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A POLYNOMIAL APPROACH TO FAST ALGORITHMS 
FOR DISCRETE FOURIER-COSINE 

AND FOURIER-SINE TRANSFORMS 

G. STEIDL AND M. TASCHE 

ABSTRACT. The discrete Fourier-cosine transform (cos-DFT), the discrete 
Fourier-sine transform (sin-DFT) and the discrete cosine transform (DCT) are 
closely related to the discrete Fourier transform (DFT) of real-valued sequences. 
This paper describes a general method for constructing fast algorithms for the 
cos-DFT, the sin-DFT and the DCT, which is based on polynomial arithmetic 
with Chebyshev polynomials and on the Chinese Remainder Theorem. 

1. INTRODUCTION 

In this paper, we use standard notation. By N, Z, IR and C, we denote 
the set of positive integers, the ring of integers, the field of reals and the field 
of complex numbers. For two polynomials X, Y we let X mod Y signify the 
remainder of X divided by Y. 

One of the most important tools in numerical analysis and digital signal 
processing is the fast Fourier transform (FFT), which efficiently computes the 
discrete Fourier transform of length N (DFT(N)), a mapping of a sequence 
X = (Xo, . X. , x ) EE C to its spectrum x= (x0, . , 1) E 

CN defined by 
N-i 

Xk N x1WN, WN exp(-27ri/N). 
j=O 

Using polynomial arithmetic, the formulation of many FFT-algorithms can be 
greatly simplified and their derivation seems more natural [1, 3, 10, 16]. Fur- 
ther, the polynomial notation can be utilized for considerations of the compu- 
tational complexity of FFT's [6, 17]. 

In order to introduce a polynomial representation of the DFT, we represent 
the input sequence x e CN of the DFT(N) as the polynomial 

N-1 

X(Z):= xzJ. 
J=0 
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zN-l 

ZN/212 zN/2+1 

zN/4_1 ZN/4+1 ZN/4-i ZN/4+i 

zNI8_1 ZNI8+1 ZNI8-i zNI8+i ZN/8-w8 ZNI8+W8 zNI8_w3 zNI8+W3 

FIGURE 1 
Factorization tree of ZN _ 1 with N = 2r (r > 3) 

Then we have k = X(w) (k =k , . ..., N - 1), i.e., 

(l.l) 
xk~ 

= X(z) mod(z - wk (k = 
O,............. N - l). 

Since 
N-1 

ZN 1= (Z-_Wk)X 

k=O 

we get a fast algorithm for the DFT(N) by the Chinese Remainder Theorem 
N (CRT) [1O, pp. 26-27], if we split X(z) mod(z - 1) stepwise into equivalent 

simultaneous remainders, using the successive factorization of ZN -1, such that 
we ultimately obtain the desired simultaneous remainders (1.1). We illustrate 
this by the radix-2 FFT of Cooley and Tukey (see [1]). 

Let N = 2r (r E N). Then z l- can be decomposed successively as 
in Figure 1. This factorization is the foundation of the radix-2 FFT, which 
calculates the DFT(N) by the recursive reduction of the input polynomial X(z) 
modulo the factors of ZN _ 1 in Figure 1. The rth step of this reduction 
procedure yields the spectrum x E CN. 

Taking into account that most DFT's are taken on real data, many fast algo- 
rithms for real DFT's were published in recent years. These algorithms exploit 
directly the symmetries of the real DFT [14] or use transforms, which map a 
real-valued sequence to a real-valued spectrum as the discrete Hartley transform 
[13], the DCT, the cos-DFT and the sin-DFT [15]. Although the advantage of 
the polynomial arithmetic for the FFT is well known, there does not exist a 
convenient polynomial approach to the DCT, the cos-DFT and the sin-DFT up 
to now. This indeed is the task of our paper. Using Chebyshev polynomials, we 
define the DCT, the cos-DFT and the sin-DFT on a polynomial basis. We show 
that this representation leads to the descriptive derivation of fast algorithms for 
these transforms. 

Section 2, where useful properties of Chebyshev polynomials are collected, 
has preliminary character. In ?3, we suggest a new recursive algorithm for the 
DCT(2r), which works with the same number of real operations as the best- 
known fast DCT's [7, 8, 15]. Introducing the cos-DFT and the sin-DFT, as well 
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as their reduced versions, we apply the polynomial arithmetic to decompose 
the reduced cos-DFT (reduced sin-DFT) of a length N divisible by 4 into a 
DCT(N/4) and a reduced cos-DFT (reduced sin-DFT) of length N/2 in ?5 
(cf. [15]). Our fast algorithms can be used to compute the DFT(2r) for real- 
and complex-valued sequences with the same computational complexity as the 
split-radix algorithm [3]. 

Although ??3 and 5 contain mainly the special case of fast algorithms for 
transforms of radix-2 length, the polynomial approach to fast algorithms for 
the DCT, the cos-DFT, and the sin-DFT of arbitrary highly factorizable lengths 
will be clear. We illustrate this idea by a fast DCT(3N)-algorithm. Up to 
now, there do not exist fast algorithms for DCT's of such lengths. Note that, 
especially, the DCT has found wide applications in data compression and digital 
filtering. 

2. CHEBYSHEV POLYNOMIALS 

The polynomial approach to fast DCT's, cos-DFT's, and sin-DFT's is mainly 
based on known properties of Chebyshev polynomials, which we now summa- 
rize. 

The Chebyshev polynomials of first and second kind can be defined recursively 
by 

To(z) T=1, 1(z) := z, 

Tn(z) 2zTn_1(z) -Tn-2(Z) (n = 2, 3, ..), 

Tn=T n (nEZ), 

and by 

U0(z) := 1, U1(z) := 2z, 

Un(z) :=2zUn_1(z) -UN-2(Z) (n =2, 3, ...) 

Un -U-n-2 (n E Z), 
respectively [1 1, pp. 1 1-12]. From this it follows that 

(2.1) Tn (z) = cos(n arccos z) (I zI < ?; n E cZ), 
2 - 1/2 

and then 

n-l 

(2.3) Tn(z) = 2n 1 (z - cos(7r(2k + 1)/2n)) (n E N), 
k=O 

n 

(2.4) Un (z) = 2n rI(z - cos(7rk/(n + 1))) (n E N)- 
k=1 

We have [11, p. 24; 12, p.5] 
m-1 

(2.5) T =T (Tn)=2ml1 rT (T -cos(7(2k+ 1)/2m)) (m, nEN). * mn m n j n 
k=O 
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More generally, setting y n arccos z (I z < 1) in 

m-i 
cos my - cos a = 2m-1 fJ(cosy - cos((a + 27k)/m)) (m E N; a e R) 

k=O 

[5, p. 48], we obtain that 

rn-I 

(2.6) T -COS a=2 H (Tn-cos((a + 27rk)/m)) (mi, n E N; a R). mnn 
k=O 

Differentiation of (2.5) yields 

Umn I= Urni(Tn)Un-i 

(2.7) rn-1 = 2m 1 (Tn - cos(7rk/m)) Un_ 1 (m, n E N). 
k=1 

Furthermore, we shall use the properties [ 1, p. 24] 

(2.8) Tm Tn = (Tnrn +Tn?r)/2 

(2.9) Tmr(Z)Tn(Z) + ( 1-Z )UUm i(Z)Un- 1(Z)= Tn-m(Z), 

(2.10) Un-1 Tm + TnUm-1 = Un+m-1 * 

As in [4], we define the polynomials Wn (n E N) by 

WJ(z):= z-2, W2(z) := z+2, 
Ln/2J 

fjn(z) = I (Z _(Wk + W-k, 

k=I 
(k, n)=I 

Ln/21 

= (z - 2 cos(27zk/n)) (n = 3, 4,...), 
k=I 

(k, n)= I 

where Ln/21 := max{k E Z: k < n/2} and where (k, n) signifies the greatest 
common divisor of k and n. For further properties of Wn, especially the 
connection of W with Chebyshev polynomials, see [4]. Finally, let 

n 

(2.11) VM+I(Z) J= J Wd(2z) = 2 M+I fJ(z - cos(27rk/n)) 
din k=O 

with m = [n/2J . If n E N is even, then we have by (2.4) and (2.1 1) that 

(2.12) VM+I (z) = 4(z _ - ln)U 1 (z) 
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3. DISCRETE COSINE TRANSFORM 

The discrete cosine transform of length N (DCT(N)) is defined by the fol- 
lowing mapping between x = (x0, .. , N- 1) e RN and x = (x0, .. ., XN_\ ) e 

N 
R: 

N-1 

(3.1) Xk :=Zxjcos(7r(2k + 1)j/2N) (k = O ...,N-1). 
j=O 

Note that our version of the DCT(N) is similar to the inverse DCT in [7, 9, 
151. 

In order to introduce a polynomial notation for the DCT, we represent the 
N-point sequence x E JRN as the polynomial 

N-1 

(3.2) X:= E x1T. 
j=O 

Then, by (2.1), we have that (3.1) can be replaced by kk = X(cos(7r(2k+ 1 )/2N)) 
(k = O, ..., N- l), i.e., 

(3.3) kk = X(z) mod(z - cos(7c(2k + 1 )/2N)) (k = O, ... ., N- 1) . 

By (2.3) and by the CRT, we obtain a fast decimation in frequency algorithm 
for the DCT, if we split XmodTN stepwise into the desired simultaneous 
remainders (3.3) by using polynomial factorizations of TN. 

In the following, let N = 2r (r E N). In this case, we get a successive 
factorization of TN by applying the following 

Lemma. Let s e N (s > 1), and let a e N be an odd integer with the bit 
representation 

a=(as_,...,a,l)2:=2slasI?+ ++2a?l+ (a,E{o,1}). 

By D, we denote the addition modulo 2. Then, for any n E N, there holds 

(3.4) T2n- cos(7ra/2S) = 2(Tn + cos(t/2a+2 s))(Tn?cos(al2s+ )), 

T2n - cos(7a/2 )= 211(Tn -cos(7r(j, j E as_I..., j E al, 1)2/2 )). 
j=O 

Proof. Setting m := 2 and a := 7ra/2s in (2.6), we get (3.4). The rest of the 
assertion follows from 

sI s+I s?I 
cos(a/2+ ) = - cos(7r(2 - a)/2 ) 

= -cos(7r(2s+2s-(1-a_)+... +2(1-a,)+ l)/2s+ ) 

= -cos(r(1, I-a a ,- I , 1 -a, 2 1)2/2s 1) 

=-cos(i(l, Iea_ I , Ga1, I21)/2 s?l ). 0 
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s a 

01 

1 1 3 

2 1 7 3 5 

3 1 15 7 9 3 13 5 1 1 

A A A A A A A A 
4 1 31 15 17 7 25 9 23 3 29 13 19 5 27 11 21 

FIGURE 2 

Factorization tree of TN with N = 2r (r > 4), where a E N at 
the sth step signifies TN/28 - cos(lra/2s+?) 

The above lemma yields the following recursive factorization of TN = TN - 
cos(7r/2): 

1. TN = 2T(?)T(1) with 

T (JI) : =TN12 I (-1 '/_2 (01 = , 1)* 

2. T(J) = 2T(J"')T(J' ') for j, = 0, 1 with 

T1" ') TN4 - (-l) COS(7r(jl, 1 )2/8) (12 =0 1). 

T(j J"''-') = 2T(J "'J"-' '0T)T(JI J,-) for j**jr-, 01 lwith 
T01 T, I~~~~~~~~~~~r- 

T(J" "JV=T Tl-(-1)" cOS(l(jr( Ij Jr-I IE jr-2 J *r-i I I l)2/2N) 

= T - CoS((jr I ir ED jr I.., Ir ee . l, E )2/2N) (ir = 0, 1). 

The rth step contains the linear factors T(J " J' ) of TN. Figure 2 
describes the decomposition of TN by the so-called transform factors 

COS(7r (j, ' j, G) jS_ I ' * * * ' js (3 .. * * jl, 1 0 2 12+) . 
For a given input sequence x E R , we consider the polynomial X intro- 

duced in (3.2). By the CRT, we have for every s = 1, .I. , r that X mod TN 

is uniquely determined by its residues X mod T(j '' J) (jr, ...i sj = 0, 1). 
This leads to the following recursive DCT(N)-algorithm: 

1. Calculate X mod T(J) for j, = 0, 1. Observing that by (2.8) 

(3.5) TN/2+J = 2TNI2TJ - TN12-j 

we obtain 
N/2-1 

XJ) = (i)TJ =XmodTO 

J=O 



A POLYNOMIAL APPROACH TO FAST ALGORITHMS 287 

with 
xo + (- 1) XN/2 F V/2 for ] = 0, 

X 
t xj -X_ + (- 1)j x v/-2+ for j = 1, ..,N/2- 1i. 

2. Calculate X('j)mod T(j' j2) for il i2 = O, 1. Using (3.5), with N/4 
instead of N/2, we get 

N/2-1 

X(J i2) Z = xY 2)T.-X(ji)modT(fri 2) 
I I~ 

J=o 
with 

x( + (-l)J2xN14 cos(7(jl, 1)2/8) for j = 0, 
(1 :=2) x(i ()l) + (- l)j2xUj ) 2 cos((l, 1)2/8) 
J ~ X -XN/2-j ? N/4?j2 co( 2j 

1. for j = 1, ..,N/4- 1. 

r. Calculate x("'' Jr-i)mod T(j" jr) for il, . = 0 1. This yields 
the final result 

X Ui,-jr) '= x ' Jr) = A(jl'' jr-i) mod T 'l jr) 

with 

*Cos(7r(jr Ijr1 Dir-2 ' jr-I ED.. ED, l)2/2N). 

By (3.3) and by the decomposition of TN, we see that x4(Jl'-'jr) =Xk for 
the index k with 

(3.6) k = (ir Iit (Dir-I ' i r ffl .. -E-D jl)2 

.r A +y . r a .r 

y ~~~~x-y 1TA 

xrO 0 t 'V(o?) ' S ? #(0, 0?) * (0,0, 0) - 

1(0) (l ? I) 
t2. XI st\X/(00) 0(00.1) =x7 

(0) (0, 1) I (0 I 0)= 
t54V3ti A 3 * i - -- .1I X0 ) 43 

X r 1/-' , r(,l) X(1' 0) * 0 0 , 1') = r / 1 41 ---- 7v,---- .r(I I) A4XI I= 
14 11.0A0 6( 

(1,0) ~~~~~~~~(I,1 0I) 

17 21:1 13 2~~~~~~~~~~3l .1:~~~~~ 7, ~~. 1: 
1 

FIGURE 3 
Flow graph for the DCT(8) with a := x//2, 1,j := cos(7nj/8), 
and yJ := cos(rj/ 16) 
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This describes the permutation of the output values. The (Ul, ... j)2th com- 
ponent of our output sequence is kk with k as in (3.6). Figure 3 shows the 
flow graph of the DCT(8). 

Simple considerations yield the computational complexity of our DCT- 
algorithm. The sth step of the algorithm requires 25 I(N/2s) real multiplica- 
tions and 2s51 (3N/2s - 1) real additions. Thus, our DCT(N)-algorithm with 
N = 2r (r c N) works with a total of 

r 
(3.7) MN= 2s-(N/2s) =(N/2)r 

s=1 
real multiplications and 

r 
(3.8) AN = , 2s 1(3N/22 - 1) = (N/2)(3r - 2) + 1 

s=1 

real additions. Hence, our polynomial algorithm has the same computational 
complexity as the best-known DCT-algorithms [7, 8, 15]. 

4. Cos-DFT AND SIN-DFT 

The image xEG( CN of the DFT(N) of a real-valued sequence x c RN can 
be obtained by 

N-1 

(4.1) Xc k ZE x cos(27rkj/N) (k = O, .. ., N- 1), 
j=O 

N-1 

(4.2) x5sk Z xj sin(27dkj/N) (k = O, ... ,N- 1), 
J=O 

and by 

'Xk kX k- i's Ik (k=-O, ... , N- 1). 
The mappings defined by (4.1) and (4.2) are called the discrete Fourier-cosine 
transform of length N (cos-DFT(N)) and the discrete Fourier-sine transform of 
length N (sin-DFT(N)), respectively. In this section, we present a polynomial 
approach to the cos-DFT and the sin-DFT, which suggests fast algorithms for 
both transforms. 

Let M:= LN/21 . By 

cos(27tk(N - j)/N) = cos(27tkj/N) (j, k E Z), 

(4.1) can be rewritten as 
M 

(4.3) C: XC,k = Xc,N_k = Zc1cos(27kj/N) (k = 0, ... , M) 
j=O 

with 
f xi for j =O and j = M if 2IN, c: 

X .+ XN(J otherwise (= ... , M). 
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We call (4.3) the reduced cos-DFT(N). Similarly, by 

sin(27zk(N - j)/N) = - sin(27zkj/N) (j, k E Z), 

it follows from (4.2) that 
M 

(4.4) Sk =Xs, k = s, N-k = Es1 sin(27zkj/N) (k = 1, .I. , M) 
1=1 

with 
s.:0={ forj= Mif21N, (j=1 ...I M). 

x Xj-X_ otherwise 

Then (4.4) is said to be the reduced sin-DFT(N). Hence we can calculate the 
cos-DFT(N) (sin-DFT(N)) by [N/21 - 1 additions and by the reduced cos- 
DFT(N) (sin-DFT(N)). Here, [N/21 := min{k E E: k > N/2}. In the 
following, we deal with these reduced transforms. 

In order to introduce a polynomial notation of the reduced cos-DFT, we 
represent the input sequence c = (co, ... ICM) E RRM+? as the polynomial 

M 
C := CjTj 

j=o 
Then we have by (2.1) that Ck = C(cos(27rk/N)) (k = 0, ..., M), i.e., 

(4.5) Ck= C(z) mod(z -cos(27rk/N)) (k =O, ...,M). 

By (2.1 1), we obtain a fast algorithm for the reduced cos-DFT(N) if we split 
C mod VM+I stepwise into equivalent simultaneous remainders by using succes- 
sive factorization of VM+I together with the CRT, such that we get (4.5) in the 
last step. 

Analogously, we represent the input sequence s = (sl ..., SM) E RM of the 
reduced sin-DFT as the polynomial 

M 
(4.6) S := sjUj_l. 

'=I 
Then we see by (2.2) that (4.4) can be expressed as 

Sk = sin(27zk/N)S(cos(27zk/N)) (k = 1, ... I M), 

i.e., 

(4.7) Sk = sin(27zk/N)S(z) mod(z - cos(27zk/N)) (k = 1, ... , M). 

It follows from (2.1 1) and from the CRT that we can deduce a fast sin-DFT(N) 
if we reduce S(z) mod(VM+l (z)/2(z - 1)) successively into equivalent simul- 
taneous residues by applying polynomial factorizations of VM+?(z)/2(z - 1), 
such that we ultimately obtain (4.7). 

For even N E N, (4.6) and (4.7) can be simplified to 
M-1 

(4.8) S = , sjUj_l 
1=1 
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(4.9) Sk = sin(22tk/N)S(z) mod(z - cos(2rk/N)) (k =1, ... , M- 1), 

since gM = 0. By (2.4), we get a fast algorithm for the reduced sin-DFT(N) 
with even N E N by splitting S mod UM_l stepwise, such that we obtain (4.9) 
in the end. 

5. FAST ALGORITHMS FOR REDUCED cos-DFT AND sin-DFT 

In this section, we assume N E N divisible by 4. Set M := N/2. Based on 
the factorization 

(5.1) UM-1 = Ul(TM/2) UM/2-1 = 2TM/2 UM12-1 

which follows immediately from (2.7), we show that the reduced cos-DFT can be 
decomposed into the reduced cos-DFT(N/2) and the DCT(N/4). The reduced 
sin-DFT can be handled analogously. This verifies a result in [15] from the 
polynomial point of view. 

By (2.12), (5.1), and by the CRT, Cmod VM+? is completely determined by 
its residues C mod TM/2 and C mod V,,/21 l. First we evaluate C mod TM/2 by 
polynomial reductions. By Ti = -T modT (= 0, ...,M/2 - 1), we 
verify that 

M/2-1 

(5.2) C(l) = E cS1Ti= C modTM/2 
j=0 

with c(l) :=c}- cM] (I = 0, ... M/2 - 1). Since by (2.12), (5.1) and (2.3), 

C2k+l = ((C mod VM, 1) mod TM/2) mod(T1 - cos(27r(2k + 1)/N)) 

= CO ) mod( TI - cos(7r(2k + 1I)/M)) (k = 01 ...* , M/2 - l ), 

the output values with odd indices of the reduced cos-DFT(N) can be calculated 
by M/2 additions and by the DCT(M/2) given by (5.2). 

On the other hand, by (2.9), we have Tj = TM_j modVM/2+1 (I = 0,..., 
M/2 - 1), so that C mod VM/2+1 is obtained by 

M12 

(5.3) C(2) := C(2)T = C modVM/2+1 
j=0 

with (2) :c+ C (j = 0,... M/2 - 1), c (2) := C C~ C M.](I 0 CM!2 :=M12. Then we have by 
(2.12), (5.1), and (2.4) that 

C2k = ((Cmod VM+1) mod VM/2+1) mod(T1 -cos(27t(2k)/N)) 

= C(2) mod(T, - cos(27rk/M)) (k = 0, ... , M/2). 

Hence, we get the output values with even indices of the reduced cos-DFT(N) 
by M/2 additions and by the reduced cos-DFT(M) determined in (5.3). 
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Turning to the reduced sin-DFT, we take a similar approach. By (5.1) and 
by the CRT, S mod UM- is completely determined by its residues S mod TM!2 
and Smod UM/2_l. Considering that, by (2.10), Uj11 = UM-JlI mod TM!2 

(j = 1, ... , M/2), we find that S mod TM!2 is given by 

M/2 
S(1) := > s5')U1 =S mod TM!2 

j=1 

with =s SM_J ( = 1, ., M/2- 1), sMl2 :=SM/2. Instead of S(1) 
we consider 

M/2-1 

(5.4) (l) =T 
j=o 

with 5():=SM2 (j =0,... ,M/2 - 1). Then from 

sin(27r(2k + 1 )/N) U l(cos(7c(2k + 1)/M)) = sin(27(2k + l)j/N) 

= (-1)k cos(2ir(2k + 1)(M/2 - j)/N) = (1 )k TM/2 j(cos(7r(2k + 1)/M)) 

one verifies that 

52k+1 = sin(27r(2k + l )/N) ((S mod UMI) mod TM!2) 

mod(T, - cos(27r(2k + 1)/N) 

= sin(2zr(2k + I)/N)S(1) mod(T1 - cos(7r(2k + 1)/M)) 

= (_ 1 )ks(l1) mod( T, - cos(7c(2k + 1 )/M)) (k = 0, . . . , M12 - 1 ) 

Consequently, we obtain the output values with odd indices of the reduced 
sin-DFT(N) by M/2 - 1 additions and by the DCT(M/2) given by (5.4), 
where we have to change the sign of the output values with indices congruent 3 
modulo 4. 

Next, by (2.10), we have U-1 = -UM_J_I mod UM/2-1 (=1, M2- 
1). Using this property, we form 

M12-1 

(5.5) ~ S(2) Z s(2)U = SmodUM/2-1 
J=1 

with s( 2) :=sJ -j (j = 1, ...,M/2 - 1). Now we conclude from 

52k = sin(27zr(2k) /N)((S mod UM-1) mod UM/2-1) mod(Tl - cos(27r(2k)/N)) 

= sin(27rk/M)S(2) mod(T1 - cos(27rk/M)) (k = 1, . .. , M/2 - 1), 

that the output values with even indices of the reduced sin-DFT(N) can be 
evaluated by M/2 - 1 additions and by the reduced sin-DFT(M) determined 
in (5.5). 
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cos-DFT(N) 

j [N12-1] 
reduced cos-DFT(N) 

[N/4 [ N/4] 

DCT(N/4) reduced cos-DFT(N/2) 

[2u] [2u] 

DCT(2u) reduced cos-DFT(4u) 
[u] [u] 

DCT(u) reduced cos-DFT(2 u) 

FIGURE 4 
Recursive computation of the cos-DFT(N) with N = 2ru (r > 
2; u odd) ([.] signifies the number of additions per step) 

Let N = 2r (r > 2). Then we can use the above reduction successively 
for the reduced cos-DFT(2s) (reduced sin-DFT(2s)) with s = r, ..., 2. This 
results in the computation of the cos-DFT(N) (sin-DFT(N)) using only DCT's 
and some additions. See Figure 4 with u := 1. 

The numbers MN and MsN of real multiplications and the numbers AC 
and AS of real additions to perform the cos-DFT(N) and the sin-DFT(N), 
respectively, follow directly from Figure 4, (3.7) and (3.8). For N = 2r (r > 2), 
one obtains 

r-2 

M> = M = M2S = (N/4)(r - 3) + 1, 
s=1 

r-2 r-2 

AN = N/2- 1 +2E2s+A2s +2= (N/4)(3r-5)+r+2, 
s=O s=l 
r-2 r-2 

AIN = N/2 - I + 2 (2S 1) + A2s = (N/4)(3r - 5) - r + 2. 
s=O s=1 

Consequently, the DFT(N) of a real-valued sequence computed by our method 
requires 

MN= MN + MN = (N/2)(r - 3) + 2 

AN =AC + ASN = (N/2)(3r-5) + 4 
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real multiplications and real additions, respectively. Further, by 
N-1 N-1 

Xk = E Re(xj) cos(27rkj/N) - E Im(x1) sin(27rkj/N) 
J=O j=l 

J #N/2 

fN- IN-1 

+ i E Im(xj) cos(27kj/N) + E Re(xj) sin(2k kj/N) 
j=l ) 

(k=0 , ... , N- 1), 
the number of real operations of the DFT(N) of a complex-valued sequence is 
given by 

M 2Mr = N(r-3) + 4, A 2Ar + 2(N-2)=3N(r-1) + 4. MN N ' N N 

Compared with other DFT-algorithms, we conclude that our polynomial algo- 
rithm works with the same computational complexity as the algorithm in [15] 
and the split-radix algorithm [3, 14]. 

6. FAST ALGORITHM FOR THE DCT(3N) 

The polynomial representations of the DCT(N), the cos-DFT(N), and the 
sin-DFT(N) in ??3 and 4 open new possibilities for the derivation of fast al- 
gorithms for these transforms for various lengths N by applying the CRT in 
combination with the factorizations (2.5), (2.6), and (2.7) of Chebyshev poly- 
nomials, or in combination with the factorization (2.11). The reductions of 
polynomials of the form (3.2) or (4.8) modulo Chebyshev polynomials in such 
algorithms can be performed only by (2.8), (2.9), and (2.10). In order to illus- 
trate these general considerations, we suggest a new polynomial algorithm for 
the DCT(3N). 

We consider the DCT(3N) (N E N), i.e., for given 
3N-l 

X:= x7 modT3N, 
j=O 

we have to evaluate 

Ik = X(z) mod(z - cos(7f(2k + 1)/6N)) (k =0 *,3N - 1) . 

By (2.5), T3N factors as 

T3N= 4(TN- V3_/2)TN(TN + 12)' 

so that X mod T3N is completely determined by the residues X mod TN and 
X mod(TN? vi3/2). Considering that by (2.5) and (2.8) 

2 
T2N = 2TN- 1, 

TN+j =2TNTj TNj , 

T2N+j = (4Th - I)T1 - 2TNTNj (1= 1,..., N- 1), 

we obtain the following recursive algorithm. 
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First, we calculate X mod TN by 

N-1 
(6.1) X(?) x?)T= XXmod TN 

J=O 

with 

x(o) XO -X2N 
for j=0, 

~X~ jX2Nj-x2N?j for j =1, ...,N- 1. 

Since by (2.3), TN has the roots cos(7r(2k + 1)/2N) = c s(7t(2(3k + 1) + 1)/6N) 
(k=O,...,N-1),weobtain 

3k+l = X() mod(T1 - cos(7r(2k + 1)/2N)) (k = O, ...,N - 1). 

Next, we form X mod(TN? v'3/2) as follows: 

N-1 

(6.2) X() := x1)T X mod(TN - V3-/2) 
j=O 

with 

xul) f | X + X2N/2+ XNv3/2 for j = 0, 
'l xj X2N-j+ 2X2N+J+ V'(xN+j- X3N4j) for j = 1, * N- I 

and 
N-1 

(6.3) x(2) x(2)T X mod(TN + V3/2) 
j=O 

with 

(2) f X0+ X2N/2-XNV3/2, for j = 0, 
l xj X2N-J + 2X22N+j V (xN+J-x3N) for j = 1, ...,N- 1. 

By (2.6), the zeros of TN - VN/2 and of TN + V3/2 are given by 

{cos((2t/6 + 27k)/N): k = O ..., N - 1} 

= {cos(7t(2(6k) + 1)/6N), cos(7t(2(6k' + 5) + 1)/6N): 
k = O, .. M; k f=0, ...,5 M' 

and by 

{cos(57z/6 + 27rk/N) : k = 0, ... , N - 1} 

- {cos(7r(2(6k + 2) + 1)/6N), cos(7r(2(6k' + 3) + 1)/6N): 
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respectively, where M:= [N/21 - 1 and M' LN/21 - 1. Hence, we get by 
(6.2) and (6.3) that 

x6k = XM mod(T, - cos(7t(12k + 1)/6N)) (k = 0, ..., 

X6k+2 = x(l) mod(T1 - cos(7t(12k + 5)/6N)) (k = 0, ... , M), 

X6k+3 = x( mod(T1 - cos(7i(12k + 7)/6N)) (k = 0,... , M'). 

As a result, we have decomposed the DCT(3N) into the DCT(N) given by 
(6.1) and into the modified DCT(N)'s determined by (6.2) and (6.3), with a 
total of 2N multiplications and 6N - 2 additions. Obviously, using (2.6) 
instead of (2.5), these modified DCT's can be handled similarly as the usual 
DCT. We have only to change the transform factors in the multiplications. 

We now combine this idea with the developments of the previous sections. 
Let N = 2r (r > 2). Then by (3.7) and (3.8), we can perform the DCT(3N) 
with 

M3N = 3MN+ 2N = (N/2)(3r+4), A3N= 3An +6N-2 = (N/2)(9r+6)+l 

real operations. Using the decompositions in ?5 (see Figure 4), we obtain the 
following computational complexity for the cos-DFT(3N) and for the sin- 
DFT(3N): 

r-2 

M3N = M3N = M3.2S + 2 = (N/4)(3r - 5) + 3, 
s=O 

r-2 r-2 

Ac = 3N/2- +2E3.25 +A3.2s +8 = (N/4)(9r- 3) +r+6, 
s=O s=O 

r-2 r-2 

AS3N = 3N/2 - 1 + 2 E(3 .2 - 1) + Z A3.2s+ 2 = (N/4)(9r - 3) - r + 2. 
s=O s=O 

Finally, we see that the DFT(3N) requires 

MrN = (N/2)(3r- 5) + 6, M3N = N(3r - 5) + 12 

real multiplications and 

AN = (N/2)(9r - 3) + 8, A3N =N(9r+3)+12 

real additions. This coincides with the number of real operations for the com- 
putation of the DFT(3 . 2r) (r > 2) by combining the prime factor algorithm, 
the split-radix algorithm and the Rader algorithm [1, 14]. 
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