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NOTES ON INTEGRATION AND INTEGER SUBLATTICES 

J. N. LYNESS, T. S0REVIK, AND P. KEAST 

ABSTRACT. A lattice rule is a quadrature rule over an s-dimensional hypercube, 
using N abscissas located on an integration lattice. In this paper we study 
sublattices and superlattices of integration lattices and of integer lattices. We 
exploit the properties of generator matrices of a lattice to provide an easy and 
elegant description of the relation between a lattice and a sublattice of given 
order. We also obtain necessary and sufficient criteria for existence of sublattices 
and information about the number of these. 

1. INTRODUCTION 

This paper is concerned mainly with relations between s-dimensional integer 
sublattices and superlattices. The sort of problem considered involves finding 
particular lattices AR which contain a specified lattice AB' i.e., AB C AR' 
We describe our process for doing this as factorization of AB' since it involves 
factorizing an s x s generator matrix B of AB* All results about integer 
lattices have corresponding dual results about integration lattices, and these are 
collected together in ? 5. 

These results form a part of the theory of s-dimensional lattice rules, a class 
of numerical integration rules for the hypercube. Specifically, these results may 
be applied to speed up the search procedure for lattice rules having particular 
properties, and to construct sequences of embedded lattice rules. 

The s-dimensional lattice rule is a quadrature rule for the s-dimensional hy- 
percube using a subset of order N of the NS abscissas in [0, 1)S required by 
the Cartesian product N-panel trapezoidal rule. These points lie on an inte- 
gration lattice. The number-theoretic rules, introduced by Korobov [2], form 
a major subclass of lattice rules. Niederreiter [7] gives a survey and provides 
an extensive list of references for number-theoretic rules. Their role in numer- 
ical quadrature is examined by Haber [1]. The circumstance that properties of 
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number-theoretic rules are also shared by lattice rules is discussed in Sloan and 
Kachoyan [9]. 

In Lyness [3], a variant approach to the theory of s-dimensional lattice rules 
was developed based on the generator matrix A of the integration lattice AA. 
The points of this lattice are integer combinations of the rows of A. An inte- 
gration lattice A is one which contains the unit lattice A0. The abscissa set of 
the lattice rule Q(A) comprises those points of the integration lattice A which 
lie in [0, 1)S. It was shown there that AA is an integration lattice if and only 
if B = (A')- is an integer matrix. 

We term the order of B, or of A according to context, 

N= tdetBt = IdetAK, 

which is the number of abscissas in the abscissa set A(Q). B is, of course, 
a generator matrix of a lattice AB, and A B is termed the reciprocal (polar or 
dual) lattice of AA. 

In this section we reintroduce briefly some of the basic theory of lattices. 
These results are stated and proved in many texts; for example, Newman [6, 
pp. 1-20], or Schrijver [8, Chapter 4]. They form a suitable background for 
the new results in the subsequent sections. Sections 2, 3, and 4 of the present 
paper are devoted to a detailed development of the integer lattice factorization 
theory. In ?5, we give the principal dual results for integration lattices. 

Definition 1.1. An s x s unimodular matrix is an integer matrix whose deter- 
minant is ? 1 . 

U(U ), a unit matrix modified by having an additional unit element in the 
(i, j) position, is clearly a unimodular matrix, as is S(') , a unit matrix modified 
by having the (i, i) element replaced by - 1 . It is readily verified that the s x s 
unimodular matrices form a group Us under matrix multiplication, generated, 
for example, by the elements U(i j) , si). 

Elementary unit row operations involve adding or subtracting one row to or 
from another, or changing the sign of a row. These may be carried out on 
an integer matrix by premultiplying by a unimodular matrix. It is clear that 
carrying out these operations on a generator matrix B, while naturally altering 
B, does not alter Al. So there are many possible generator matrices B of the 
same lattice AB. It is convenient to define a particular form: 

Definition 1.2. An s x s integer matrix B is in upper triangular lattice form 
(utlf) if and only if 

bii > I i =1,~2,..s, 
brc =0 1 < c < r <s, 

brc E [O, bcc), < r < c <s. 

This (or its transpose) is conventionally known as the Hermite Normal Form 
of B. The notation used here corresponds precisely to that used by Schrijver, 
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except that we define our lattices in terms of rows and he does this in terms of 
columns. 

It can be shown that any two generator matrices B and B' of the same 
lattice AB are related by B' = UB, where U E Us. This forms part of the 
following theorem. 

Theorem 1.3 (Schrijver [8, Theorems 4.1 and 4.2]). (a) Let L be a nonsingular 
integer matrix. There exists a unique U E Us such that UL is in utlf: 

(b) Let B and B' be in utlf and be generating matrices of AB and AB/. 
Then AB-AB/ if and only if B = B'. 

This allows us to state: 

Corollary 1.4. There is a 1-1 correspondence between the set of integer lattices 
and the set of integer matrices B in utlfJ 

Definition 1.5. The order N of a lattice AB is defined by N =detBI, where 
B is any generator matrix. 

We denote the class of s-dimensional lattices of order N by Ls(N); the 
number of distinct elements in Ls(N) is denoted by vs(N); the computation 
of vs(N) forms the subject of [5]. Lattices of a particular order may be further 
classified using the diagonal elements b1 I, b22, ... , bss of B, the utlf of their 
generator matrix. 

Definition 1.6. The upper class [/3] = [b 1, b22, ... , bss] of a lattice AB is the 
ordered set of the diagonal elements of the utlf of its generator matrix. 

We denote the set of lattices of this upper class by Ls([fl]); the number of 
different lattices in a particular class [/3] is simply 

vs([/3]) = b b bs 22 33 Sss 

and each of these lattices has the same order 

(1.7) NB= IdetBI = I[fl] = bIlb22 bss. 

We introduce class products and class factorizations in a natural manner. The 
relation 

(1.8) [bil I b22'?' bss] = IIIl I 22 I* ss][r, I r22 rss] 

abbreviated to [,B] = [A][p], stands for the set of equations 

bii = liiriiI i= I, 2, ..., s. 

We refer to this relation as a class factorization of [/3], or as a class product of 
[A] and [p]. 

Among some obvious consequences is 

(1.9) 1[/]1 = I[A]II[P]I. 
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Finally, by extension we denote the upper class of any nonsingular integer matrix 
B as the upper class of the lattice AB of which B is a generating matrix. 

A similar framework, using lower triangular lattice form and lower classes, 
exists. We have chosen the upper forms as a long discussion of lower classes 
would be socially unacceptable to one of the authors. 

2. SUBLATTICES OF INTEGER LATTICES 

In this section, we derive a basic theorem about sublattices when only integer 
lattices are involved. We use this to investigate some of the circumstances under 
which a specified integer lattice AR has sublattices AB of specified order or 
class. In the subsequent sections, we shall treat the more complicated reverse 
problem, in which AB is specified, and we seek AR of specified order or class. 

Theorem 2.1. Let s x s nonsingular integer matrices B and R be the generator 
matrices of AB and AR, respectively. Then AR 2 AB if and only if L = BR' 
is an integer matrix. 

Proof. If ABC AR, every element of AB is an element of AR -Since each row 
bi of B is an element of AR we have 

bi = AIR , i = 1, 2 , . .. , s , 

with Ai being integer. Consequently, B = LR, where L is an integer matrix. 

That is, L = BR1 . Conversely, when B = LR, then bt = ,utr1, where 

bt and r1 are rows of B and R, respectively. Then bt is an element of AR. 
Since all elements of AB are of the form Atbt it follows that all elements 
of AB are elements of AR. 0 

Corollary 2.2. An integer lattice AR of order NR has no sublattice AB of order 
NB unless NB/NR is an integer. 

Note that this theorem does not involve the utlf of the generator matrices. 
However, it provides only a partial answer to the question of whether the integer 
lattice AR (of order NR) has a sublattice of order NB, i.e., it does not unless 
NR is a factor of NB 

Theorem 2.3. Let R be a matrix in utlf which generates a lattice of upper class 
[p]. Let L(), i = 1, 2, ... , vs([A]j), be the distinct utlf matrices generating all 
lattices of upper class [A]. Denote by S the set of lattices given by 

{A(BM')jB(') - L(')R, i = 1, 2, * * ,v( 

Then: 

(i) Every lattice in S is of upper class [A][p]. 
(ii) The lattices in S are all distinct. 

(iii) If A is in S then A is a sublattice of A(R). 
(iv) Every lattice of upper class [A][p] which is a sublattice of A(R) appears 

in S. 
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Proof. (i) For any i, since L(l) and R are in utlf, then B(i) is upper triangular 
and has diagonal [A][p]. 

(ii) If B(i) , B(j) are two upper triangular matrices generating the same 
lattice, then, by Theorem 1.3, B(') = UB(j). Thus L(')R = UL(j)R, and so 
L(-) = UL(j). However, by Theorem 1.3(a), U = I, which establishes that the 
elements of S are distinct. 

(iii) Since L(') = B(')R 1 is an integer matrix, then, by Theorem 2. 1, A(B(')) 
C A(R). Thus, all elements of S are sublattices of A(R). 

(iv) If A(B) is a sublattice of A(R), then, by Theorem 2.1, L = BR 1 is 
an integer matrix. By Theorem 1.3 it follows that there exists a unimodular 
matrix U such that UL is in utlf. Thus, UB = ULR. Moreover, since B is of 
class [A)[p] and R of class [p], then UL is of class [A]. With R and L(i) as 
defined in the theorem, A(B) is generated by UB with B(j) = L(j)R for some 
j. o 

A similar theorem, in which one obtains all sublattices AB of AR that are of B 

order NLNR, is also valid and may be proved in the same way. In this theorem, 
the requirement that R be in utlf may be dropped. 

Thus, one may construct a complete set of generator matrices of all lattices 
of order NB which are sublattices of AR in a straightforward way, namely, 

(2.4) B) = L(R, i= 1, 2, ..., vs(NL), 

where NB = NLNR. 
The next step in the theory treats 

(2.5) B 'i = L )R() -1, 2, ..., vs (NL) 

where R(j) is a set of generating matrices in utlf of all the distinct lattices of 
order NR. There are difficulties here, which are clarified in the rest of the 

present paper. The first is that the number of matrices B(iij) constructed in 
this way is vS(NL)vS(NR), which exceeds vS(NB) unless (NL, NR) = 1 (see 
Lyness and S0revik [5]). Thus, in general, there must be some duplication. To 
continue an elementary investigation, we need the result that every lattice of 
order NB has at least one superlattice of order NR (when NR is a factor of 
NB). This is true, and a simple direct proof based on integration lattices exists. 
However, in our development it is convenient to defer this to ?4, where it forms 
part of a wider theory. 

3. SUPERLATTICES OF INTEGER LATTICES 

In this and the next section we treat the converse problem: Given a lattice 
AB (of order NB), how many lattices of order NR (which has to be a factor of 
NB) are superlattices of AB? We treat first a more limited problem. Given a 
lattice AB of class [,B], how many lattices of class [p] are superlattices of AB? 
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Clearly, the answer is zero unless a factorization [/?] = [A][p] exists. However, 
even in this case the answer is not generally the same for each member of the 
class [fl]. This is in spite of the fact that each member of class [p] has the 
same number vS([A]) of sublattices in class [,B], as was shown in the previous 
section. It appears that, in general, some of these are sublattices of several 
different lattices of class [p], while there are other lattices in class [Ii] which 
have no superlattices in class [p]. This situation is described in Theorem 3.9 
below. 

By Theorem 2.1, the necessary and sufficient condition for AR to be a super- 
lattice of AB is that L = BR-' is an integer matrix when B and R are any 
generator matrices of AB and AR, respectively. So, without loss of generality, 
we may take both B and R to be in upper triangular lattice form. In this case, 
L is also in upper triangular form (but not necessarily in utlf). Written out in 
full, the equations we have to satisfy in order to find L and R are: 

(3.1) b,i = lliri, i = , 2, ...,s, 
j-1 

(3.2) b'j - E likrkj = iiir,j + lijrJjj 1 < i < j < s. 
k=i+ 1 

In our problem we have available all elements of B and the diagonal elements 
of R. Two questions are: Do solutions of this set exist, and if so, how many 
are there? 

The diagonal elements of L are specified by (3.1). Now let us order the set 
of equations in (3.2) by columns, starting each column with the superdiagonal 
element and working up the column to row number 1. Then, as long as this 
procedure is successful, each equation considered has only two unknowns, r,j 
and lij (for some i < j), since every element on the left of (3.2) has been 
evaluated in an earlier calculation. Now the i, j equation of (3.2) has solutions 
for rij, lij if and only if the gcd of lii and 

(3.3) aij = (1ii, rIj), 

divides the left-hand side of (3.2). That is, 

J-1 

(3.4) bij - E likrkj - O mod aij. 
k=i+l 

Thus, for solutions to exist, it is necessary and sufficient that b1, J has the form 

J-1 

(3.5) bij= c,jaij + Z 1ik rkjl 
k=il+ 

where cij is any integer. We call a bij of this form an allowable value. 
There is a regularly spaced infinite set of allowable values of bi,, each sepa- 

rated from its neighbors by aij . Thus, there are precisely bjj/aij such values 
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in the interval [0, bjj). (Note that aij is a factor of rj, which is in turn a 
factor of bij .) 

However, for each allowable value of bij there is an infinite set of solutions 
for rij . It is simple to show that when (3.2) has a solution rij, lij, it also has a 
solution rij + krjj/aij, l,j - klil/aij for any integer k; moreover, all solutions 
for this allowable bij are of this form. We are interested only in solutions 

rij E [0, rjj) . There are clearly precisely aij such solutions. 
We sum up the situation with respect to a single equation of set (3.2) as 

follows. 

Lemma 3.6. When the values of all elements except rij and lij of the (i, j) 
equation of (3.2) are available, there are solutions of (3.2) only for (b1i/a,j) 
distinct values of bij E [0, bjj), and for each of these there are aij distinct 
solutions having r11 E [0, r1j). 

Thus, our calculation proceeds in s(s - 1)/2 stages. When dealing with the 
(i, j) equation, we encounter an inconsistency in a proportion (aij - 

1)/aij of 
the values of bi which could be considered, and in a proportion l/aij of the 
cases we find aij alternative solutions. This leads immediately to the following 
definition and theorem. 

Definition 3.7. The index I = I([A], [p]) of a class factorization [,B] = [A][p] 
is 

(3.8) I= fi ai, 
I<l?j<s 

where, as above, al1 = ( r1i). 

Theorem 3.9. When a class factorization [/3] = [A][p] exists, having index I, 
vs([fl])/I lattices of upper class [/3] each have I distinct superlattices of upper 
class [p], while the remaining (I - I)vs([/3])/I lattices of upper class [/3] have 
no superlattices of upper class [p]. 

It follows that the only case in which there is a superlattice of upper class [p] 
for every lattice of class [/3] is a case in which I = l, that is, all aij = 1 . In the 
next section, we show that every class [/3] has a unique index-1 factorization. 

We close this section with an example. We characterize the superlattices of 
upper class [p] = [I1, 2, 3] of the lattices of upper class [/3] = [2, 6, 3]. There 
are vs([/3]) = 6.32 = 54 integer lattices of this class. We find a = 2, a =- 1, a12- 13 
a23 = 3, and so only 54/(2- 3) = 9 of these have a superlattice in class [p]. 

It is straightforward but tedious to find these. It transpires that their generator 
matrices are 

(2 2p q0 

(3.10) B = 6 ?0 p P=0, 1, 2, q =O, 1, 2. 
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Moreover, according to Theorem 3.9, each of these nine lattices have six super- 
lattices. Thus, factorizations of the form 

( 2 2p q - 2 112 /13 1 r12 r?i3 

(3.11) L 6 30 = 3 1232 2 r23 

exist, with six distinct possibilities for R in utlf. The defining equations are 

r,2 + 112 = P, 

r23 + 123 = 0, 

2r13 + 1,2r23 + 31l3 = q. 

One may choose r12 and r23 arbitrarily. This defines 1,2 and 123; the third 
equation then takes the form 

(3.12) 2r13 = K-3313, 

where K iS a known integer. There is only one integer solution of this with 
r,3 E [0, 2]. Thus, to obtain the generator matrices of the six superlattices of 
AB when B is given by (3.10), one chooses r12 E [0, 1], r23 E [0, 2] and 
determines r13 from (3.12). 

On the other hand, with the same [,B] - [2, 6, 3], but with a different [p] 
having the same order as the previous one, namely, [p] = [2, 3, 1], we find 
a12 = a13 = a23 = 1 . Thus, every lattice AB of class [,B] has one and only one 
superlattice of class [p] . This is the special factorization discussed in the next 
section. (The special factorization of B in (3.10) is given there.) 

The wide scope of the problem is comprehended when one realizes that this 
example comprises a small part of the general problem of finding superlattices 
of order 6 of lattices of order 36. 

There are v3(36) = 4550 lattices AB of order 36 and v3(6) = 91 lattices AR 
of order 6. We are taking one class of the lattices of order 36, a class containing 
only 54 lattices. These may have superlattices of order 6 in any of nine different 
classes. Our example treats only two of these classes, the second largest, and 
one of the smallest. 

4. THE SPECIAL FACTORIZATION 

In the previous section we showed that, given upper class [/3] and given 
upper class [p] such that a factorization [/3] = [A][p] exists, the structure of 
the solution depends on the factorization index I, which is the product of all 
aij = (liiI rJj) for which 1 < i < j < s . In the special case that all ai. = 1, then 
I = 1 and every lattice of upper class [/3] has precisely one lattice of upper 
class [p]. Otherwise, this is not true. In general, of course, not all aij = 1. 
However, a natural question to ask is, given [/3] and NR, does there exist a 
class [p] whose order is NR and for which all aij = 1; if so, we shall call this 
factorization a special factorization. 

First we note that, unless NR is a factor of I[/3]I, there are no factorizations 
[/3] = [A][p] at all. Second, we note a somewhat special case: 
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Theorem 4.1. When NL - [/3]/NR and NR are mutually prime, there is a 
unique factorization [/B] = [A][p] for which l[p]j = NR, and this is a special 
factorization. 
Proof. When NL and NR are mutually prime, (l,i NR) = 1 and (rJ, NL) = 

1 . The unique solution of bii = liiri is 

Ili = (NL, bil), r11 = (NR, b j) 

and aij = 1 for all i, j. o 

In the rest of this section, we seek a special factorization in cases when 
(NL, NR) $1. 

Theorem 4.2 (The Special Factorization Recurrence). Given [B3] = (b11, b22, 
. . . , bss) and N (all positive integers), we may define 

(4.3) rH = (N, b1l), 
(4.4) r11 = (N/(r11r22... r1 i) b1)I i = 2, 3... s, 

(4.5) lii = b1/ri, i = 1, 2 ... 

in which case 

(4.6) [/3] = [X][p] 

and 

(4.7) a,j=(i Ij= 1<i <j <S. 

Proof. It is trivial, but necessary, to verify that rii lii and aij as defined 
above are all positive integers. After this, we proceed to divide each element in 
(4.3) and (4.4) by rij to obtain 

(4.8) 1 = (N/(rl l r22 ... r, IXii) 

Now, by definition, a1j is a factor of li . It is also a factor of r1j, which 
by (4.4) is itself a factor of N/(r1r22 r.. -_ ) . Thus, when j > i ai1 is 
a factor of N/(r r22 r1). Consequently, when j > i, a11 is a factor of 
two distinct quantities which by (4.8) are mutually prime to one another. This 
implies aij = 1, establishing (4.7). o 

Theorem 4.9. Under the hypothesis of Theorem 4.2, [p]j = (N, [/3]J). 

Proof. We define 

(4.10) P' = r r22 ' r,i 1=1 21 ... Is 

and, multiplying each side of (4.4) by Pi_ , note that 

(4.11) P1 = (N, PiIbii) i = 1, 2, ... , s. 

Using this, we establish that 

(4.12) PJ = (N bb22 bii) 



252 J. N. LYNESS, T. SOREVIK, AND P. KEAST 

by induction. The induction is properly anchored, as (4.3) establishes this with 
j = 1 . When (4.12) is valid with j = i - 1, we find, using (4.11) with i = j, 
that 

Pj = (N, (N, b1Ib22* bi- 1j1)bjj), 

which reduces to (4.12) as written. Thus, (4.12) is valid for all j < s. In 
particular, it is valid for j = s, establishing the theorem. o 

At this stage we have shown a special factorization exists, because we can 
construct one using the recurrence of Theorem 4.2 with N = NR . That theorem 
shows it is special. Theorem 4.9 shows that 

(4.13) I[P]I = (NR' [f]l) = NR- 

However, we still have to show that this special factorization is unique. The 
following lemma is a converse of Theorem 4.2. 

Lemma 4.14. Let 

(4.15) bil =liirii, i = 1, 2, ........,s, 

(4.16) ai1 = (III I rj1) =1 V < i < < s, 

and 

(4.17) N = r ... rss 

Then rii satisfy (4.3), (4.4) above with N = NR. 

Proof. Let hi, i = 1, 2, ..., s, be the elements generated by the recurrence, 
i.e., 

(4.18) hi = (NR, b11), 

(4.19) hi = (NR/rllr22 rl_1 _I-, bil), i = 2, 3, ... ,s. 

In view of (4.15) and (4.17), this may be rearranged as 

(4.20) hi = (r1ri+?+1 ... rs, r,li1i) 
(4.21) = rii(ri+?, 1+1 * rss, III I 

and (4.16) shows that the second factor here is 1, leaving h1 = ril ; establishing 
the recurrence relation gives the expected values of ri.o 

We conclude from these theorems: 

Theorem 4.22. Given [fi] and NR which is a factor of 1[fl], there exists one 
and only one special factorization [fl] = [A2][p] having j[p]I = NR. 

Proof. Theorems 4.2 and 4.9 establish that there exist special factorizations and 
show how to construct one of them. Lemma 4.14 shows that, if there is a special 
factorization, it is the one constructed. o 

The result mentioned at the end of ?2 follows immediately. 
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Theorem 4.23. When NR is a factor of NB) every lattice of order NB has at 
least one superlattice of order NR . 

Proof. Since AB and by extension [fi] is available, we find the special class 
factorization [fl] = [A][p] for which j[p]J = NR, using the recurrence relation 
of Theorem 4.2. This ensures that aij = 1 for all i <j, and so the equations 
B = LR have a unique solution for AR. aI 

In numerical experiments, we have extensively used the results of this section 
to provide generator matrices of all lattices AB of order NB in cases when 
NB = NLNR. Let us consider the set of matrices 

(4.24) B( '") = LWRO) j = 1, 2, v(NR), 

where L(i) and R(j) are complete sets of matrices in utlf. When (NL NR) = 1, 
this produces precisely the 

(4.25) vs(NB) = VS(NL)vS(NR) 

matrices we need. However, when (NL, NR) # 1, 

(4.26) vI (NL)vs(NR )> vs(NB), 

and this method, while providing all the matrices we need, provides duplicates. 
This duplication can be avoided if we omit all products L(')R(J) for which [A][p] 
is not a special factorization. This omission is justified by the observation that 
every lattice AB has a special factorization involving some AR. If we include 
all AR and only special factorizations, we shall encounter every AB precisely 
once. 

In ?3 we characterized some of the superlattices of order NR = 6 of the 
superlattices of class [,B] = [2, 6, 3], namely those of class p = [1, 2, 3]. 
That was not a special factorization, and the somewhat complicated structure 
of the result is described there. Here we extend the example. With the same 
class [fi] and the same NR, the special factorization obtained by Theorem 4.2 
is 

(4.27) [2, 6, 3] = [1, 2, 3][2, 3, 1]. 

Since this is a special factorization, all the 54 matrices B of class [2, 6, 3] 
factorize into LR, where L is of class [1, 2, 3] and R of class [2, 3, 1], 
and unlike the example in ?3, this factorization is unique. In particular, the 
unique factorization of the nine matrices in ?3 is 

-2 2p q~ -1 I q -2 r 0- 
(4.28) 6 0 = 2 0 3 0; 

for p=O, I=r=O;for p= 1, 1=0, r=2;for p=2, l=r= 1. 
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5. DUAL THEOREMS 

In this paper, we have dealt almost exclusively with integer matrices, which 
are the generator matrices of the reciprocal lattices of integration lattices. There 
is, of course, a 1-1 correspondence between elements of the set of integer lattices 
and elements of the set of integration lattices, which may be identified using 
B = (A )T. We shall in general identify B = LR with A = WV, where W = 

(L 1)T and V = (R 1)T. It is convenient to define the order of an integration 
lattice as the order of the corresponding integer lattice. This corresponds to 
vz(Q), the order of the abscissa set A(Q) of the lattice rule Q, which is the 
number of function values of f required by the rule. 

Theorem 5.1. Let V and A be the generator matrices of integration lattices AV 
and AA I respectively. Then AV is a sublattice of AA if and only if VA1 is an 
integer matrix. 

Proof. This is a direct dual of Theorem 2.1. One finds that VA1 = LT. 

Corollary 5.2. AA has no sublattice of order NV unless IAA /NNv is an integer. 

Similarly, the dual of the result encompassing (2.3) is: 

Theorem 5.3. Let A," be an integration lattice of order NR. Let L i - 

1, 2, ..., vs(NL) be a set of distinct integer matrices in utlf each having order 
NL . Then the set 

(5.4) A(I) - (L(l) )TV, i = 1, 2, ..., vs((NL)X 

includes once only a generator matrix of every distinct integration superlattice of 
Av of order NLNR. 

This result has an obvious application to lattice rule extension, i.e., the con- 
struction of lattice rules whose abscissa set contains the abscissas of a given rule. 
Finally, the dual of the theorem of ?4 is the somewhat unexciting result: 

Theorem 5.5. When NV is a factor of NA, every integration lattice of order NA 

has at least one sublattice of order NV . 

6. CONCLUSIONS 

Two related problems have been discussed in this paper. First, given an 
integer lattice A(R) and its utlf generating matrix R, we have shown how to 
construct, without repetition, all sublattices of R of specified order. The simple 
solution to this problem is discussed in ?2 in order to provide a background for 
the more complicated converse problem. This is that given an integer lattice 
of order NB, and given NR (dividing NB), how many superlattices of A(B) 
of order NR exist, and how can these be generated? This led to a less general 
problem, in which the upper class [,B] of an integer lattice A(B) and a class 
factorization [A][p] = [,B] where specified, and the existence of a factorization 
LR = B was investigated. We showed that when B is in utlf, and a class 
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factorization [A][p] = [fi] is specified, then the factors L, R may not exist 
at all, or may be nonunique, or may be uniquely defined, with R in utlf. The 
central result of this paper is the derivation of conditions on [A] and [p] to 
ensure the existence of a unique factorization LR = B, with R in utlf. A 
consequence of this result is that we can generate, in a simple manner and 
without repetitions, all superlattices with a given order, or a given integer lattice. 
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