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CATALAN'S EQUATION xP - Yq= 1 
AND RELATED CONGRUENCES 

M. AALTONEN AND K. INKERI 

ABSTRACT. We investigate solutions of Catalan's equation xP - yq = 1 in 
nonzero integers x, y, p, q . By use of class numbers and congruences p 

p (mod q 2) we show the impossibility of the equation for a large number of 
prime exponents p, q . Both theoretical and computer results are included. We 
also study lower bounds on possible, hitherto unknown, solutions x, y > 2; 
we especially wish to communicate the bound x, y > 1050. 

1. INTRODUCTION 

Euler [4] proved in 1738 that in the sequence of squares and cubes of pos- 
itive integers only 8 = 23 and 9 = 32 are consecutive. A century later, in 
1844, Catalan conjectured more generally that there are no other consecutive 
nontrivial powers of positive integers, i.e., that the equation 

(1) xp-yq= I 

has no other solutions in integers x, y, p, q > 1 except x = q = 3, y = p = 2. 
Even today, the conjecture is still an open problem. It is obviously sufficient to 
prove the conjecture when p and q are primes. 

For some exponents p, q, besides Euler's case p = 2, q = 3, the validity of 
the conjecture is known. The case q = 2, p :$ 3 was solved by Lebesgue [13] 
in 1850, the cases p = 3 and (q = 3, p :$ 2) by Nagell [14] in 1921 (or [18, 
pp. 198-199]), and the case p = 2 by Chao Ko [3] in 1964. A new step in this 
direction is a recent paper of Inkeri [8] (see also [7]), where it is shown that (1) 
has no solutions in nonzero integers for the following prime exponents p, q: 

(i) 5 < p < 73, 5 < q < 104, (p, q) :$ (19, 137), (53, 97), (53, 4889), 
(59, 2777), (61, 1861); 

(ii) 5<p,q<89; 
(iii) p-q _ 3 (mod4), 5 < p, q < 200; 
(iv) p 3, q --1 (mod4), 5 < p, q < 200, (p, q)$h(19, 137), (107, 97). 

Because of these results, we shall hereafter consider only prime exponents p, q 
> 5. 
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In principle, the conjecture can be verified, or a counterexample found, by 
exhaustive computations, for Tijdeman [22] proved in 1976 that there are no 
integral solutions of (1) if at least one of x, y, p, q exceeds a computable 
bound. In particular, as Langevin [12] has shown, p, q < exp 241 < 105 and 
xP < expexpexpexp730 for any solution of (1) in integers x, y, p, q > 1. 
For x and y we have the lower bounds 

(2) x > max{pq I (q - l)q + I , q(2p + I)(2qP I + 1)}, 

y > max{qP 1(p + - 1, p(q - 1)(pq (q - )q +1)}, 

due to Hyyro [6], who also demonstrated that x, y > 1011 . As a corollary of 
(i)-(iv), Inkeri [8] improved this to x, v > 10179. However, the region to be 
investigated is still far too vast for a proof of the conjecture by straightforward 
computations exhausting all possibilities. 

In this paper we present extensions to the cases (iii) and (iv), and improve- 
ments on the lower bounds (2). We also exhibit the lower bound x, y > 10500 
We will, however, begin by proving in the next section some theoretical results 
that follow from the basic Theorem 1. 

2. SOME THEORETICAL RESULTS 

Let h(-m) be the class number of the quadratic field Q(vE7/-), C,n a primi- 
tive mth root of unity, and hm the class number of the cyclotomic field Q(4,n). 
The results (i)-(iv) are based on the following theorem (see [8]). 

Theorem 1. If p and q are odd primes for which pq p (mod q 2) and either 
q Jrhp or both p _= 3 (mod4) and q { h(-p), then (1) has no solutions in 
nonzero integers x, y. 

Naturally, the theorem holds also with p and q interchanged, since xp yq = 

(_Y) - (-x)p. 

We now deduce from Theorem 1 some results giving simple sequences of 
pairs (p, q) for which (1) has only trivial solutions. 

Corollary 1. Suppose q{rhp or both p - 3 (mod4) and q{rh(-p). If p = 

2kq + e with q J k and eq _= e (mod q2) (e.g., e = ?1), then equation (1) has 
only trivial solutions. 

Proof. By the assumptions, 

pq = (2kq + e)q = (2kq)q + + 2kq2eql + eq =_ e (mod q2). 

We now easily see that 
p _p (modq 2 

is absurd, since otherwise it would follow, by combining this and the former 
congruence, that p = 2kq + e - e (modq 2) and so qlk, contrary to the 
assumption q t k . Thus the assumptions of Theorem 1 are valid and our result 
follows. o 
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Let d be the discriminant of the imaginary quadratic field Q(Vd-). It is 
well known (see [15, p. 389]) that for the class number h(d) of this field the 
following estimates hold: 

(3) h(d)< 2 Idl 1/2 (1 +log (2Idl1/2)) 

and, if dl > exp24, 

(4) h(d ) < 1 Idl 1/2 log Idl. 
If p 3 (mod 4), then in the field Q(Vy=p), d = -p, and we shall later 

replace (4) also by the estimate 

(S) h (-p) < 
I 
12P logp, 

which is weaker than (4), but is valid for all primes in question (namely for 
p > 7), as one may infer from (3) by a simple calculation. 

Lemma 1. The class number h(-p) of Q(Q/Zp) satisfies the condition h(-p) < 
q in the following four cases: 

(i) p = 2q + 1, (ii) p = 4q - 1, 

(iii) p = 6q + 1, (iv) p < q462 p 3 (mod4). 
Proof. Clearly, p - 3 (mod 4) in every case. Since h(-p) < p/4 (see, e.g., 
[5]), (2q + 1)/4 < q, and (4q - 1)/4 < q, (i) and (ii) are obvious. 

(iv) Let 2t = 1.462. Now by (5) we have 

h(-p)/q < Ip1/2 logp/q 

< (t/(1 - t))logq lt/qt < 731/(269e) < 1, 
and the result follows. 

(iii) By a simple calculation it may easily be verified that 
0.462 

(6) p/q = 6+ l/q < 6.2< q 
when q > 53. If 5 < q < 53, then p = 6q + 1 is a prime only for q = 
5, 7, 11, 13, 17, 23, 37, 47. Correspondingly, p = 31, 43, 67, 79, 103, 
139, 223, 283 and h(-p) = 3, 1, 1, 5, 5, 3, 7, 3 (see [1, Table 4]). Thus, 
it is immediately seen that h(-p) < q for q < 53, and for q > 53 the same 
follows by (6) from case (iv). This finishes the proof. o 

The following theorem brings to mind the well-known criterion of Sophie 
Germain (and its many analogies) concerning the first case of Fermat's Last 
Theorem. 

Theorem 2. Equation (1) has no solutions in nonzero integers x, y in the cases 
(i), (ii), (iii) mentioned in Lemma 1, and also in the last case (iv) provided that 
p can be presented in theform 2kq + e, so that k and e satisfy the assumptions 
of Corollary 1. 
Proof. Above we have established that in every case, p 3 (mod 4). From 
Lemma 1 it always follows that also q t h(-p) . Finally, we see that p has the 
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representation p = 2kq + e required in Corollary 1. This corollary then gives 
the result for all four cases. o 

Corollary 2. Let q = kp + r, where k and r are some integers with k > 0, 
2tr, Irl < p, r' =r (modq2). If p _ 3 (mod4) and (1) has a solution in 
nonzero integers, then 

(7) PQq (k) 1 (mod q), 

where Qq (k) = (kq - k)/q. (Qq(k), or more commonly Qq(k)/k, is called 
Fermat's quotient.) 
Proof. Clearly, 21k and r > -p, so that q > (k- I)p > p . Hence, q t rkh (-p). 
From Theorem 1 we have pq p (mod q2) and thus 

k qp=- (kp )q = (q - r)q=-qq- - rq _-r (mod q 
2 

Therefore, 
0 =- k qp+r= (k q - k)p + q (mod q 2 

from which the result follows, dividing by q. 0 

Notice that (7), since q = kp + r, may also be written in the form 

r(kq1 - )/q_ 1 (modq). 

Corollary 2 gives rise to the problem of determining the solutions of the 
congruence 

(xp - x)/p -m (modp) (m an integer, p an odd prime). 

Obviously, it is sufficient to treat only the cases m = 0, ... , p - 1. As is well 

known, the congruence xp-x _ 0 (modp2) has exactly p-I roots incongruent 
2 modp and prime to p. From this result we can easily see that the same is 

valid also for every congruence xp -x mp (modp2) (m = 1, 2,.. ,p- 1). 
Indeed, since for an integer x 

(x - mp)p = xp _ p2mXp- 
I 

+ (mp)p = xP (modp)2 

the congruence (x - mp)p - (x - mp) mp (modp2 ) holds for every root 
x of xP x (modp2). These roots prime to p for the congruences with 
m = 0, 1, ..., p - 1 total p(p - 1) (= (o(p 2), (o Euler's function). But this 
is exactly the number of the integers prime to p and pairwise incongruent 

2 modp . Naturally, the set of these integers contain all the roots in question. 
We still treat the corresponding question about the congruences xP 1 - 1- 

mp (modp2) (m = 0, 1, ..., p- 1) in a different way. In the interval 0< 
X < p2, only the integers prime to p (p(p 2) in number) can now also be 
roots. If g is a primitive root modp 2, then (gr(P-1) _ 1)/p runs through a full 
residue system modp when r runs through the sequence 0, 1, ... , p - 1 . It 

is immediately seen that for m = (gr(P 1) - 1)/p (modp) at least the integers 
gtp+r (t = 0, 1, . .. , p-2) (p- 1 in number) are roots of the above congruence. 



CATALAN'S EQUATION AND RELATED CONGRUENCES 363 

All the p congruences thus have at least p(p - 1) roots. According to what was 
said above about the roots, we infer that every congruence has exactly p - 1 
roots (also in the case m = 0). 

We now treat briefly the connection of the difference d = p - q with Theorem 
1 and begin with the twin pairs p, q. Obviously, one of the members of a twin 
pair is congruent to 3 (mod 4). 

Corollary 3. Let p = q + 2. If (1) has a solution in nonzero integers, then 
q 2 p 2 

(8) p -p (mod q) or qP _ q (modp) 

according as p -3 (mod 4) or q _ 3 (mod 4). 

Proof. For p _ 3 (mod4) we have qth(-p), since h(-p) < (q+ 2)/4 < q. 
Likewise, for q _ 3 (mod4), pth(-q), since h(-q) < q < p. The result 
follows immediately from Theorem 1. o 

According to the table computed by the first author, (5,7) is the only twin 
pair (p, q) in the interval 0 < p, q < 104 (cf. also Riesel's table and the table 
in this paper), for which (8) is valid (namely, 75 7 (mod 5 2)). Recall that 
for the pair (5,7), equation (1) has only trivial solutions (see [8]). 

Lemma 2. If p - q = d, then 

(9) Qq(P) Qq(d) - 1 (mod q), Qp(q) -Q (d) - 1 (modp) . 

Proof. The first congruence in (9) follows directly from 

p = (d + q) - (d + q) _ dq-d-q (modq2), 

dividing by q. In addition, we obtain also the second congruence, observing 
that q-p=-d and Qp(-d)=-Qp(d). o 

The following includes Corollary 3. 

Theorem 3. Let p = q + d with -3p < d < 3q. Suppose (1) has a solution in 
nonzero integers. 

(i) If p -3 or q -3 (mod 4), then, respectively, 

(10) Qq(P) 0 (modq) or Qp(q) _0 (modp). 

(ii) If 41d and p (and so also q) is congruent to 3mod4, then Qq(d)-1 
(mod q) and Qp(d) _ -1 (modp). 

(iii) If 4{d (i.e., 211d), then Qq(d) =1 (modq) or Qp(d) -1 (modp) 
according as p 3 or q _ 3 (mod4). 

Proof. We have h(-p) < p/4 < q and h(-q) < q/4 < p. 
If now p _ 3 or q -3 (mod 4), then by Theorem 1 (observing that (1) also 

has the form (_y)q - (-x)p = 1) (10) is valid. 
From Lemma 2 we see that the congruences in (10) have as consequences 

respectively the conditions 

( 1) Qq (d) =1 (mod q), Qp (d) _ -1 (modp) . 
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Observing that in (ii), p--q _ 3 (mod 4), and in (iii) either p _ 3 or q 3 
(mod 4), the assertions follow. o 

Johnson in his two papers [9, 10] presented some results concerning Fermat's 
quotient and hence also the congruences of the form qP q (modp . Com- 
bining these results and Theorem 1, new results may be obtained, in addition to 
the ones deduced above. As an illustration we offer only the following Theorem 
4, which is closely related to Meissner's following well-known result, proved 
also by Johnson in both of his papers mentioned above: If 0 < a < p and the 
order of a (modp) is 2, 3, 4, or 6, then Qp(a) - 0 (modp) . 

Johnson defined the semiorder of an integer a (modp) (p an odd prime) 
to be the smallest positive integer d (denoted sordp a) such that a d 1 
(modp). The following simple lemma holds. 

Lemma 3. Iffor an integer a 

a I (modp) 

then also a d?1 (modp 2), where d = sordp a. 
d~~~~~~~~~ 

Proof. We have a = I +1mp (m E 2) and d I p - 1, i.e., p - 1 = kd (k E Z). 
From this it follows that 

Ia _ (l1) + k(?lj)k-Imp (modp2) 

and so pIm, since p is odd. o 

If d = sordp a and thus ad 
d + 1 (modp), then a belongs to the exponent 

d (modp) in the case of + sign and to 2d otherwise. 

Theorem 4. If p and q are primes > 5 and either p _ 3 (mod 4) or qt hp, 
then (1) has only trivial solutions in both of the cases (i) q p2 + 1, p < 1.4q, 
and (ii) qjp6_ 1, p < 1.65q. 

Proof. Since q > p/4 > h(-p) in both of the cases (i) and (ii), we have 
qth(-p) for p -_ 3 (mod4). Suppose now that the congruence p 
(mod q ) holds. 

In (i) the semiorder of p (modq) is 2. Since now pq-1 1 (modq 2), it 
follows from Lemma 3 that qj2 p2 + 1 . This is, however, impossible, because 
it is easy to see that p +1 $& q2 and p2 + 1 < 1.96q2 + 0.04q 2 2 2 the 
assumptions p < 1.4q and q > 5. 

If in (ii) q p2 _ 1, then q I p 1 . But this is impossible, since q + p ? 1 < 
1.65q+0.2q < 2q. Thus q Ip2+p+ 1 or q 1 -p1+ and sordqp = 3 in both 

cases. Now by Lemma 3, q2 j p3 I 1 (respectively) and further q2 I p2 + p + 1, 

since q t p T l . Every prime factor :& 3 of p2?p + ? is of the form 6n + 1 . But 
these expressions are < 3q2 , by p < 1.65q and q > 7. Therefore p 1 = 

q , because the left-hand side is odd for both signs. Now (2q)2 - (2p ? 1)2 _ 3, 
from which it easily follows that q = 1, a contradiction. 
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We infer that pq _ p (mod q2) is impossible in every case, and so our 
theorem follows from Theorem 1. o 

It seems probable that there exist infinitely many pairs (p, q) for which the 
assumptions of Theorems 2 and 4 are valid, but this is not yet known. However, 
using Theorem 1, also the following theorem can be proved. 

Theorem 5. There exists an infinite sequence of prime pairs (p, q) with 
min{p, q } -x 00 such that Catalan's equation (1) has only the trivial solutions. 

Naturally, this is included as a special case in Tijdeman's result mentioned 
above, but we do not know any other ways for verifying a result of this kind. 
It is not difficult to construct a proof for Theorem 5 from Theorem 1, on the 
basis of the following auxiliary facts: 

(i) the estimate (4) of the class number h(-p); 
(ii) the number of the incongruent roots of the congruence xq-l 1 (mod 

q 2) is q- 1; 
(iii) the number of primes p < x in the arithmetic progression 4m + 3 is 

asymptotically equal to x/ log x for x - oo0. 

3. NUMERICAL RESULTS 

Solutions of the congruence qp (mod q2) have been computed by many 
scientists. Riesel [20] has tabulated all solutions for natural p and odd primes 
q within the ranges 2 < p < 10, q < 500000 and 11 < p < 150, q < 10 . For 
p < 100 the upper bounds on q have been enlarged by Brillhart, Tonascia, and 
Weinberger [2], and Keller (see [19, p. 276]). We wrote a computer program 
to find all odd prime solutions p, q < 10 . Our Table 1 contains the solutions 
found for p < 1000. The full table up to 104 can be requested from the first 
author. 

Remark. Within the range 3 < p, q < 104 the pair p = 83, q = 4871 is the 
only one satisfying both congruences 

(12) pq _ p (mod q2), qP _ q (modp2). 

A better-known example is p = 2, q = 1093, related to Fermat's Last Theorem. 
A third one, namely p = 3, q = 1006003, can be found in the table of Brillhart, 
Tonascia, and Weinberger [2] (see also [19, p. 276]). We know of no more 
examples. 

Consider the primes p, q with 73 < p, q < 104 and p _ q _ 3 (mod4). 
Among these, there are only eight pairs (p, q) with the property p I h(-q) 
(see [16]): p = 79, q = 4391, 5399, 7127; p = 83, q = 3911, 5039, 8423; 
p = 107, q = 8231; p = 139, q = 9239. Fortunately, for each one, q t h(-p), 
since h(-p) < p < q, and pq # p (mod q2) . Hence, Theorem 1 ensures that 
(1) has no nontrivial solutions x, y for these eight pairs (p, q). Accordingly, 
again by Theorem 1, nontrivial solutions of (1) can exist only if p and q satisfy 
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TABLE 1 
Solutions of p' p (mod q 2), p, q primes, p < 1000, q < 104 

p q p q p q 

2 1093 3511 271 3 617 101 1087 6007 
3 11 277 1993 619 7 73 
7 5 293 5 7 19 83 631 3 1787 5741 

11 71 307 3 5 19 487 641 43 
13 863 313 7 41 149 181 643 5 17 307 859 
17 3 317 107 349 647 3 23 
19 3 7 13 43 137 331 211 359 653 13 17 19 1381 
23 13 337 13 659 23 131 2221 9161 
31 7 79 6451 349 5 197 433 7499 673 61 
37 3 353 8123 677 13 211 
41 29 359 3 23 307 683 3 1279 
43 5 103 367 43 2213 691 37 509 1091 9157 
53 3 47 59 97 373 7 113 701 3 5 
59 2777 379 3 733 17 
67 7 47 389 19 373 739 3 9719 
71 3 47 331 397 3 743 5 
73 3 401 5 83 347 751 5 151 409 
79 7 263 3037 419 173 349 983 3257 757 3 5 17 71 
83 4871 421 101 1483 761 41 907 
89 3 13 431 3 2393 773 3 
97 7 433 3 787 37 41 

101 5 439 31 79 797 8273 
107 3 5 97 443 5 809 3 59 
109 3 449 3 5 1789 811 3 211 
127 3 19 907 457 5 11 919 821 19 83 233 293 1229 
131 17 461 1697 5081 823 13 2309 
137 29 59 6733 463 1667 827 3 17 29 9323 
149 5 467 3 29 743 7393 829 3 17 
151 5 2251 479 47 2833 839 5227 
157 5 487 3 11 23 41 1069 857 5 41 157 1697 
163 3 491 7 79 859 71 
173 3079 499 5 109 863 3 7 23 467 
179 3 17 503 3 17 229 659 6761 881 3 7 23 
181 3 101 509 7 41 883 3 7 
191 13 521 3 7 31 53 887 11 607 
193 5 4877 523 3 9907 907 5 17 
197 3 7 653 541 3 911 127 
199 3 5 547 31 919 3 
223 71 349 557 3 5 7 23 937 3 41 113 853 
227 7 569 7 263 941 11 1499 
229 31 571 23 29 947 5021 
233 3 11 157 577 3 13 1771 953 3 
239 11 13 587 7 13 31 967 11 19 4813 
241 11 523 1163 593 3 5 971 3 11 401 9257 
251 3 5 11 17 421 599 5 977 11 17 109 239 401 
257 5 359 601 5 61 991 3 13 431 
263 7 23 251 607 5 7 997 197 1223 
269 3 11 83 8779 613 3 4073 
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both congruences of (12), which is the case only when p = 83, q = 4871 (or 
q = 83, p = 4871). 

The case p 3, q _1 (mod4), 73 < p, q < 104, can be handled in a 
similar way, but the number of exceptional pairs is much larger: 17 pairs with 
q I h(-p) and some 160 solutions of pq p (modq2) . We shall be content 
with the smaller range p, q < 500 and present the following theorem. 

Theorem 6. Equation (1) has no solutions in nonzero integers x, y for the fol- 
lowing prime exponents p, q: 

(a) p _q-3 (mod4), 5 < p, q < 104, (p, q) $& (83, 4871), (4871, 83); 
(b) p-3, q-1 (mod4), 5 < p, q < 500, (p, q)$ (19, 137), (107, 97), 

(223, 349), (251, 421), (419, 173), (419, 349), (499, 109). 

4. IMPROVED LOWER BOUNDS 

According to Hyyro [6], a solution x, y > 1 of (1) satisfies the relations 

(13) x - I = p q-1 aq I y + I = q P-1 bp 

(14) (Xp _ 1)/(x _ 1) =puq, (yq + l),/(y + 1)=qv p 

(15) Y =pau, x = qbv, 
(16) a=qao-1, ao>1, b=pbo+?, bo?1, 

(17) a =_ (qpl - _ )/p (modp), b-=_(pq-1 _ )/q (mod q) 

(18) u = pq- la qUl + 1, a, > q - 1 , ul > 1 , 2 1 aul, ql|al + 1, 

(I19) v = qP bpv + I b > I VI > 1, 2blvl, P b, - 1, 

where a, b, u, v are nonzero integers and a, (bl) is the greatest factor of a 
(b) which has no prime factor of the form kq + 1 (kp + 1) . In addition, either 

2lao, 21b, or 21bo0 21a1. 
From (14)-(16), (18), and (19) it follows that 

pu--pu?_ 1 (mod q), qv qvP--1 (modp), 

ul =1I - u (modq), VI v - 1 (modp), 

and hence we also have the congruences 

(20) u-pq 2,~~ ul _ -p 2 (mod q), 

v _q ,vl q I (mod p). 

For given p, q, these can be used to improve the lower bounds (2). For in- 
stance, (20) implies in general that ul > 2, whereas ul > 1 was used to obtain 
(2). 
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To make further improvements on (2), we first combine (15), (13), and (1) 
to obtain the equalities 

x=qbv =q 1/py'/P(I + I/y)l/PV 

= q X/Pxl/ (1 - l/xP)lpq (I + /y) v 

y =pau=p llqxllq(l _ /X) Uqu 

=plqyl/p(1 + l/yq)llpq(l -_/X)lqu 

Application of the estimates 

(I + IIZ)l/k >1 + 112kz:, (I_ IIZ)Ilk >I - l lk/z -)1)/k 

(k, z > 1) then gives the inequalities 

x > qI/pxllq[l - l/pq(xp- l)][1 + 1/2py]v > q1/px l/qv 

l>/q 1/P[I + 112pqyq][- llq(x- 1)]u. 

Therefore, we obtain the following 

Theorem 7. Let p and q be odd primes. If x, y > 1 is a solution of (1), then 

1/p qIVq/(q- 1)I x> {q v} 

y > {p l/q[1 - 1/ q(x - l)]uP1(P 1) 

The dominant terms within the braces are v and u, which can be bounded 
from below by the use of (1 8)-(20). The improvement, compared to (2), is 
therefore in the exponents, which are slightly larger than 1. For example, for the 
exceptional pair p = 137, q = 19, (2) gives logx > 177.9 (base 10 logarithm); 
by using the properties (16), (17), -and (19) for b, b1, v , this can be improved 
to logx > 179 (see [8]). On the other hand, by (20), v =-100 (mod 137), 
whence v > 100. 19136 by (19), and Theorem 7 yields 

logx > 19[(1og 19)/137 + log 100 + 1361og 19]/18 > 185.6. 

A different approach is provided by continued fractions. Let 

=q1/pp-1+lq and r=minp, q}. 

Let further [CO, C1, C2, ... ] be the regular continued fraction of a and Ai/Bi 
(i = 0, 1, 2, ...) its convergents. Hyyro [6] proved that a/b is actually one of 
these convergents and thereby obtained the following theorem from (1 3), (16), 
and (17). 

Theorem 8. Let p and q be odd primes. Then the solutions of 

Ixp_yql, = 1 x,y>0, 
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are exactly those x, y which satisfy, for a positive integer i, the conditions 

(21) x = pq lAq + _), y= q P- BiP - (-I), 
i+ 1 (22) Ai > I, Bi > 1, 

(23) Ai (-1) (modq), AI ( I)i(qPi - 1)/ ( 

(24) B-(- 1)' (modp), B1-(-1)i (pq-1)/q (modq), 

(25) Cil >(-1) Ai X +i+A > (-r-)iB 
r-2 

(26) xP _y = (-I) . 

We used the preceding results to compute the lower bound 

(27) x, y > 10500 

on any possible solution x, y > 1 of (1) for prime exponents p, q > 5. The 
bounds (2) are increasing both in p and q and yield the bound (27) when 
max{p, q} > 710 or p, q > 73, max{p, q} > 266. If max{p, q} < 710 
and p < 73 (or q < 73), the only possibilities, according to (i) in ?1, are 
(p, q) = (19, 137), (53, 97). Also, by Theorem 6, when p, q < 266, there are 
no nonzero solutions if p-q _ 3 (mod 4) or p-3, q- 1 (mod4), (p, q) $& 
(19, 137), (107, 97). Thus, there are 159 pairs (p, q) left for further inves- 
tigation. For each one of these we checked whether (2) implies (27) and, if not, 
we computed the continued fraction of a = qi i/pp -i+i/q accurately enough so 
that (21) implied (27); at each step we checked (22)-(25) for a possible solution 
x, y. The computations revealed no potential solution, and we conclude that 
(27) holds. 

5. PROGRAM DEVELOPMENTS 

The verification of the congruence pq p (mod q2) is easily done by re- 
peated squarings and multiplications (see [11, p. 441]). All prime solutions 
p, q, 3 <p, q < 104, were found in approximately four minutes. 

To compute the continued fraction of a = q -i/pp-1+1/q we choose integers 
ci,di (i=1,2) so that 

l/q = (c,idl)(I + zI)1/q z = (pd q _Cq)lCq IZ,l < l, 

(2) p = (c2/d2)(1 + Z2) 1 Z2 = (qd2 - c2)/c2, z1 < 1, 

Using the binomial series 

(29) ( + /k (/k) 

we then compute a rational lower bound ,6 and a rational upper bound y on 
a: , < a < y . The continued fractions of f, and y are computed accurately by 
the Euclidean algorithm. As far as the partial denominators of f, coincide with 
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those of y, they coincide with the partial denominators of any number between 
/3 and y (cf. [23]). When the partial denominators of fl and y fail to coincide, 
we use (29) to compute sharper approximants /3' and y': /3 < ,f' < a < y' < y 9 

and continue computations with /3', y'. 
Unfortunately, the use of (28) and (29) leads to computations with very large 

integers. About 40 minutes was needed to compute the lower bound x, y > 
500 1 0 
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