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SUMS OF CUBES IN POLYNOMIAL RINGS 

L. N. VASERSTEIN 

ABSTRACT. For any associative ring A with 1 of prime characteristic # 0. 2, 
3, every element of A is the sum of three cubes in A . 

For any ring A, let w3(A) denote the least integer s > 0 such that every 
sum of cubes in A is a sum of s cubes in A . If no such s exists, w3(A) = 00 

by definition. 
For example, when A = Z, the integers, it is known [2] that 4 < w3(Z) < 5. 
In this paper, we study w3(A) for A = F[x], the polynomial ring in one 

variable x with coefficients in a field F. It is easy to see [4] that every polyno- 
mial in F[x] is a sum of cubes, if and only if char(F) : 3 and card(F) $ 2; 4. 
If this is the case, w3(F[x]) coincides with the least s such that x is the sum 
of s cubes in F[x]. Moreover, in this case, every element of any associa- 
tive F-algebra A with 1 is the sum of w3(F[x]) cubes in A; in particular, 
w3(A) < w3(F[x]). 

The formula 
(x + 1)3 - 2x3 + (x - 1)3 =6x 

shows that w3(A) < 4 for any associative ring A = 6A with 1. In particular, 
w3(F[x]) < 4 for any field F with char(F) : 2, 3. By [4], w3(F[x]) < 4 also 
in the case when char(F) = 2 and card(F) f 2, 4. When card(F) = 2, 4, 
formulas on p. 63 of [3] show that w3(F[x]) < 5. These formulas together 
with the formulas 

(xy + s)3 + (xy? + s +) + (x + sy2) + (x + (+ s)y2) = x(y + y4), 

(X2y2 +X(y+y4) + 8 +s +y +y + 3 ) 

+ (X2(l +y2) +X(y +Y4) +S +y +y + 10)3 

+ (X2(l +y2) + X(4 4 03 3 
((?y)?x(y?y)?+s?+y?+y?+y ? y 

=x(y +Y ) +y +? y 

where 2 = 0 and s2 + s + 1 = 0, show that w3(F[x]) < 4 in the case when 
card(F) = 4. 
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On the other hand, it is clear that w3(F[x]) = I when char(F) = 3, and 
that w3(F[x]) > 3 when char(F) $& 3. 

Our first easy result (which was obtained by the author in July of 1987 and 
was known to J.-P. Serre since April of 1982) is the following 

Lemma 1. If char(F) :$ 3 and there are nonzero a, ,6, y E F such that a(3 + 
? 3+ y3 =O , then w3(F[x]) = 3. 

Proof. The formula 

(aXx + /23 2+ (,X _ Ce2)3 + (yx)3 = /36 - a6 - 3 3 , 

where x can be replaced by an arbitrary polynomial in F[x], shows that 

w3(F[x]) < 3. L 

Corollary 2. If char(F) $& 0, 3 and card(F) $A 2, 4, 7, 13, 16, then w3(F[x]) 
= 3. 

By more complicated computations, we will prove the following 

Proposition 3. If char(F) = 3, then the condition of Lemma 1 is equivalent to 
the following: x is the sum of cubes of three polynomials in F[x] of degree 
< 4. 

J.-P. Serre knew this for polynomials of degree < 2 since April of 1982. 
The case of degree < 3 was done by August 1987 independently by the author 
and David Hayes. In his letter of August 11, 1987, to Serre, Hayes wrote that 
the case of degree < 4 defeated him. The author obtained Proposition 3 with 
2F $& F in September of 1987. He thanks Serre for providing copies of relevant 
letters and useful suggestions. 

This result leads one to wonder whether the converse of Lemma 1 is true. 
However J.-P. Serre wrote to the author on September 9, 1987, that he did not 
dare to conjecture anything himself even for F = , the rational numbers, or 
F = 2/7Z, 2/132. 

Computations with polynomials of degree > 5 are very complicated, and 
it is only after many hours of computations with computers, that the author 
obtained the following result. 

Theorem 4. If char(F) $& 0, 3 and card(F) : 2, 4, 16, then w3(Fjx]) = 3. 
So every element of every associative F-algebra A is the sum of three cubes in 
A. 

Proof. By Corollary 2, we have only the cases char(F) = 7, 13 to deal with. 
Modulo 13, we have 

(-4x + 5X2 + 6x3 + x4)3 +(1 + 4x + x2 - 5x3 - 3x + 5x5) 

+(-1 + 5x - 5x + 5x + 3x - 5x5) = x. 

Modulo 7, we have 

(x - 3x -x5)3 +(-l-_ x - x3+ 3x 4- x6)3+(1-- x - x 3x + x4)3 =x3 O 
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Remarks. The cases F = Q and card(F) = 16 remain unresolved. The above 
equalities were found using Mathematica on Macintosh lIx. We work in one 
of the following cases: F = Q, 2/72, or 2/132. In degree 5, we proceed as 
follows. First, we set d = a3 + b3 + c3 with 

2 3 4 5 a = ao+a1x+a2x +a3x +a4x +a5x 

b = b0 + x+bx +b3x3 +b4x4 +bx5 
2 3 4 5 

C=Co+C1X+C2X +c3x + c4x + c5x 

Note that d = do0+dlx+ + d 15x , where d. are polynomials in ai, bi, ci. 
We want di = 0 for i > 2 and d $& 0. (For proving Theorem 4, we want 

d, $& 0.) We assume that char(F) $& 2, 3. By Proposition 3, we can assume 
that one of the leading coefficients a5, b5, c5 is not 0. Since the condition 
of Lemma 1 does not hold, one of these coefficients must be 0. Say, a5 $& 0 
and c5 = 0. Then b5 = -a5, because d15 = 0. The condition d $& 0 forces 
C4 $& 0. By a linear invertible change of the variable x and multiplying both 
sides of d = a3 + b3 + c3 by a nonzero constant, we are reduced to the case 
when a5= = -b5,a4-0, c4= 1. Now d15=0$ d. 

The polynomial equations di =0 (7 < i < 15) allow us to exclude all un- 
known coefficients but a3, cO, c1, C2, c33. The conditions d6 = 0, d5 = 0, d4 = 
0, d3 = 0, d2 = 0 give a system of five polynomial equations for five unknowns 
a3, Co0 Cl, C2, c3. Namely, 

d6= - 1/108 + 5a3 + 3a3cO+ 3C1/4 - 18a3 c2- 3coc2 + 21a3c24 

- 8C2 - 12a3c C3 + 15c c2c3 + 63a3cC + 3cOc3 - 159a3c2c3 

2 3 13 33 2 + 9C23 3l3/ 1ac4-2C2C34 _ 734=0 

d= 9a 2 
CI/2 + 3coc, /2 - 12a3c1C2 ? 15c c2/2 - c3/12 

- 30a3c3 - 3a3cOC3 + 3C IC3/4 + 1 17a3c2c3 + 6cOC2C3 

- 150a3c2c3 + 63C2 C3 - 6a3ci C3c + 9cl c2c3 /2 

+ 57a3cC3/2 + 15cOc3/2 - 51a3c2c3 + 33c 2c3 /2 

- 15c c 4/2 + 57a3c 5 - 165c2c>5/2 - 69c37/4 = 0; 

d4= a3/18 + 15a3/4 + 3a3cO/2 + 3c0/4 - C2/12 

- 12a 3c2 + 3cIc2/4 + 21a3cC2/2 - 3cOc2/2 

- 9c4/4 - 6a2c c3 + 3c0c c3/2 + 9C4C2C3 

- c 2/3 + 42a c32 - 159ac2c c /2 
2 32 

2 
3 

+ 9c0c2c3 /2 + 8 1 C2c3 /2 - 3c c2c3 

+ 6a .c<_ 3c c /2 - 69c2c4/4 - 3c c /2 - 51c2c /4 - 3C /2 = 0; 
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d3 2 3cI/2 + 9a3cOc11/2+ 
3 _ 33a 2c C - 3c C2 3213 c-3ac1c2-30c1c2 

+ 63a3c c2c/2 - 9c1c 3+ a3c3/3 - 135a>3/4 

- 6a3c0c3 + 3c0c3/4 - 18a3c1 c3 - c2c3/2 

+ 129a3c2c3 + 9a3c0c2c3 + 45c1 2c 3/2 

- 321a2c2c3/2 + 63a3c c3 + 9c4c3/4 

+ 21 9aa 2cc/2 + 9c0c1 c32/2 - 549a3c1 c242/2 

+ 333ccc C23/2 - 3c3>4 - 209a3 c3/2 
3I O3 /A2 cv32 3 + 3a3cOc3 /2 - 9c,c3/4 + 393a3c2c3 

+ 9c c2c 3/2 - 933a3c>2c 3/2 + 17lC3c 3 

+ 12a3cl c3 - 63c1 C2C3/2 + 42a3c 3 -87a3c2c3/2 

- 8lc2c 5/4 - 27cc36/2 + 6a3c7 - 45c2c37/2 - 9c9/4 = 0; 

d2= -a32/9 + 9a 3/2 + 9a 3co + 9a3co /2 + 27a3 C1/4 + 3coc0 

+a3c2/3-99a3 c2/4-63a 3cOc2/2- 15co C2/4- 18a 3c c2 
2 43 2 2+ 22 1 2 3 

- c2/4 + 54a3 C2+ 36a3c0c22 + 45c1c2 /4 - 117a3 c2/2 

- 27c c02/2 + 63a3c2/2 - 27C 2/4 - 135a3 c1c3/2 - 27a3cOclc3 

+ 252a2c c2c3 + 36c0c2c3 - 621a3c14c3/2 + 126c c3c3 

+ 5a3c 2/6 + 549a 4c32/4 + 108a 2ccC2 + 9co2c32/2 + 9a34c2c2 

- 5c2c 2/4 - 639a3c2c3 - 270a3c0c2c3 - 63c2c2c2/4 
2 22 22 3 4 2 + 1107a3 c2 c3 + 333c0c2 c3/2 - 846a3c22 + 963c2 c3/4 

2 33 3 2 3 - 153a3 cc3C/2 + 9coC0 c3 /2 + 228a3cl C2C3 - 333cl c2c3 /2 
4 3 4 4 224 

- c3 + 357a3c3/2 + 12a3cOc3 9C2C4 - 720a32c3 

- 27c4c2c4 + 951a3c2c4 - 164-7c 3c4/4 + 165a3c c>5/2 

- 108C1c2c - 519a2c6c/4 - 27c c 6/2 + 294a3c2c3 - 639c42c6/4 

- 27c c>/2 + 21a3c /2- 9c2c /4 + 9c'0/4 = 0. 

Further exclusion of variables required too much computer memory. So a 
complete search was used instead for F = 2/72 and F = 2/132. The author 
thanks A. Ocneanu for help with programming. The computer search showed 
that there was no solution for this system of five polynomial equations in five 
variables in the case F = 2/72. Thus, the equation d = a3 + b3 + c3 has no 
solutions in (Z/72)[x] such that 5 > deg(a) > deg(b) > deg(c), deg(a) $& 0, 
and deg(d) = 0 or 1. In the case F = 2/1 32, the computer took 57128 seconds 
to try all 135 possible solutions and found all 12 solutions. The first of them is 

(1+3x+Ox?2+x5)3-(12+12x+6x2+x5)3+(2+4x+8x2+9x3+x4)3 = 10+8x. 
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It was written above in the proof of Theorem 4 after a linear change of variable. 

Here are five more solutions (mod 13): 

(3 +x +I O2 5)3 _( +4x 62 5)3 (3+x+lOx ?x ) -(1O?4x+6x ?x ) 

+ (5 + 4x + IlX2 + 3X3 + X4)3 = 10 + llX; 

(9+ 9x + 1OX2 + X5)3 -(4+ lOx+ 6x2 +x5)3 

+ (6+4x + 7X2 +x3 + X4)3 =10 + 7x; 

(5 7x +7x2 +7x3 +x5)3 +(7+3x+7x +3x +x ) 

- (12 + lOx + 3X2 + 7X3 + X5)3 = 2; 

(2+ llx+7x2 + 8X3 + X5)3 -(10 + 12x + 3X2 + 8X3 + X5)3 

+ ( 1I1 + 3x + 8X2 + X3 + X4)3 ; 

(6 + 8X + 7X2 + I X3 + X5)3 -(4 + 4x + 3X2 + I 1X3 + X5)3 

+(8 + 3x+ IlX2 + 9X3 + X4)3 = 1. 

The other six equalities can be obtained from the above six solutions by 

switching a and b and replacing x by -x. 

The degree-6 case was treated similarly. The following lemma was used to 

restrict possible values for the coefficients of a, b, c. 

Lemma5. Let F beafieldsuchthatthereisno a, , y in F with a3 +f +? = 

O$ aIy. Letx=a3 +b3 + 3 with a, b, c E F[x], N = deg(a) > deg(b) > 

deg(c) > 1, a = Eaxl, b = Ebix, c = cx', and ai, b,c e F. Then 
0 and aO/aN is a cube in F. 

Proof. By the condition, CN = 0, hence (-bN/aN)3 = 1. Replacing b by 

bbN/aN, we can assume that bN= -aN ?O 

Let us show that the assumption that co :& 0 leads to a contradiction. Indeed, 
in this case aobo = 0. Say, bo = 0. Replacing c by cao/co we can assume 
that co = ao 

3 
Let a1 be the zeros of b+c in a field extension of F. Then a(a1) = ai for 

all i, hence aO/aN = (-1) Nra = ((-1)N a(a))3 is a cube in F. Applying 
this argument to the zeros of a2 _ ab + b2, we obtain that a2/(3a2) 

(HcG(j))3 is also a cube in F. So 9 is a cube (in fact, a 12th power) in F. In 
the case 2F = F, this leads to a contradiction, because 9 = 8 + 1 is also the 
sum of two cubes. 

In the case 2F = 0, assume first that F contains an element e such that 

=2 _- +e . Using the zeros of a + eb, we conclude that aO/(aN(l + e)) is a- 
cube in F. Using the zeros of a + ,c, we conclude that ao( 1 + e)/aN is a cube 

in F. So (1 + e)2 = e is a cube in F . This leads to a contradiction, because 
1e + 1 /c is also the sum of two cubes. 

Assume now that 2F = 0 and F does not contain any & as above. Then 
we consider a field extension F[e] with e as above. Using the zeros of a + eb, 
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we conclude that aO1(aNl + e)) is a cube in F[e]. Using the zeros of a + cc, 

we conclude that ao(I + e)/aN is a cube in F[E]. So (1 + c)2 = e is a cube in 

F[E]. We write e = (u + vc)3 with u, v E F. Then 

0 = u3 + UV2 + v3 = (u + v)3 - u2v and = U2v + uv2 = uv(u + v), 

hence u5V4 = 1. Combining this with 

? = 0 + U V2 + UV2)4 + U8 
4 

+ U4V8 

we obtain that 1 + u + u 6 = 0, which contradicts the condition of the lemma. 
Thus, c0= in all cases. Now we use the zeros Yk of a + c to conclude 

that ao/aN=((- 1)NfHb(yk))3 isacubein F. o 

Proof of Proposition 3. It was shown above that the condition of Lemma 1 
implies that x is the sum of cubes of three polynomials of degree 1. 

Assume now that there is no a, B, y in F = 6F such that a? + ,f + = 

0 $ afly. We want to prove that deg(d) :A 1 for any 

(6) d = a3 + b3 + c3, 

where a, b, c E F[x], provided that a, b, c are all of degree < 4. 
Let deg(a) ? deg(b) > deg(c). Assume that deg(d) - 1. Then it is clear 

that all three polynomials a, b, c cannot have the same degree. So deg(a) - 
deg(b) > deg(c) . Dividing both sides of (6) by the cube of the leading coefficient 
of a, we can assume that a and -b are monic, i.e., their leading coefficients 
are 1. Then the next two coefficients must also be equal. This leads immediately 
to a contradiction when the degree of a is < 2. 

Consider now the case when deg(a) = 3 or 4. If 2F = F, we set u - a + b 
and v = a - b. The equation takes the form 

u(u2+ 3V2) 4 + C3 = d. 

When deg(a) = 3, we see that deg(c) = 2, deg(u) = 0, and deg(v) = 3. We 
2 3 2/ 

rewrite the equation as v /4 + c /3u = d/3u - u /3 = d' with deg(d') = 1. 
We write v/2 = X + V2X2 + ViX + Vo and c3/3u = (X2 + cix + Co)3 . Our 
equation takes the form 

3 2 2 2 3 
(x + V2X + Vx +v) - (x + c1x + cO) = d. 

Then we replace x by x - v2/3 to make v2 = 0. Looking at terms of degree 
5, we conclude that cl = 0. Looking at terms of degree 3, we conclude that 
v = 0. Looking at terms of degree 1, we obtain a contradiction. (The "abc- 

theorem" yields that V2 - C3 cannot be a nonzero constant for nonconstant 
polynomials V and C, if char(F) = 0. It is not difficult to show that the 
necessary and sufficient condition on a field F for this conclusion to be true is 
that 6F = F.) 
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Let now deg(a) = 4 (and still 2F = F). Since deg(v) = 4, it is clear that 
deg(u) = 1 and deg(c) = 3. Now we set y = 1/u. After we divide both sides 

of (6) by u9 ,it takes the form 
4 2 + (C/U3)3 6 9 

3/4(v/ul +cu ) = -y /4 +x/u9 
Note that c/u3 is a polynomial of degree 3 in y with a constant term e' $& 0. 

After dividing the equation by e' 3, it takes the form 

(Il+ vly + v2y + V3y3 + v4y4)2-( + cly + c2y + c + 3y ) 

(- _6/4e3 + e y8 +ee y9 with e', e", e"' in F and e'e" O. 

Now we see that, modulo y 6F[y], 

( 1 
+ V2 + Vy3 +Vy4)2 (l +Cy +C2Y c3y3), 

hence 

1 + vy+v2y2 + v3y3 + 4vy4( +f1y+f2y2+f3y3+f4y4+f5y5)3 

and 2 3 
~I f 2 + f4+ 

1 +cly +c2y +c3y _ (1 +f1y +f2y +f3y +f4y +f5y5) 

for some fi in F. Set f = +fiY +f2y +f3y3+ 4y y+f5y 

Then, modulo y 6F[y], 

2 3 
f I +2fy+(2f2?fti)y2+(2f3+2f,f2)y 

+ (2f4 + 2f1f3 + f2)y4 + (2f5 + 2f1f4 + 2f2f3)y5 

and 
f 1 +3tY+(3f2 + 3i2)y2 + (3f3+ 6ff2 + f)Y3 

3f2f+ 2 4 
+ (3f4+ 3,f2+ 6ftf3+ 3f2)y 

+ (3f5+ 6f1f4+ 6f2f3+ 3f, f3+ 3f1f )y 

So 
0=C4 =2f4+2f1f3+f2 

O = C5 = 2f5+ 2ftf4+ 2f2f3' 

0=V5= 3f5+3f1f2 +6f1f4+6f2f3+3<, f3, 

hence 

t +f222 +t3f = ? 0 - 2t - f3f,2 = 0, f30 f 22,/2 - O. f4 +f /2+f3f1=O. f- f~ fl-3f2= f3f2 +f~ 2O 

We set C = + 2fiy + (2f2 +f )y2 + (2f3+ 2ff2)Y3, 

V= ? +3fy1+(3f2+3f,2)y2+(3f3+6f1f2+f2)y3 

+ (3f4+ 3f72 2+ 6ff3+ 3f22)y4 
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2 3 and S= V - C . Then (7) takes the form 

S= V2 - C3 = S5y + + S7y7 + S8y8 + S9y9 
6 ,3 if 8 ii, 9 =-y6/4e +e y +e y, 

where the coefficients S, of S are polynomials in f. Substituting f4 = 

-J/2-f 33f, and f5 - =ff + f1if into S., we obtain: 

S9= -8f3 - 24f3f2fi - 24f3f,2f7 - 8f3f3 =f 

S8 = -24f9 + 9f,/4 - 39f3Qf1 - 3f32 

- 1f3< - 6f3f2f13 - 3ff4 e" #0, 

S7=- 15f3fi2 - 6ft3f1 - 63f f- 1 8f3ff12f - 9.,2<f= 0, 

S6 = -3f +I2 - 18.f3ff1J - 9f2f = -1/4e3 $ 0, 

S5= -6f3f2 -3f = 0 

Since S5 = 0, we see that either f2 = 0, or 2f3 + f1f2 = 0 
In the first case, 

(S9, S8, S7, S6) = (-83 22-f, 6f21 ,32), 

and S7 = -6_f3 fi = 0 implies that S8 = -3ff2 = 0, so this case is impossible. 
Assume now that f2 $ 0 = 2f3 + f,.f2. Then 

S9 = -ff32 58 = 9J/4 - 3f3f7/2 - 3f 4/4 

S7 = 3f2 f1/2 - 3fV f13/2, S6 = f 3- 3f /4. 

From 57= 3f23?f /2- 3f f,3/2=0, we obtain that either f1 =0,or J2 = f2. 

The latter case is impossible because then the coefficient S7 vanishes. So let 
=f, =0. 

Then the coefficients (S9 I8, S7, S6) become (0,9/4,0, fe). So -e'3/4 
= vf2,hence 2 is a cube in F. Since 2 is also the sum of two cubes, we are 
done. 

The case 2F = 0, deg(a) = 3 or 4 was done using the computer. When 
deg(a) = 3, we consider (6) with a = x3+ a x) + axx + ao, b = a + f, 
c=c2x cCx+c0, d=Zd 1x'$ 0, d=0 for i>2. 

It is clear that deg(f) = 0. Replacing x by x + c2, we make c, = 0. 
3 3~~~~~~~~ From d6 =+c2 = 0, we get f = c2. Substituting this into d, we get that 

61 f2 2c= A 2 d =c c2 0. If c1 =0, then d3 = C6= . Thus, c2 = 0, hence d2 = -cc2 
and d, = c3c . So d2 =0 implies that d, = 0. 

The reader is spared from longer computations which were done in the case 
when 2F = 0 and deg(a) = 4. 0 

Remark. The identity 

x = ((x 
3 

1/27)3 (x2 + x/3)3 + (-x3 ix/3 + 1/27) )/(x + x/3+ 1/9) 
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shows that w3(F(x)) < 3 and w3(F) < 3 for any field F with char(F) 7& 3; 
if char(F) = 3, then w3(F(x)) - w3(F) = 1. 

Remarks. All the solutions of (6) with deg(a) = deg(b) = 3, deg(c) = 2, deg(d) 
- 0 can be obtained from 

(I + 6x3)3 + (I - 6x3)3 + (-6x2)3 =2 

by a linear change of variable and scaling. There are no such solutions when 
2F = 0. 

All the solutions of (6) with deg(a) = deg(b) = 4, deg(c) = 3, deg(d) = 0 
can be obtained from 

(9x4)3 + (3x - 9x4)3 + (1 - 9x3)3 = 

by a linear change of variable, switching a and b, and scaling. P. Erdos pointed 
out to the author that the last two formulas can be found in [1]. 

All solutions of (6) with deg(a) = deg(b) = 5, deg(c) = 4, deg(d) = 0 
or 1 were described above when char(F) = 13. They do not exist when 
card(F) = 5, 7. When char(F) = 11, all such solutions can be obtained from 
the equalities 

X2 3 X53 2 3 5 3 
(2 + 2x + 3x +x) -(2+5x+6x +3x +x) 

+(x+lOx +5x +x4) =6x, 
(I +4x + x2 + 5x3 + x5 )3 _(9 + 6x + 5x + 5x + x)3 

+(8+x+2x3 +x4)3 =4, 

(4 + 4x + 3x2 + 8x + x5)3 -(8 + 6x + 7X2 + 8x3 + x5)3 

+(5+4x+9X2 +2x3 +x4)3 =7 

by a linear change of variable, switching a and b, and scaling. 
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