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FINDING ISOMORPHISMS BETWEEN FINITE FIELDS 

H. W. LENSTRA, JR. 

ABSTRACT. We show that an isomorphism between two explicitly given finite 
fields of the same cardinality can be exhibited in deterministic polynomial time. 

1. INTRODUCTION 

Every finite field has cardinality pn for some prime number p and some 
positive integer n . Conversely, if p is a prime number and n a positive integer, 
then there exists a field of cardinality pn, and any two fields of cardinality pn 

are isomorphic. These results are due to E. H. Moore ( 1 893) [10]. In the present 
paper we are interested in an algorithmic version of his theorem, in particular 
of the uniqueness part. 

We say that a finite field is explicitly given if, for some basis of the field over 
its prime field, we know the product of any two basis elements, expressed in the 
same basis. Let, more precisely, p be a prime number and n a positive integer. 
Then by explicit data for a finite field of cardinality pn we mean a system of 
n3 elements (aIJk)n , k of the prime field Fp = Z/pZ such that F becomes 
a field with the ordinary addition and multiplication by elements of Fp, and 
the multiplication determined by 

n 

elej =Z aljkek' 
k=1 

where el, e2,., e en denotes the standard basis of Fp over Fp. For example, 
if we know an irreducible polynomial f E Fp [X] of degree n, then such explicit 
data are readily calculated, since Fp[X]/fFp[X] is a field of cardinality pn, 

n Conversely, given explicit data for a field of cardinality p , one can find an 
irreducible polynomial f E F [X] of degree n by means of a polynomial-time 
algorithm (see Theorem (1.1) below). By polynomial-time we mean that the time 
used by the algorithm-i.e., the number of bit operations that it performs- 
is bounded by a polynomial function of logp and n. It is supposed that 
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the elements of Fp are represented in the conventional way, so that the field 
operations in Fp can be performed in time (logp)0(i). 

It is not known whether there exists a polynomial-time algorithm that, given 
p and n, constructs explicit data for a finite field of cardinality pn. If the 
generalized Riemann hypothesis is valid, then such an algorithm exists [1, 4]. 
Also, V. Shoup has shown [11 ] that the problem can be reduced to the problem 
of factoring polynomials in one variable over finite fields into irreducible factors. 
For the latter problem, no polynomial-time algorithm is known, even if the 
generalized Riemann hypothesis is assumed; there does exist an algorithm that 
runs in time (pn)0(') (see [5, ?4.6.2]), so for small p the problem is solved. 
If random algorithms are allowed, then both the problem of constructing finite 
fields and the problem of factoring one-variable polynomials over finite fields 
have perfectly satisfactory solutions, both from a practical and a theoretical 
point of view (see [7]). 

Theorem (1.1). There exists a polynomial-time algorithm that, given a prime 
numnber p, a positive integer n, and any of (a), (b), (c), constructs the two 
others: 

(a) explicit data for a field of cardinality pn; 
(b) an irreducible polynomial in Fp[X] of degree n; 
(c) for each prime number r dividing n, an irreducible polynomial in Fp[X] 

of degree r. 

The only nontrivial assertion of this theorem is that (c) suffices to construct 
(a) and (b). If for each prime number r that is at most n, an irreducible 
polynomial in Fp[X] of degree r were known, then (a) and (b) could be con- 
structed using auxiliary cyclotomic extensions of Fp. In our proof, which is 
given in ?9, we work with auxiliary cyclotomic ring extensions of Fp, which 
can be constructed without any hypothesis. The other assertions of the theorem 
are proved in ?2. 

We now come to the uniqueness part of Moore's theorem. Suppose that 
two finite fields of the same cardinality are explicitly given, can one find an 
isomorphism between them in polynomial time? The isomorphism is to be 
represented by means of its matrix on the given bases of the fields over the 
prime field. 

For this second problem, the same results have been obtained as for the first 
problem. Thus, a polynomial-time algorithm exists if the generalized Riemann 
hypothesis is true, as was shown by S. A. Evdokimov [4]. Also, the problem 
can be reduced to factoring polynomials in one variable over finite fields. To 
see this, write the first field as Fp[X]/fF,p [X]; then finding an isomorphism is 
equivalent to finding a zero of f in the other field. This solves the problem if 
p is small, and also if random algorithms are allowed, as is the case in practice. 
In the present paper we prove the same result without any restriction. 

Theorem (1.2). There exists a polynomial-time algorithm that, given explicit data 
for two finite fields of the same cardinality, finds an isomorphism between them. 
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The proof uses the same technique as the proof of Theorem (1.1). The 
result of Evdokimov that we just mentioned depends on auxiliary cyclotomic 
extensions of Fp, and it is to construct these that the generalized Riemann 
hypothesis is needed. In our proof we use ring extensions, which can be obtained 
for free. 

The contents of this paper are as follows. In ?2 we discuss what can be 
done if explicit data for a finite field are available, and we define what is meant 
by explicit data for field extensions and field homomorphisms. In ?3 we show 
how normal bases can be found in polynomial time. Normal bases are not 
absolutely vital for our purposes, but they provide an elegant solution to a 
technical problem that comes up later (see (5.6)), and the result is of interest in 
itself as well. In ??4, 5, and 6, we do not deal with algorithms at all. Section 4 is 
devoted to algebraic properties of certain cyclotomic ring extensions that need 
not be fields. A special role is played by the Teichmiiller subgroup of the group 
of units of such a ring extension. In ?5 we show that knowing an extension of 
given prime degree of a finite field is equivalent to knowing a generator of this 
Teichmuller subgroup. Conversely, such a generator can be used to make prime 
power degree extensions, as we show in ?6. It is clear that such results can be 
used to make prime power degree extensions out of prime degree extensions 
and thus complete the proof of Theorem (1.1). Before we carry this through, 
we have to deal with certain exceptional cases. The case that the given prime 
equals the characteristic of the field is dealt with, by well-known techniques, in 
?7. A second exceptional case is considered in ?8. In this section we show that 
techniques from linear algebra can in certain cases be used to solve problems 
of a multiplicative nature. As an application we solve, in a theoretical sense, a 
minor problem that comes up in primality testing. Finally, in ?9 we formulate 
and prove theorems that are slightly more general than Theorems (1.1) and 
(1.2). 

Although the algorithms presented in this paper are not necessarily ineffi- 
cient, I do not expect that in practice they can compete with the probabilistic 
algorithms referred to above. Accordingly, I have refrained from estimating 
the running times of the various algorithms precisely, and from optimizing the 
algorithms from either a theoretical or a practical point of view. 

2. EXPLICIT DATA 

Let p be a prime number, n a positive integer, and (aIjk )n ,j k= I explicit 
data for a field of cardinality pn. Denote by E the field with underlying set 
F n that is determined by these data, as described in the introduction. We say p 
in this situation also that (alJk )7n k-l are explicit data for the field E. By 
el,..., en we denote the standard basis of Fp over Fp 

Given such explicit data, the unit element 1 of E is characterized by the 
property 1 * e, = el . If we write 1 = E3 zie1, with zi E Fp, then it follows that 
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(z )>1 is the unique solution of the system of linear equations 
n I 1 if k= 1, 

a,lkz= 
i 0 if k $A1 

over Fp . This system can be solved in polynomial time by the usual techniques 
from linear algebra. The divisions in the field Fp that are needed by these 
techniques can be performed by means of the extended Euclidean algorithm [5, 
?4.5.2]. It follows that the unit element of E can be determined in polynomial 
time. 

Once the unit element is determined, we can in a similar way find the inverse 
of any given nonzero element a E E as the solution of xa = 1, which can 
again be viewed as a system of n linear equations over Fp. We conclude that 
the field operations in E can all be performed in polynomial time. 

By repeated squarings and multiplications, we can calculate a' for any a E E 
and any positive integer k in time (n + logp + logk)0('). This leads to an 

alternative method to calculate I and a1, since I = e' 1 and a 1 = ap 2 

for a : 0. 
If m is a positive integer, and (biJk)n k=l are explicit data for a field F 

of cardinality , then by explicit data for a field homomorphism from E 
to F we mean a matrix (c,1j)1<1<, 1<j<n with entries from Fp such that the 

map Fn - Fp sending (x)>1= to (En>) cx is a field homomorphism p p I Z_ j j = l 
0: E -* F . We say in this situation also that (c1j) 1<<m, <j<?n are explicit data 
for the field homomorphism q. For example, explicit data for the unique field 
homomorphism Fp -*E are readily derived from the coordinates z, of the 
unit element of E. 

Calculating ep, eP, we can find in polynomial time explicit data for the 
Frobenius automorphism a: E E that sends each a E F to ap . Likewise, 
explicit data can be found for each power of a. 

We next determine the subfields of E. These are in one-to-one correspon- 
dence with the divisors d of n. Notice that these divisors can all easily be 
found in time no(1). Let d be a divisor of n. Then we can calculate the 
matrix of the Fplinear map E -* E that sends each a E E to a d a - a, and 
using techniques from linear algebra, we can find a basis for the kernel of this 
map, which is precisely the unique subfield of E of cardinality pd Expressing 
the product of any two basis elements of this subfield as a linear combination of 
the same basis, we then obtain explicit data for a field of cardinality pd , as well 
as for the inclusion map of this field to E. All this can be done in polynomial 
time. 

Let r be a prime number and t a positive integer such that r' divides n. 
Applying the above to the divisors r' and r'1 of n, we can find bases of 
the subfields of degree r' and r' l over Fp. Checking the basis elements of 
the former field one by one, we can find an element ,B of the field of degree 
rt that is not in the field of degree rt- 1. Then ,B has degree r' over Fp , so 
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fr = rl c1,/l for certain uniquely determined cl E Fp, which can be found 

by solving a system of linear equations. The polynomial Xr - 0i_' c1X1 is the 
irreducible polynomial of fi over F p. It is irreducible in Fp[X] and of degree 
rt. Taking t = 1 , we see that, in Theorem (1.1), we can construct (c) from (a) 
in polynomial time. 

Let d be any divisor of n, and write d as a product of prime powers rt 
that are pairwise relatively prime. For each r, let fi = fir be an element of 
degree rt, as above. It is well known that the degree of y = Er fir over Fp is 
then equal to Hlr r' = d . (It clearly divides d; to show that it actually equals 
d, it suffices to remark that for each r the degree rt of fir = y - r'#/r fir' 

divides the lcm of the degrees of y and the fr' .) As above, we can use y to 
determine an irreducible polynomial in F,p[X] of degree d. Applying this to 
d = n, we see that (a) in Theorem (1.1) can be used to construct (b). 

We already saw in the introduction how (b) in Theorem (1.1) can be used 
to construct (a), and once one has (a) one can construct (c) as above. The 
remaining part of the proof of Theorem (1. 1), namely how to construct (a) and 
hence (b) starting from (c), is given in ?9. 

In the following section we shall see that explicit data for a finite field can 
also be used to determine a normal basis for that field over a subfield in poly- 
nomial time. This is done by means of an algorithm that, as many algorithms 
in this paper, depends heavily on techniques from linear algebra. These tech- 
niques allow one to deal with problems of an additive nature. Multiplicative 
problems, such as recognizing or determining primitive roots, and computing 
discrete logarithms [8, ?3], are much harder, and no good way is known to solve 
them, even if random algorithms are allowed. 

There is another, even more fundamental, algorithmic problem concerning 
explicit data for finite fields for which currently no polynomial-time algorithm 
is known. This is the problem of deciding, given positive integers p and n 
with p > 2 and a system of n3 elements (alk )7n j,k-i of Z/pZ, whether these 
form explicit data for a field of cardinality pn. For n = 1 this problem is 
equivalent to primality testing: given an integer p > 2, decide whether p is 
prime. For this problem no polynomial-time algorithm is known. There is one if 
the generalized Riemann hypothesis is assumed, and also if random algorithms 
are allowed [8, ?5]. Using the techniques of this section, one can show that 
primality testing is the only obstacle: there is a polynomial-time algorithm that, 
given p, n, (a1jk) as above, either proves that they do not form explicit data 
for a field of cardinality p , or proves that if p is prime they do. 

It is convenient to have relative versions of our definitions, in which the base 
field is an explicitly given finite field E as above, rather than Fp . Let I be a 
positive integer. By explicit data for an Ith degree field extension of E we mean 
a system of 13 elements (cIJk)lJkl of E = Fn such that E becomes a field 
with the ordinary E-vector space structure and the multiplication determined 
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by 

e,ej Ac,ijkek, 
k=1 

where el, e2. e' denotes the standard basis of E over E. Denote this 
field by F. As above, we can determine the unit element of F, and conse- 
quently view E as a subfield of F. We shall refer to the explicit data alJk for 
the field E together with the Cijk as explicit data for the field extension E c F. 
The notion of explicit data for E-homomorphisms-i.e., field homomorphisms 
between extensions of E that are the identity on E-is defined in the obvious 
way. 

n/ In the above situation, one can identify F with Fp , using the basis 
(e ej) i<jl of F over Fp, and one can readily calculate explicit data 

both for F as a field of cardinality p and for the inclusion map E -- F. 
Conversely, if explicit data for a field F of cardinality pm and for a field ho- 
momorphism q: E -- F are given, then F can be viewed as a field extension 
of E via q$, and one can calculate explicit data for this field extension. The 
precise formulation and proof we leave to the reader. 

In the remainder of this paper our language will be less formal, but not 
less precise. For example, when we speak of constructing a finite field, or an 
extension, or a homomorphism, then we mean constructing explicit data for a 
finite field, an extension, or a homomorphism. Likewise, if we say "given a 
finite field", when we speak about an algorithm, we mean that the algorithm 
is supplied with explicit data for that finite field. Computing an element of a 
given finite field mpeans calculating the coordinates of that element on the given 
basis of the field over the prime field. 

3. FINDING A NORMAL BASIS 

If E c F is a finite Galois extension of fields, with Galois group G, then 
a normal basis of F over E is a basis of F as a vector space over E of the 
form (Ua),CG. A well-known theorem asserts that such a basis exists [12, ?67]. 

Theorem (3.1). There exists an algorithm that, given an extension E c F of 
finite fields, finds a normal basis of F over E in time (log #F)?(l). 

Proof. Let E c F be finite fields, and write q = #E and I = [F: E]. Denote 
by a the automorphism of F that maps each a E F to a q . This is a generator 
of the Galois group of F over E. 

It is convenient to use the following notation and terminology. It is taken 
from [9, ?1], to which we refer for background information. For f = Ei a,X1 E 

E[X] and a E F we define 

f oc = La, -a a. 

This makes the additive group of F into a module over the polynomial ring 
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E[X]. Let a E F. Then the set {f E E[X]: f O a = O} is an ideal of E[X] 
containing X' - 1 , so it is generated by a uniquely determined divisor of Xl - 1 
with leading coefficient 1. Let this divisor be denoted by Ord(a), the Order of 
a. From 

f, ( a= f2 a (a f,=_f2 mod Ord(a) 

it follows that the set E[X] o a = {f o a: f E E[X]} is a vector space over 
E of dimension degOrd(a). Since it is the same as the E-linear span of 
{u'a: 0 < i < I}, it follows that a gives rise to a normal basis of F over E if 
and only if its Order has degree /, which occurs if and only if Ord(a) = X'- 1 . 

Suppose now that the extension E c F is explicitly given. For any a E F 
the degree of Ord(a) is the least nonnegative integer k for which ak a belongs 
to the E-linear span of {u'a: 0 < i < k}, and if ak a = Zkl cIu'a for that 

value of k, then Ord(a) = Xk ->2Z= c1i X. This description of Ord(a) makes 
it clear that there is a polynomial-time algorithm that determines Ord(a) for 
any given a E F. 

We now describe an algorithm to find a normal basis of F over E. Let a 
be any element of F (for example, a = 0) . Determine Ord (a) by the method 
indicated above. (*) If Ord(a) = Xl- 1, then a gives rise.to a normal 
basis, and the algorithm stops. Suppose that Ord(a) :A Xl- . Calculate 
the element g = (Xl - 1)/Ord(a) of E[X]. As we shall prove below, there 
exists ,B E F with g o ,B = a. Determine such an element ,B; this can be 
done by means of techniques from linear algebra, since the equation g o ,B = 
a can be formulated as a system of I linear equations over E. Determine 
Ord(,B). If degOrd(,B) > degOrd(a), then replace a by /B and go to (*). 
Suppose that degOrd(,B) < degOrd(a). As we shall prove below, there exists 
a nonzero element y E F with g o = 0, and any such y has the property 
deg Ord(a + y) > deg Ord(a) . Determine such an element y by means of linear 
algebra, replace a by a + y, determine the Order of the new a, and go to (*). 
This completes the description of the algorithm. 

We next prove the assertions made in the description of the algorithm. Let a 
be any element of F, and let 8 be an element that gives rise to a normal basis 
of F over E. Then there exists f E E[X] with fo8 = a. From Ord(a)oa = 0 
it follows that (Ord(a)f) o8 = 0, so Ord(a)f is divisible by XI - 1 . Therefore 

f is divisible by the polynomial g = (Xl - 1)/Ord(a), and with f = gh we 
now see that g o (h o 8) = a. This proves the assertion on the existence of ,B . 
Suppose now that Ord(a) :A Xl - 1 . Then Ord(a)o8 o 0, and go(Ord(a)ao) = 

(X - 1) o 8 = 0. This proves the assertion on the existence of y. Let next 
/3, ' be such that g o /3 = a, degOrd(,B) < degOrd(a), y :A 0, g o y = 0. 
We prove that deg Ord(a + y) > deg Ord(a). From g o /3 = a it follows that 
Ord(a) divides Ord(,B), so the hypothesis degOrd(,B) < degOrd(a) implies 
that Ord(a) = Ord(,B). From Ord(g o /3) = Ord(,B) it follows that g is 
relatively prime to Ord(a), and the same is then true for the divisor Ord(y) 
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of g. This implies that Ord(a + y) = Ord(a)Ord(y), and from y $& 0 it now 
follows that deg Ord(a + y) > deg Ord(a). This proves the assertions made in 
the algorithm. 

With every replacement of a, the degree of Ord(a) increases by at least 1. 
It follows that the algorithm runs in polynomial time. The correctness of the 
algorithm is clear. This proves Theorem 3.1. o 

If a gives rise to a normal basis of F over E, and a is as above, then for 
each divisor d of I the element EZl/did a has degree d over E. This leads 
to an alternative proof of the part of Theorem (1.1) that was proved in ?2. 

4. CYCLOTOMIC EXTENSIONS 

Let K denote a field and r a prime number that is different from the char- 
acteristic of K. In this section we study an rth cyclotomic ring extension of 
K. The group of units of a ring R with 1 will be denoted by R*. 

Denote by K[4] the ring 

K[X]/ (f Xl) K[X], 
(1=0 ) 

and let ; denote the residue class of X. The dimension of K[f] over K equals 
r - 1, a basis being given by ()ii7_ I or, alternatively, by (i'=1 . Note that ; 

has order r in the group K[fi*, and that for each integer a not divisible by r 
there is a unique ring automorphism Pa of K[f] that is the identity on K and 
for which Pa,C = Ca . The set of all pa's forms a group, which we denote by A. 
Clearly, there is a group isomorphism A- F* that maps Pa to a mod r; so A r 
is cyclic of order r - 1. The group A allows us to recover K from K[fJ, as 
follows. For a group G acting on a set S, we write SG = {x E S: ax = x for 
all a e G}. 

Proposition (4.1). We have K[l]A = K. 

Proof. The basis (i)Jr-I of K[f] over K is transitively permuted by A. There- 

fore, an element x of K[f] belongs to K[f] if and only if all coefficients of x 
on that basis are equal. This is the case if and only if x is a K-linear multiple 
of the element EZr_i7 1I, which equals -1 . This proves (4.1). o 

Let k be a positive integer, and E an element of a multiplicative group for 

which 8r = 1. If a is an integer, then one easily checks that the element 

Ca only depends on E and the residue class of a mod r; in particular, it 
does not depend on the choice of k. We write 8wo(a) for this element. Note 
that cw(a) = (Ew(b))wO(c) if a -bc mod r. We define the Teichmiiller subgroup 

TK C K[]* by 

TK = {E e K[]*: E has r-power order, and Pa8 = 8w'O(a) for all Pa e A}. 

To explain the terminology, we remark that co is often called the Teichmiiller 
character. Notice that C e TK . 
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Proposition (4.2). Every finite subgroup of TK is cyclic. In particular, if K is 
finite then TK is cyclic. 

Proof. Let m be any maximal ideal of K[fi, and let L = K[fi/m. This is a 
field extension of K, so every finite subgroup of L* is cyclic. Therefore, it. 
suffices to show that the restriction of the natural map q: K[f] -* L to TK is 
injective. Let E E TK, Xb(E) = 1 . Write E = ,c1;', with c, e K, and let 

= (C); this is a primitive rth root of unity in L. For each Pa E A we have 

>2 c,l,ai = O(Pa') = 0W(Ow(a)) = q$(g)w(a) = 1 . This shows that the polynomial 
1 - >2 c1X' E L[X] vanishes at all primitive rth roots of unity in L, so it is 
divisible by ,r X' (in L[X], and hence in K[X]). Therefore, 1 - E = 0, 
so E = 1, as required. This proves (4.2). o 

Let c e K[f], and let s be a positive integer that is a power of r. We denote 
by K[ti[c11s] the ring 

K[fl[Y]I(Ys - c)K[fi[Y], 

and by c1/S the residue class of Y in this ring. It contains K[fi, and a basis 
of K[fi[cl1s] as a module over K[f] is given by ((cI1s)')sj1 . The dimension 
of K[fi[c1ls] over K equals s(r- 1). 

Assume, moreover, that c e TK. Then c1ls is an element of r-power order 
of K[][c1/s]* , so for each a E Z there is a well-defined element (cl/s)w)(a) . 

Proposition (4.3). The action of A on K[f] can in a unique way be extended to 
an action of A as a group of ring automorphisms of K[f][cl1s] such that each 
Pa E A maps cl/s to (cl/s)w(a) 

Proof. Let a e Z - pZ. The ring homomorphism K[f][Y] -* K[][clls] that 
equals Pa on K[f] and maps Y to (cl/s)w(a) has Ys - c in its kernel, because 

c e TK. Therefore, it induces a ring homomorphism from K[fi[c11s] to itself, 
which we again call Pa. This ring homomorphism is clearly uniquely deter- 
mined by its effect on K[f] and c1ls. It follows that P1 is the identity and 
that Pa'Pa"l = Pa if a'a"l a mod p, so that each Pa is an automorphism. 
This proves (4.3). ol 

Proposition (4.4). Suppose that cl, c2 are elements of TK of the same order. 
Then there is a ring isomorphism K[K][clls] -* K[][cl's] that is the identity on 
K[f] and respects the action of A. 

Proof. By (4.2), the elements cl, c2 generate the same subgroup of TK. Let 
c = ci, with gcd(j, r) = 1. As in the proof of (4.3), one constructs a ring 
homomorphism b: K[fl[cl's] -* K[fl[cl's] that is the identity on K[f] and 
sends c1/s to (clls)j. Checking the effect on the basis elements (clls)' of 

K[K][c'ls] over K[f], one sees that this is an isomorphism. Let Pa e A. To 
prove that O(Pax) = PaO(X) for all x e K[f][cl1s], one remarks that this is 
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obvious for x E K[f] and for x = c /S, and that these generate K[fI[cl/s] as 
a ring. This proves (4.4). o 

The ring K[f] studied in this section need not be a field. It is one if and 
only if ji7_ X' is irreducible in K[X]. If K is finite, this is the case if and 
only if #K is a primitive root modulo r. 

5. PRIME-DEGREE EXTENSIONS 

In this section we let E be a finite field, q its cardinality, and r a prime 
number different from the characteristic of E. By m we denote the order of 
(q mod r) in the group F>*, and we let the positive integers t, u be such that 

qm-1 = urt and u X 0 mod r. The notation R*, TE X E[f][cl/r]A is explained 
in the preceding section. 

Theorem (5.1). The group TE is cyclic of order rt, and if c generates TE, then 

E[f][c I/r]A is a field extension of E of degree r. 

This theorem is proved at the end of this section. It tells us how to obtain a 
field extension of degree r from a generator of the Teichmuller group TE . Our 
next result tells us, conversely, how to obtain a generator of TE from a field 
extension of degree r. 

Let F be a field extension of E of degree r, and let a be an element of F 
that gives rise to a normal basis of F over E (see ?3). We define ,B, y E F[C] 
by 

r-1 r-1r-1 

A yJp-1)(l /ua) 

1=0 a=1 

Below we shall see that /3Ur = 1, so the expression ar appearing in the 
definition of y may be taken modulo rt+ I. 

Notice that we can view E[C] as a subring of F[f]. 

Theorem (5.2). The element c = yr belongs to E[fI*, and it generates TE. 

Moreover, there is a ring isomorphism E[4][cl1Ir] F[C] that is the identity 
on E[fi, maps clIr to y, and respects the action of A. It induces a field 
isomorphism E[KI[cl/r]= F. 

Proof. The field F is Galois over E, and its Galois group is generated by the 
automorphism of F that sends every x E F to Xq. Denote by T the mth 
power of this automorphism. This is still a generator of the Galois group of F 
over E, because gcd(m, r) = 1. We extend T to a ring automorphism of F[C] 
by Tz = C. For x E F[C] we have 

(5.3) Ix = x, X E E[fi. 

To see this, write x = EI7o c1C', with c, E F. Then Ix = x if and only if 

=ci = c, for each i, if and only if c1 E E for each i, if and only if x E E[f]. 
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For every x E F[fl we have 

(5.4) TX =X 

For x E F and for x = this is clear, and these generate F[f] as a ring. 
We can rewrite the definition of ,B as ,B = YI7O CTI'a. From a straightfor- 

ward computation we find that 

(5.5) z/= /3 
We show that 

(5.6) E3 EF[f*. 

Since F[f] is finite, it suffices to prove that ,B is not a zero divisor. Because 
(,l()lr- is a basis of F over E, it is also a basis of F[f] over E[K], and 
therefore x,B 5$ 0 for all x E E[fi, x :/ 0. To extend this to all x E F[f], x 5 
0, it suffices to prove that every ideal of F[fi, in particular the ideal {x E 
F[fi: x/3 = 0}, is generated by an element of E[fl; or, equivalently, that every 
irreducible factor of Er3_I Xl in E[X] remains irreducible in F[X]. This is 
obvious, because the degree of any such irreducible factor is relatively prime to 
[F : E]. This proves (5.6). 

From (5.5), (5.4), and (5.6) it follows that /3q-1 = , so the element 

3 = /3u satisfies 3r = and Ir = 1. Using the notation introduced in ?4, 
we can therefore rewrite the definition of y as 

r-1 
Y= 

fJ 
-a (( a)) 

al 

Using that pa1 (40(a)) = -, one finds that 

(5.7) r 

From this one sees that y has order rtl , and, using (5.4), that 

(5.8) Tn uy 

An easy computation, which is the multiplicative analogue of the argument that 
proves (5.5), shows that 

ph77 y )O for all pE A, 

so that Y E TF. Hence, c = / also belongs to TF. It has order rt. From 

(TC)/C = c = C = 1 and (5.3) it follows that C E E[f], and therefore 
Ce TE. The order of any element of TE divides q M - 1, by (5.3), and since 
it is also a power of r, it actually divides r' . With (4.2) it follows that c is a 
generator of TE . This proves the first two assertions of (5.2). 

To prove the remaining assertions, we consider the ring homomorphism 
E[f][Y] -+ F[f] that is the identity on E[f] and sends Y to y. Clearly, 
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yr _ c is in the kernel of this map. We prove that it generates the kernel. For 
this it suffices to show that >7r diyl , with d, e E[fi, vanishes only if all d1 

are zero. Applying all powers of T to the relation Z-I diy' = 0, and using 
(5.8), we find that 

Ed lljyi = 0 
1=0 

for all integers j (mod r). Now let k E {O, 1, ..., r - 1}. Multiplying the 
jth relation by Ckj and summing over j, we then see that rdkyk =0. Since 

k. 
ry is a unit, this implies that dk = 0, as required. 

It follows that an injective ring homomorphism y: E[K][cl/r] - F[f] is 
induced. Since both rings are r(r - 1)-dimensional over E, the map v is 
surjective. This proves the existence of the first ring isomorphism in (5.2). 

Let Pa e A. For all x e E[f] one trivially has q(pax) = paY(x), and the 
same equality holds for x = cl/r because Pa raises both Clr and y to the 
power co(a). 

This proves that v respects the action of A. Passing to the A-invariants and 
applying (4.1), one concludes that an isomorphism E[l[cl/r]A = F is induced. 
This proves (5.2). ol 

The following lemma will be needed in the next section. 

Lemma (5.9). Let F be a field extension of E of degree r, and let E E TF be 

any element satisfying Cr = C. Then all conclusions of (5.2), with y replaced 
by e, are valid. 

Indeed, all we used about y was that yr =C andY e TF. 

Proof of (5.1). Since E is a finite field, we can choose a field extension F of E 
of degree r . Applying Theorem (5.2), we find a generator c for TE, and in the 
proof we have seen that c has order rt. Therefore, TE is cyclic of order rt. 
By (4.4), the ring E[K][cl/r]A does not depend on the choice of the generator c 
of TE, up to isomorphism, and by the last assertion of (5.2) it is a field. This 
proves (5.1). ol 

6. PRIME-POWER-DEGREE EXTENSIONS 

Let E, q, r, m, t be as in the previous section, let h be a positive integer, 
and let s = rh. In this section we shall see that the results from the previous 
section carry over to extensions of degree s, provided that we make the as- 
sumption s = 2 or rt > 2; thus only the case r = 2, s > 4, q--3 mod 4 is 
excluded. 

Theorem (6.1). Suppose that s = 2 or rt > 2, and let c be a generator of TE. 

Then E[fi[clls]A is a field extension of E of degree s. 

The proof is given at the end of this section. 
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Let F be a field extension of E of degree s, and denote by E' the unique 
subfield of F with [F: E'] = r. Let a be an element of F that gives rise to a 
normal basis of F over E' (see ?3), and let /B, y e F[f] be as in the previous 
section, but with E replaced by E'; so 

r- E 1 re 11'' u' co(a) 

,3 5?,tViaq y = Pa (1 
1=0 a=I 

where u' is the largest divisor of #E'* that is not divisible by r. 

Theorem (6.2). Suppose that s = 2 or rt > 2. Then the element c = ys 
belongs to E[fI*, and it generates TE . Moreover, there is a ring isomorphism 

E[fl[cl/s] -F[f] that is the identity on E[f], maps cl /s to y, and respects the 

action of A. It induces afield isomorphism E[f][cl/s]= F. 

Proof. By (5.2) we may assume that s is not prime. Then our hypothesis 
implies that rt > 2. We consider the chain of fields 

E=EocEl c ... cEhl =E cEh = F, 

in which each field has degree r over the preceding one. Let q, denote the 
cardinality of E. From q,+1 = q[ it follows that all qi are congruent modulo 
r, so they all have the same multiplicative order m modulo r. Also, from 
r' #& 2 it follows that the number of factors r in q1t' - 1 equals t + i, for 
0 < i < h. Applying (5.1) to each E,, we see that the group TE is cyclic of 

order r'+', so in the sequence of groups 

TE =TE CTE C _CTE =TE' CTEh =TF 

each group is of index r in the next one. Applying (5.2) to the extension 

E' c F, we find that yr is a generator of TEl, so for each i the element y 
generates TE . In particular, the element c = ys generates TE. 

From (5.9), with E = y', it now follows that each Eh_i[C] is, as a ring, 

generated by Eh-i-l [] and yr . Combining this for all i, one concludes that 

F[f] is, as a ring, generated by E[f] and y. Therefore, the ring homomor- 
phism E[f][Y] -* F[f] that is the identity on E[f] and sends Y to y is 
surjective. The element Ys - c is in the kernel, so a surjective ring homo- 

morphism EK][cl/s] -* F[f] is induced. Comparing dimensions over E, one 
concludes that it is an isomorphism. As in the proof of (5.2), one shows that 
it respects the A-action and induces an isomorphism E[C][cl/s]A =F. This 
proves (6.2). El 

One derives (6.1) from (6.2) in exactly the same way as (5.1) was derived 
from (5.2). 
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7. ARTIN-SCHREIER EXTENSIONS 

In this section we deal with extensions of degree equal to the characteristic 
of the field, using Artin-Schreier theory [6, Chapter VIII, Theorem 6.4]. The 
following result already appears in [1]. 

Theorem (7.1). There is an algorithm that, given afinitefield E of characteristic 
p, constructs a pth-degree field extension F of E in time (p log #E)0(1) . 

Proof. Let p: E -> E be the Fp-linear map sending each x E E to xP - x. 
Since p maps Fp to 0, it is not bijective, so there exists a E E that is not 
in the image of p. Also, such an a can be found by applying linear algebra 
over Fp . Let f E E[X] be the polynomial Xp - X - a. We claim that f is 
irreducible, so that F = E[X]/fE[X] is an explicitly given extension field of 
E of degree p. 

To prove the claim, let a be a zero of f in an algebraic closure of E. Then 
all zeros of f are the elements a + i, with i E Fp . Any two zeros of f generate 
the same field, so they have the same degree over E. Therefore, all irreducible 
factors of f in E[X] have the same degree. Since f is of prime degree p, this 
implies that either f is irreducible or splits into p linear factors. The latter 
possibility is excluded because a was chosen such that f has no zero in E. 

This proves Theorem (7.1). o 

Theorem (7.2). There is an algorithm that, given two field extensions F1, F2 of 
degree p of a finite field E of characteristic p, constructs an E-isomorphism 
F1-* F2 in time (log #F,)0?'). 

One way to prove the theorem is to use the reduction to the problem of fac- 
toring polynomials in one variable that was mentioned in the introduction. This 
gives rise to a polynomial-time algorithm because the characteristic is bounded 
by the degree. I present an alternative solution, which is more in the spirit of 
the other arguments in this paper. 

Proof. Let F1, F2 be two explicitly given extensions of E of degree p, and 
let a, F be as in the proof of (7.1). Since we know that the fields F and F 
are E-isomorphic, the element a must be in the image of the map 0 : F1 * 
F1 sending each x to xP - x. By means of linear algebra over Fp one can 
find, in polynomial time, an element a1 E F1 with ap - a1 = a. An explicit 
E-isomorphism F -* F1 is now obtained by sending X' mod f to a' , for 
0 < i < p. Likewise, one constructs an E-isomorphism F -- F2. Combining 
these isomorphisms, one obtains the desired E-isomorphism F1 -* F2. This 
proves (7.2). o 

8. TAKING ROOTS 

This section is devoted to the case that was excluded in Theorems (6.1) and 
(6.2). Shoup [11] has a very elegant way to deal with this case. Our approach 
is less efficient, but it is of interest in itself because it shows that linear algebra 
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can, in certain situations, be used to take roots in finite fields in polynomial 
time. 

If E is a finite field of odd cardinality q, then an element a E E has a 
square root in E if and only if a(q+l)/2 = a. It follows that in the case q = 3 
mod 4 every square a E E has a (q+l)/4 as one of its square roots. Hence there 
is a polynomial-time algorithm to take square roots in finite fields of which the 
cardinality is 3 mod 4. The following theorem implies, more generally, that 
there is a polynomial-time algorithm to take square roots in finite fields whose 
characteristic is 3 mod 4. 

Theorem (8.1). There is an algorithm that, given afinite field E of characteristic 
p, an element a E E and a positive integer e satisfying 

h h 
p 1 mod e, gcd(e, (p - 1 )/e) = 1 for some positive integer h, 

decides whether there exists b E E with be = a, and constructs such an element 
b if it exists, in time (log(e#E))0(1). 

Proof. Let q = #E. We may clearly restrict ourselves to the case that a 54 0. 
Let it first be assumed that an integer h as in the statement of the theorem 

is known, with ph < q. Let c = a -l)/e. If a is an eth power, then c is 

a (ph - I)th power, so there exists a nonzero element x such that xP' = cx. 
This equation is Fp-linear in x, so by means of linear algebra we can decide 
whether it has a nonzero solution, and find one if it exists. 

If there is no such x, then a is not an eth power. Next suppose that x is 
nonzero and satisfies the equation. Then 

p -1 (P - )/le x =a 

Using the extended Euclidean algorithm, one can find integers u, v with ue + 

v(p - 1) /e = 1. The element b = aUx t(P' 1) le then satisfies 

b e= a uex ( 
1) =aua ( 

h 

= a, 

as required. 
To remove the assumption about h, one replaces e bye' = gcd(e, q - 1) 

n 
and h by the multiplicative order h' of p modulo e'. From q = p = 

1 mod e' it follows that h' divides n, so indeed ph < q. We claim that 

gcd(e', (p l)/e') = 1 . To prove this, note that h' divides h, so (p _-le' 
divides both (e/e') _ (ph _ 1 )/e and (q - 1 )/e'. From gcd(e/e', (q - 1 )/e') = 1 

h - / iie h 
it follows that (p _ )/e' divides (p - 1 )/e, which is coprime to e and hence 
to e'. This establishes the claim. If a is an eth power, then it is clearly an 
e'th power. Conversely, if a = be, then with e' = u'e + v'(q - 1) we obtain 

a= (bU )e 

This proves (8.1). o 
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Corollary (8.2). There is an algorithm that, given a finite field E of characteristic 
p 3 mod 4 and an element a E E, decides whether there exists b c E with 

2 0i b = a, and constructs such an element b if it exists, in time (log #E)0('). 
Proof. Take e = 2, h = 1 in (8.1). This proves (8.2). o 

Corollary (8.3). There is an algorithm that, given a finite field E of characteristic 
p _ 3 mod 4, finds an element of the multiplicative group E* of E of which 
the order is the largest power of 2 that divides #E*, in time (log #E)O(1). 

Proof. Starting from a = - l, repeat taking square roots until this is no longer 
possible. This clearly yields an element as desired. The number of iterations 
equals the number of factors 2 in #E*, which is less than (log #E) /log 2. This 
proves (8.3). o 

Corollary (8.4). There is an algorithm that, given a finite field E of characteristic 
p = 3 mod 4, constructs an extension field of E of degree 2 in time (log #E)?(l). 

Proof. If z is the element constructed by the algorithm of Corollary (8.3), then 
E[X]/(X2 - z)E[X] is a field extension of E of degree 2. This proves (8.4). u 

The following explicit formula is of interest. Let E be a finite field of cardi- 
nality q, where q -3 mod 4. Then E(i), with i = -1, is a quadratic exten- 
sion of E. Let the map f: E(i) -* E(i) be defined by f(x) =( + X)(q 1 )/2 

Then for every integer m > 2 for which 2 n divides #E(i)*, the element 
f 2(i) has multiplicative order 2Kn. This follows by induction on m from 
the fact that f(x)2 = x I for all x with Xq+I = 1 . 

The final result of this section solves, in a theoretical sense, a problem that 
comes up in primality testing [3, (1 1.6)(a); 2, ?5]. 

Corollary (8.5). There is an algorithm that, given a positive integer p that is 3 
mod 4, finds an element u e Z/pZ with the property that, if p is prime, the 

Legendre symbol ((u2 + 4)/p) equals -1, in time (logp)?(l). 
Proof. Assume first that p is prime. Using the above formula, one can find 
an element z of Fp(i)* of order equal to the largest power of two dividing 

p 2 1 . We claim that u = z - z I has the required property. To see this, notice 
that z P+ has order 2, so is equal to -1 . Hence the irreducible polynomial 
(X - z)(X - zp) of z over Fp equals X2 _ uX - 1 . Since the polynomial is 

2 
irreducible, its discriminant u + 4 is not a square in Fp. 

For general p, the computations leading to the element u can be carried out 
in (Z/pZ)[y]/(Y2 + 1) instead of Fp(i). This proves (8.5). o 

9. PROOFS OF THE THEOREMS 

The following theorem clearly implies Theorem (1. 1). 

Theorem (9.1). There exists an algorithm that, given a finite field E of charac- 
teristic p, a positive integer n, and any of (a), (b), (c), constructs the two others 
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in time (n log #E)0(1: 

(a) explicit data for a field extension of E of degree n; 
(b) an irreducible polynomial in E[X] of degree n; 
(c) for each prime number r that divides n but that does not divide the 

degree [E: Fp], an irreducible polynomial in E[X] of degree r. 

The proof that each of (a) and (b) suffices to construct the two others is the 
same as the proof for the case that the base field is Fp (see ?? 1 and 2). In this 
section we prove that (c) can be used to construct (a) and hence (b). We need 
the following lemma. 

Lemma (9.2). Given a finite field E, a prime number r, and a field extension 
F of E of degree r, one can construct a field extension of F of degree r in 
time (log #F)?(1) 

Proof. Let p, q denote the characteristic and the cardinality of E, respectively. 
First suppose that r 5 p, and let the case r = 2, q -3 mod 4 be excluded. 
Using (3.1), we can construct an element a E F that gives rise to a normal 
basis of F over E. Given a, we can calculate the elements ,B, y of F[f] 
that are defined in ?5. By (5.2), the element c = yr is a generator of TE, and 
there is a ring isomorphism E[K][clJrI F[f] that induces an isomorphism 

E[f][cl/r]A F. Also, the ring F' = E[FK[cl/]r is a field extension of E of 
degree r 2, by (6. 1). It is clear that explicit data for the field extension E C F' 
are readily calculated from the definition of F'. Since we can view E[f1[cl/r] 
as a subring of E[F][cl/r], by identifying cdlr with (clr )r, we can identify 
F with a subfield of F'. The degree of F over F' equals r, as required. 

In the cases that we excluded, the subfield E of F is not even needed. If 
r = p, then it suffices to apply (7.1) to F instead of E. If r = 2 and q _ 3 
mod 4, then p = 3 mod 4, so we may apply (8.4). This proves (9.2). o 

Proof of (9.1). Let E and n be given, as well as an irreducible polynomial of 
degree r in E[X], for every prime number r that divides n but that does 
not divide [E: Fp]. We construct an nth degree extension of E by induction 
on the number of primes dividing n, counting multiplicities. We may clearly 
assume that n > 1 . Let r be a prime number dividing n, and suppose that a 
field extension F' of E of degree n/r has been constructed. It will suffice to 
construct an rth-degree field extension of F' . We distinguish two cases. 

In the first case, r divides the degree [F': Fp]. Then F' has a subfield E' 
with [F': E'] = r, and E' can be determined by the methods of ?2. Applying 
(9.2) to the extension E' c F', we see that we can construct a field extension 
of F' of degree r, as required. 

In the second case, r does not divide [F' : FP]. Then in particular, r does 
not divide [E : FP], so by hypothesis an irreducible polynomial f E E[X] is 
given. Because [F' : E] is not divisible by r either, f is still irreducible in 
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F'[X]. Therefore, F = F'[X]/fF'[X] is the required field extension of F' of 
degree r. 

This proves Theorem (9.1). EU 

The following theorem clearly implies (1.2). 

Theorem (9.3). There is an algorithm that, given a finite field E, a positive 
integer n, and two field extensions F1, F2 of E of degree n, constructs an 
E-isomorphism F1 - F2 in time (log#F1)0('). 

We first deal with the case that n is a prime number. 

Lemma (9.4). Given a finite field E, a prime number r, and two field extensions 
F , F2 of E of degree r, one can construct an E-isomorphism F1 -+ F2 in time 

(log #Fl ) 0( 1) . 

Proof. By Theorem (7.2) we may assume that r is different from the character- 
istic of E. Applying Theorem (5.2), we can, as in the proof of (9.2), construct 
generators cl, c2 of TE and E-isomorphisms E[KI[cl/r]= Fi, for i = 1, 2. 

Thus, it suffices to construct a ring isomorphism E[K][cl/r] E[C][c'/r] that 
is the identity on E and respects the action of A. Inspecting the proof of 
Proposition (4.4), one sees that this can be done if an integer j is known with 

= c. 
Finding j is done by the following well-known iterative procedure. Let t be 

such that #TE = rt. First put j = 1 . (*) Determine the smallest nonnegative 

integer k for which (cI/C2)r =1 . If k = 0, then one has cl = c2, and we are 

done. If k > O, then (c /ci)r is an element of order r of TE , so there is a 
unique integer I e { 1, 2,..., r - I } such that 

i rk - 
I Ir'-1l 

t-k 
This integer I can be found by a direct search. Now replace j by j + lr - 

and start again at (*). To justify this algorithm, one remarks that the value of 
k is initially at most t, and that it decreases by at least 1 in every iteration step. 

The search among the powers of c2 is simplified by the fact that they coincide 
,11 '_ I 

with the powers of 4, because c2 = 
r (see (5.7)). Since also cl = e , the 

initial value of k is actually at most t - 1 . 
This proves (9.4). o 

Proof of (9.3). Let E be a finite field, n a positive integer, and F1, F2 two 
explicitly given field extensions of E of degree n. To find an E-isomorphism 
F1 -+ F2, one first finds prime numbers ri such that n = r1r2 * -rm, which 

can easily be done in time no(') . Next, one determines, by the methods of ?2, 
chains of fields 

E = F0 C El C C Em_1 C Em = FI, 

E EocEl c cE_ cCE=F2, 
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such that [E E._ ] = [E': E'_1] = r, for 0 < i < m. Using (9.4), one 

constructs successively E-isomorphisms El --* El, E2 -' E2, ... , Em * Em. 
This proves Theorem (9.3). EI 

The algorithms given in the proofs of (9.1) and (9.3) can in many cases be 
made more efficient by working with field extensions of which the degree is a 
prime power rather than a prime number. 
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