE case given in [5]. 



ROSENBROCK-TYPE METHODS 205 

(iii) If A = F, then the equations containing A * B 1 (6), (15)-(18), and 
(30)-are redundant, e.g., (30) is already fulfilled by virtue of (21). Hence, 
A : F introduces six additional equations in Table 1, and 17 for p = 5 in the 
y-component. 

3. ORDER OF THE METHOD 

The following theorem connects the order conditions and a requirement for 
stability, yielding a result on convergence of the ROW method. 

Theorem (Convergence). Consider the method (2.7), (2.8), (2.11), (2.10), and 
assume the following: 

(i) The order conditions of the y-component holdfor p = 1(1 )p. 
(ii) The order conditions of the z-component hold for p = 2(1)p - 1. 
(iii) The stability condition 

(3.1) -1 < I _,UTB-le < 1 
holds. 

Then the ROW method is convergent of order p, i.e., for n * h fixed, 

max Iyj - y(x0 + ih)j = O(h ) 

and 
max I zi - Z(Xo + jh) = O(hp). 

Proof. The proof follows by collecting results from [1, 4, 14]. o 

Applied to an ordinary differential equation, i.e., fz = 0, g = 0 in (1.1), a 
pth order ROW method obviously converges with order p at least. If, on the 
other hand, the DAE to be solved has the form 

(3.2) y' = 1, g(y, z) =0, y(x0) =x0, g(yo0 z0) =0, 
i.e., fz = 0, fy = 0, then we are dealing with the problem of computing the im- 
plicitly defined function z at points x0 + nh, knowing its value at x0. Thus, 
applying the ROW method to a problem with a special structure as in (3.2) 
yields an efficient algorithm for following the path of an implicitly given func- 
tion. Furthermore, high-order ROW methods designed for this special problem 
may be derived by cancelling those order conditions in Table 1 which hold inde- 
pendently of the coefficients a, F, A, ,u if f, = 0 and fz = 0. From Roche's 
results in [14] it is easy to deduce the following lemma. 

Lemma. Consider the ROW method (transformed version) applied to (3.2): 

(3.3) Ai = -(go )I 1g xo + h(ae)i, zo + A(a- I)ijA1) + h4 (Ae)i 
L ~~~~~~j=1 

i= 1(l)s, 

(3.4) z = Zo + (, A )iAi 
i=l1 
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Assume that 
(i) ,u e = 1 (preconsistency). 

(ii) -1 < 1 -_ B-le < 1 (stability). 
(iii) The order conditions for the z-component with right-hand side equal to 

one holdfor p=2(1)p-1. 
Then the ROW method (3.3), (3.4) is convergent of order p, i.e., for nh fixed, 

yj = xo + jh, 0 < j < n, and max?<?j<n Iz; - z(x0 + jh)l = O(hp) . 

In order to achieve p = 5, e.g., the equations to be satisfied are (1), (3), (7), 
(9), (19), (24), (27)-(29) in Table 1, and the stability condition (3.1). 

Example of an ROW method for the solution of (3.2). Let R := (riJ)iJI=l(l)S 
with rj =1, i - j, rij = 0 otherwise, and e1 be the jth unit vector in 

IRS. With B := diag(1/i)R, a := (I - R- )B, A = B - a = R'lB, and 

y := e/s, we have ae = e - el, (aA 1)1j = 1 for i > j, Ae =el, and 
T 1 T 1 T 
At 1A = e B R/s = eTR = eT. Then (3.3), (3.4) become 

Al = - (go )I[g(xo, Zo) + h y?], 

(3.5) 
(g g (x+h zo+EZ j) i =2(1)s, 

(3.6) zi = Zo+ Ai. 
i=1 

This special s-stage ROW method is of order s + 1 for problem (3.2), as can 
be seen very easily, at least for s < 4, from the order equations, since 

T -I T -1I - 1 
(3.7) ,u B = es and aB = I - R = shift to the right. 

Hence, stability and preconsistency are assured by the ansatz. The remaining 
order conditions simplify to 

(3.8) (ae)2 = 1, (ae)1 = 1 forj= 3(1)s, 

and they are obviously satisfied. That the s-stage method (3.5), (3.6) is of order 
s+ 1 for arbitrary s can be seen by inspecting the order trees for (3.3), (3.4) and 
the theorems given by Roche in [14]. In this special case the remaining z-trees 
of order p are constructed recursively starting with the order-two z-tree: 

Let t be a z-tree of order p - 1 > 2: (a) add an edge with a meager vertex 
to a fat vertex of t or (b) replace a meager vertex of t by the order-two z-tree. 

The resulting trees are the z-trees of order p for method (3.3), (3.4) applied 
to problem (3.2). Employing these rules in the order equations and using the 
special structure of the method (3.5), (3.6), i.e., using (3.7), yields the conditions 
(3.8). 

Remark. If, in (3.2), x0 = 0 and g(y; z) = (z) - (1 -y)p(z0), then (3.4), 
(3.5) defines a homotopy method for finding a root z = z(1) of (0. It works 
as long as g = (pz is regular and the DAE possesses a solution from 0 to 1. 
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After this study of some rather special DAE's we now inspect the case h = 
0 in the general algorithm. Then ki = 0, i = l(l)s, and the li are given 
recursively. In the transformed version (cf. (3.3)) we have 

i-l 

(3.9) Al = -(go) g YI t + (OA- )Iji i =lls 

and the next iterate is given by 

(3.10) zi = Z0 + Z(Cu )EiX 
i=1 

If s = 1, then (3.10) describes one step of a damped Newton method with 
damping factor p,16 = 1161, for a consistent ROW method. Hence, only 
dl lI= yields a quadratically convergent method for the solution of g(y0 Z) = 

0. If s > 1 , then a method of order s + 1 (order means Q-order of the solver 
(3.9), (3.10) for nonlinear equations) is achieved if 

(3.11) (aA )ij = 1, i > j, and 'u A = e 

Indeed, this choice leads to an iterative method of order s + 1 which was 
introduced and discussed by Traub in [ 17, pp. 165 ff and pp. 174 if]: 

(3.12) Al = (-goY)g (F 9Y 'oZ? E ) ' i = I (I)s, 

(3.13) Z = Zo+EX1 
i=1 

In the following section we construct ROW methods with property (3.11). 
Hence, they coincide with Traub's algorithm if h = 0. In this sense, we adapt 
the ROW method to nonlinear equations g(y, z) = 0, using the new parame- 
ters A to fulfill (3.1 1). 

4. ADAPTED ROW METHODS 

Let R be defined as in the example of the preceding section. Then (3.1 1) 
implies a = (R - I)A and B = + A = RA. Thus a = (I - R 1)B, i.e., 

bij = asl+l I, i = l(l)s- 1, j = l(l)s. We have to ensure ai+,1i 0 ? for 
i = 1(1)s - 1 in order to assure regularity of B or A, respectively. Then the 

T -1 T T -1 T -I T 
second condition in (3.11) reads ju B R = e or ,u B = e R =S 

T T 
implying ,t = es B or bsJ = pj, i = l(l)s, where 's :A 0 is assumed for 
regularity. Hence, the structure of the adapted ROW-method is exhibited, and 
the results are collected in the following lemma. 

Lemma (Structure of the adapted ROW-method). Let g E Rs, ,s : 0, a E 
Rs's be a lower triangular matrix with vanishing diagonal, and a i?l, 0 0, 
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i = 1(1)s - 1. Define B by 

(4.1) bij :=aj+l 'j i= l(l)s- 1, j = 1(1)i, 

b5j :=ij1, j= 1(1)s. 

Then 
(i) B is regular. 

1 1 1 ~~ ~~~~~~~~T T 1 T (ii) aB =I -R ,i.e., aB x =(0, x1, ...,xs1) ,and ,iB es 
(iii) A := B - a = RKlB = B - (I - R1l)B. 
(iv) (3.1 1) holds. 
(v) T B -e = 1, i.e., the method is stable. 

Proof. (i) By assumption. (ii) By (i) and the definition of B. (iii) By (ii). (iv) 
One has aAo l B IR = RR- I by (ii), (iii), and ,iTB IR eTR = eT by 
the definition of B and R. (v) By (ii). o 

The special structure given by (4.1) has some effect on the transformed ver- 
sion of the ROW method and facilitates its implementation: 

Adapted ROW method (transformed version): 

(I - hyiify )Kj 
- hy1if,A. 

(4.2) = i{hf( oEKil Zo?Z?) ?hJ, E(FAI)i K. 
f z ~~i-i - -i- (4.2) dii YOf ty 7j 0 + , J+hy (r )JK 

+hJ:E(r/ )ijj-(/ iKI} >, i = l(l)s, 
j=1 j=l ) 

(4) 0 0 
(4.3) gy Ki + gzAi 9 Y0 + E Kj Zo + EAj | i =l(l)s, 

j=l j=l 
s s 

(4.4) Y =y0 + E Ki z = Z0? + Eti. 
i=l i=l 

Reminder: YH, E {O, y}, i = 1(I)s, and y$ 0. 
The effect on the order conditions follows from (ii) of the lemma leading to 

(4.5) Two simplifying rules for the order conditions of an adapted ROW-method: 
(1) Replace u B lx=a by x5=a. 
(2) Replace aB lx by (Q,xl, x2, ..., x5s-)T. 

Hence, all equations for the z-component are considerably simplified. The 
construction of particular methods thus becomes an easier task. Nevertheless, 
a further simplification of the order conditions proves to be quite useful. For 
this reason we introduce the following 

(4.6) Simplifying assumption: Ae = 1 B 1 (ae)2. 
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This implies a 0= Y i1 and aAe = I>B B (ae)2, i.e., s - 1 additional 
equations (aAe)i = (aee)21, i = 2(1)s. On the other hand, many equations 
(depending on the desired order, cf. Table 2) are redundant. For example, 
assumption (4.6) implies (cf. Table 1) that (2)=(3), (5)=(6), (8)=(9), etc. 

TABLE 2 
Effect of the simplifying assumption (4.6) N := number of order 
conditions for an ROW method of order p 

p N (4.6) 

2 2 2 
3 6 4+s 
4 18 12 + s 
5 63 39 + s 

5. METHODS OF ORDER 2, 3, AND 4 

If s = 1, there exists an adapted ROW method of order p = 2 which is 
uniquely determined by the order equations (1), (2), and by (4.1): 

(I - hfj'/2)KI - hfjtl /2 = hf(yo, zo), 

(5.1) gyK1 + gzl = -g(yo, zo), 

Yi =Yo + Kl ' zI Zo + Al. 

If s = 2, there exist exactly two adapted ROW methods of order p = 3 
(here and in the sequel we present only the coefficients needed to implement 
(4.2); J = 1 /(A I)jj and Yii = 5jj(A 'l)jj) 

(5.2) FA =( 2 1)' A 0(3a2 0) ae{-l,l}. 

If 1/a = 5l = a21 = 1, then the order condition (7) is fulfilled also. 
If s = 3, the situation becomes more interesting, but it is impossible to 

achieve order p = 4 with an adapted ROW method. (The same result holds 
for Roche's ROW method, cf. [14].) Indeed, conditions (3) and (7) imply 
a31 + a32 = I . Thus (9) forces a2l to be in {- 1, I} . But then it is impossible 
to fulfill (1), (4), (10), and (14) simultaneously. 

For ODE's, there exists a 3-stage ROW method of order 4 (see [5]). On 
the other hand, the method given in ?3 (with s = 3) also has order 4 for the 
implicit function problem-as does any preconsistent adapted ROW method 

T with ae = (0, ?I1, 1) . But then it is impossible to achieve order 5 because of 
condition (28). So we are interested in 3-stage methods with ae = (0, ? 1, 1)T 
Then the simplifying assumption (4.6) ensures that even conditions (2) and (8) 
hold. Furthermore, we are looking for an embedded method of order two, i.e., 
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for additional coefficients ,i such that conditions (1) and (2) are still satisfied 
if u is replaced by Ai. Then 

s s 

(5.3) vj := Yo + ( l)iK ' 1 := ZO + Z(TAl1),ii 
i=1 i=1 

can be used for stepsize control. The following are two methods satisfying (4.6): 

~T -1 LA = (1 , 1,5/4), 

(5.4) -1 (1? ) A1=(1 ) 

and an explicit one: 

(0 
(5.5) FA = 

I 1/2 0 , 
T f A and A-1 as in (5.4). 

1/2 2 0 

In method (5.5), yi, = 0, i = 1 (1)s. Hence, (4.2) can be solved explicitly for 
K1, K2, K3. Clearly, a whole class of such methods exists. But we now study 
the case s = 4 and show that an adapted ROW method of order p = 4 does 
exist, in contrast to Roche's approach. Furthermore, a method of order 3 can 
be embedded. The order p = 5 is already impossible to achieve for ODE's (cf. 
[5]). Moreover, an adapted 4-stage ROW method of order four cannot have 
order five for the implicit function problem. Indeed, the conditions (3), (7), 
(9) imply (ae)4 = 1 and (ae) 2 = 1. Then (19), (24), and (29) are fulfilled. 
The remaining conditions are (27), (28), i.e., (ae)3 = 1 and (ae)2 = 1 . If they 
hold, then the linear equations for ,u arising from (1), (4), (10), (14) would 
have no solution. Hence, if (ae)3 = 1, then we necessarily need (ae)2 2 1. 

Furthermore, the following results hold: 
(1) If (ae)3 = 1 and a?21 $ 1, then a21 must not be equal to T - -0.928, 

where T is the only real root of the polynomial 4t3 - 3t2 - 3t + 3. Otherwise, 
,I4 would vanish, contrary to the regularity of A. 

(2) If (ae)3 = -1, then T-1, T2 are forbidden values for a21. Here, TI 
denotes the real zero of t3 - t2 + t + 1 which leads to unsolvability for ,u, and 

T2 denotes the real zero of 4t3 - 3t2 + 3t + 3, leading to U4 = 0. 
(3) In all other cases, an adapted ROW method of order 4 (with four stages) 

can be constructed; but it is never explicit, i.e., diag(F) :# 0. 
These results. are due to W. Link (University of Mainz, private communi- 

cation). We restrict ourselves to the case (ae)3 = -1, ?a21 = 1, and assume 
that (4.6) holds. This yields-after lengthy calculations-the following class of 
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4-stage adapted ROW methods of order 4: 

a32 O, a 43 0, a22, a33 E {0, 7/24}, 

a21=1, I a41 4/3, all = 0, a44 = 7/24, 

,u 
T 

( 1 6, 0 , 1, 7) /24 , 

a31 = - 1 - a32 a42 =-1/3 - a43, 

a21 = 1/(2a 32) - a22, a43 = 1/24 + a43/7 - a33/7, 

(5.6) a42= - a 43/7 - (1/3 - a33 + a22)/7 

- (a22 - a33 - a32 - 3a32a33)/(21a43), 

a32= - 1/3 - a43 - 7a42, 

a4l = - 1/(42a32a43) - 1/(14a43) - 1/(14a32) + 10/7 
+ a22/7 + (a22 - a33 - a32 - 3a32a33)/(21a43) 

a3l = 10- 7a4l. 

We now look for an embedded method of order three, i.e., for Q such that 
conditions (1 )-(6) still hold but at least one of the conditions (7)-( 18) does not. 
With the assistance of W. Link, and using MACSYMA, we find the condition 
a22 = a32I leading to 

a32 =a22 = 7/24, g1 = 2/3, 

(5.7) P4 $7/24, 

Q3=o4(24Q /7 - 1 )/ 15 +Q/7, 

Q2=1/3 - p3-Q 

The remaining free parameters can be used to minimize the error constant. This 
yields the following 

(5.8) Embedded adapted 4-stage ROW method of order 4(3): 

T A-I =(71, 39, 23, 24)/39, 

19 7 ~ , A-1=h[ 24 1 

7 053/2 O 0 7 7 39 7 
3/14 0 1 71 - 15/7 129/7 23 241 

If s = 5, it is impossible to achieve order p = 5 with an adapted ROW 
method, as can be seen by inspecting the conditions for ae, leading to (ae)T = 
(0, 21 , -1, 1, 1), which is not compatible with the conditions connecting ,U 
and ae. But there exists a whole family of adapted ROW methods with s = 5 
and p = 4 which fulfill the order conditions (1)-(30), i.e., they converge with 
order p = 5 for the implicit function problem, and with order 6 for purely 
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nonlinear equations. An explicit one is given by the following data: 

(5.9) Embedded explicit 5-stage adapted ROW method of order 4(3): 

T/\ A = (1, 1 , 1,, 5/6), 
[ ~~0 

-1/2 0 
FA1 = -1/2 -4/3 0 

481/36 28/3 293/72 0 
-211/12/32 -2/3 -173/24/32 3/32 0. 

3 1 
A-1 11/3 7/3 1 

-53/3 23/3 17 24 
L 7/3 8/3 2 3/2 15/4 

The methods described in this section have been implemented and applied 
to general DAE's and to special DAE's like implicitly given ODE's or implicitly 
defined functions as well. Compared with the methods given in [12] and [14], 
the adapted ROW methods yield better results in the z-component. For exam- 
ple, method (5.8) solves the numerical problem described in [14] better than 
Roche's 5-stage method: the y-component is better approximated by a factor 
4, the z-component by a factor 100. Hence, we remain closer to the manifold 
defined by the function g. This has been the purpose of our approach-to 
embed a fast solver for nonlinear equations in the ROW method. 
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IWe call attention to four wrong coefficients in this paper: The method DAE34 has order p = 4, 
if (cf. Table (3.7)), (t41 = -0.0052083... = 0.1927083... , /41 = 1.10416... Y42 = 

-0.947916.... 
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