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SUPERCONVERGENCE AND EXTRAPOLATION FOR MIXED 
FINITE ELEMENT METHODS ON RECTANGULAR DOMAINS 

JUNPING WANG 

ABSTRACT. Asymptotic expansions for the RT (Raviart-Thomas) mixed finite 
element approximation by the lowest-order rectangular element associated with 
a second-order elliptic equation on a rectangular domain are derived. Super- 
convergence for the vector field along the Gauss lines is obtained as a result of 
the expansion. A procedure of postprocessed extrapolation is presented for the 
scalar field, as well as procedures of pure Richardson extrapolation for both the 
vector and the scalar fields. 

1. INTRODUCTION 

The aim of this paper is to discuss the asymptotic behavior of the mixed 
finite element approximation associated with a second-order elliptic equation. 
We take as our model the Dirichlet boundary value problem 
( 1.1 ) - div(a(x)Vu(x)) = f(x) in Q, 

u = -g(x) on 9Q, 

where Q is an open bounded domain in R2 and dQ the boundary of Q. a(x) 
is a positive, continuous function on Q = Q U OQ. For the sake of simplicity 
of analysis, we shall take the domain Q to be a rectangle in this paper. The 
results can be extended easily to Neumann boundary value problems. 

A mixed form of the problem (1.1) seeks (q, u) such that 

,Bq+Vu=O in Q, 
(1.2) divq = f in Q, 

u = -g on A9, 

where ,8 = ,8(x) = a - (x) is the reciprocal of the coefficient a(x). 
Let H(div) be the Hilbert space 

H(div) = {v: v E L2(Q), divv E L2(Q)} 
with norm defined by 

llvllH = llvl10 2 + I 2 divvjjo 2 
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where L 2() = L2 () x L2(Q) and 11 o0, 2 indicates the L -norm of either 
a scalar- or a vector-valued function. Denote by Wm 'P(Q) the usual Sobolev 
space containing functions whose partial derivatives are Lp-integrable up to 
order m . Let II?>IIm p indicate the norm in Wm P(Q) for any function 0q(x) E 
Wm'P(Q). Then a weak form of the problem (1.2) seeks (q, u) E H(div) x 
L2(Q) such that 

(flq, v) - (divv, u) = (g, v n), v E H(div), 

(divq, w) = (f, w), w E L (Q), 
where (,*) denotes the inner product in L 2() or L 2() and (,*) that in 
L2(al) . n denotes the outward normal direction of al. In what follows, the 
two components q and u of the solution (q, u) are referred to as the vector 
and the scalar field, respectively. 

A mixed finite element method for (1.1) is based on the formula (1.3) and 
on finding a pair of finite element spaces Vh x Mh c H(div) x L 2() associated 
with a polygonalization Rh of Q which satisfy the inf-sup stability condition 
of Brezzi and Babuska (cf. [4, 1]). In this paper, we shall consider rectangular 
partitions for Q instead of a general polygonalization. Some spaces have been 
constructed and analyzed for rectangular elements. Among these, we would like 
to mention those of Raviart and Thomas [22], Brezzi, Douglas, and Marini [6], 
and Brezzi, Douglas, Fortin, and Marini [5]; they are referred to as RT, BDM, 
and BDFM spaces, respectively. 

Some superconvergence results for the RT method on rectangular domains 
have been derived by Nakata, Weiser, and Wheeler [21] in which a discrete L - 
norm of the error arising from the Gauss points on each element is considered. 
One of the main objects of this paper is to discuss superconvergence of the 
approximation along the Gauss lines for the vector field q associated with the 
lowest-order RT method. Extensions to RT or BDFM methods of any order are 
given in forthcoming papers (cf. [ 1 1, 9]). 

Our second aim is to discuss the asymptotic behavior of the approximation 
associated with the RT method of lowest order. We intend to establish an 
asymptotic expansion for this method. The idea of deriving an asymptotic ex- 
pansion for finite element methods is not new. The earliest work, to the author's 
knowledge, is the one presented in Marchuk's book [20], where an expansion 
for the Galerkin approximation of the one-dimensional Laplace equation is de- 
rived. However, it is not clear whether the idea in [20] can be generalized to the 
Laplace equation in higher dimensions. Recently, Lin and Lu [15] presented 
an expansion for the Galerkin approximation for the two-dimensional Laplace 
equation under the assumption of uniform triangulation. The crucial idea in 
[15] is the use of the discrete Green's function in the representation of the 
Galerkin approximation. Many results have been obtained following this idea, 
but few of them made any essential improvement on relaxing the uniformity 
assumption for the triangulation. For more detailed discussions we refer to [ 16, 
15, 17, 18, 19, 2, etc.] and references cited therein. 
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An analysis of Richardson extrapolation has been given for the mixed finite 
element approximation in [23]. It was proved that one can extrapolate the scalar 
field for the mixed finite element approximation without using any uniformity 
on the triangulation. Continuing [23], we shall further disscuss the extrapolation 
for the RT approximation in this paper. We shall illustrate that the uniformity 
condition is still required in extrapolating the vector field. The estimates es- 
tablished for the discrete Green's functions in [23] will play an important role 
in the forthcoming analysis. We derive asymptotic expansions and also present 
and analyze some procedures of extrapolation and postprocessed extrapolation; 
they all yield approximations of higher order to the original problem. 

The idea behind the postprocessed extrapolation in this paper is the same 
as the postprocessing procedure presented in [23] for the lowest-order BDM 
method. A general local postprocessing technique (cf. [3]) was proposed by 
Bramble and Xu independent of [23]. The idea behind these procedures is the 
same; one tries to use the approximation of the vector field, which is propor- 
tional to the gradient of the scalar field, to get a better approximation of the 
scalar field via Taylor expansion. 

The paper is organized as follows. In ?2 we study the asymptotic behavior 
of a projection operator nh and then establish a general asymptotic expansion. 
In ?3 we present a superconvergence result as the first application of the expan- 
sion. A procedure of postprocessed extrapolation for the scalar field is presented 
and analyzed in ?4. Finally, in ?5 we present and analyze procedures of pure 
extrapolation for both the vector and the scalar fields. 

2. PRELIMINARIES AND ASYMPTOTIC EXPANSIONS 

We shall assume throughout this paper that the domain is Q = (0, 1) x (0, 1) . 
Let Ax and Ay be partitions of [0, 1], 

Ax 0 =x < X < X < < =1, 

and 

AY 0 0 < Y1 < Y2 < < YM =1 

Denote by Ix and Ii the subintervals (x*1, x*) and (Y; 1 y;), respec- x y y_,y 

tively. Let hi or t be the half-lengths of Ix and I, and let 

h = max{2h1, 2tj}. 

Set 
DJ = [0, 1] x I and DX =IX[0,1]. 

Let Rh = AX x Ay = {R} be a finite element partition for the domain Q, where 

the element R is a rectangle of the form Ix x IJ for some I E Ax and IJ E A . x y~ ~ I' 

A shape regularity is required for Rh; i.e., the ratio of the side lengths of R is 
assumed to be bounded by a constant independent of R and h. 
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Illustration of rectangular element in Th 

Let us recall the definition of the RT space of the lowest order: 

Vh = {v: v E H(div), v1p.1i E Pl(Ix) x P1( 

Mh ={w: w 1xi xj E Po(IxI)}, 

where Pm(S) denotes polynomials of degree m on the set S. Let Hr(div) be 
the Banach space 

Hr(div) = {v: v E L 2(), divv E Lr(Q2)} 

equipped with a natural norm 

IIVIIHr = IIVIIO, 2 + 1I divvllo, r r 

where r is any number larger than 2. 
Assume (xi, yj) to be the center of gravity of the element R = Ix x I E R 

A projection operator, denoted by I'h' is defined as a linear mapping from 
Hr(div) to Vh for some r > 2 such that on each element R E Rh 

(2.1) fFI-h,nds=f pnds, E eHr(div) 
e1 i V i 

for i = 1, ..., 4, where ei are the four edges of the rectangle R and n the 
outward normal direction on the ei (see Figure 1). 

It can be shown that this operator nh is well defined and satisfies the fol- 
lowing commutativity property: 

(2.2) div -Ih = P? * div, 

where P,? is the local L2projection operator from L2(Q to Mh (cf. [22, 8]). 
For any tv E Hr(d Y), let 1h f be represented on R = I x I by 

(2.3) nh W = (a1 + a2(x - xi), b1 + b2(y - yj)). 

The coefficients ai and bi, i = 1, 2, can be found through the relation (2.1). 
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Lemma 2.1. Let IV E [W1 1 (fi)]2 n Hr(div) . Then the coefficients in the projec- 
tion 'h v, as defined by (2.3), are given by 

(2.4) al = P, (V1 + ( x-i)0fV) 

(2.5) a2 =P (041) 

(2.6) bl = 0h(/ t-jaY2 

(2.7) b2 = 0 

Proof. It suffices to check that (2.4)-(2.7) solve (2.1). Substituting (2.4), (2.5), 
(2.6), and (2.7) into (2.3) gives 

[i8 hl = (Ph (V1 + ( xd-ax)a VI) + Ph (q f,V) (x -Xi) 

P( (Yy2 + (i1 yj) al Y2) + Ph (a YV2) (y -yj)) 

We want to verify (2.1) for [Ih I given by (2.8). It follows from (2.8) that 

jflh nds = |j[P h(v 1 + (4xi)dv l)+Ph(O I)(x-xi)]ds 

= le, l{Ph (y1 + ( x-xi)aeVI1) + hiPho(OXVI)l 

= le,lIPho{& [@ - xi) 1 ] + hia4 } 

(2.9) = le,l-Ph f a( - xi) + hi) V ] 

=Rle IR a4(( - xi) + hi)y/I] dE>d? 

= 2hIejl V fds =f| ds, 

which implies that 

(2.10) | Ih f * n ds j | n ds. 

The same argument can be applied for the other three edges to verify the 
conclusion of the lemma. 0 

It follows from Lemma 2.1 that '1h IV is defined componentwise. Thus, we 
can define the projection of each component of any vector-valued function and 
shall denote by 1Ih Yli the ith component of the projection of v . 

We are now in a position to derive an asymptotic expansion for the error of 
the mixed finite element approximation of (1.3) using an RT space of the lowest 
order. 

Lemma 2.2. Let q E [P2(R)12 with R = x Iy E Rh . Then, 

(2.11) nH l(xxy)=ql(X,yj)- 2 2 h. 2 t 2q (2.11) ~h~ql (x ,y) = q,(x.yj) - (x -xi) c9'l+~1 (xq 9' 
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and 

1 2 2 t. 2 h- 2 
(2.12) flhq2(X, Y) = q2(xi 1 Y) - 2(Y _ yi) ayq2 + ay q2 + I, q2 

Proof. By Lemma 2. 1, 

hql = P (q, + ( -xi)aOq1) + Ps (Oq,) (x -xi) on R. 

Since 

P - xi) OXqj) = p| (- xi)Oxqj dXd?q 
4. ~~~~~~~2 

R 1 -xi) aO q, d0dn 
= 

3 xq 
- R I JR 34 Xi 1'Xq d 

we have 

(2.13) H~q = + (x 
(2. 1 3)~h ql =Ph q, + (X -xi) P* (a~ql) +-hI ax2ql 

Further, by a Taylor expansion, 

Phqj = R q1(4, ) dEdq 

= q, (x , Yj) + ( x) dd d axql (x, yj) 

1 2f 2 2 (nyj)2d ;2) (2.14) + 2I (| -x) d,d x8ql + |d1d q, 

= q1(x, yj) + (xi -x)Oxql(x , yj) 

(1 ~~ hi2) t 2 
+ ((x - xi)2 + ax ,+ 

I 
ayql. 

Thus, substituting (2.14) into (2.13) gives 
2 

1 2 2 h. 2 rihql q, (X , yj) + (xi - x)axql (X ' yj) + 2 (x - Xd) ax q, + axq 
2~~~~~~~~~~~ 

+ a q, + (x - x,)Ph (aq,) + 3 ax ql 

2 1 2 2 h. 2 
q(x , yj) + (xi - x)axql(x X yj) + 

2(x 

- xql + ax q 

- 22~~~~~~~~~ 
2~~~~~~~~~~~ 

6ay 8 ql + (x -xi )axql (xi, yj ) 

q(x , yj) (x -xi) axql + x2 -xi) q-4-2q + , 2 tj2 2 
- x11~~~~q1 2x1 x 

= qo t(X 2 yj) - T (X -sXia ) argmeqt + be appqie to v ( qo 

so that (2.1 1) holds. The same arguments can be applied to verify (2.12). o: 
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Theorem 2.1. Let q E Hr(div). Let Rh be the partition of Q given at the 

beginning of this section. Let fl E W2'(Q) . Then, for any V = (V1, V2) EVh, 

(fl(q- Hhq), v) = 3 h/ (Ox xq2V2 - flaxq VI) dxdy 

(2.15) 1-i 

+ E E tj (/y(/Tyqhvi - flayq2v2) dxdy + R(v), 

where 

(2.16) jR(v)I < Ch3llqll3, 11vVII,p 

provided that q E [W3'p]2 with p > 1 and 1/p + 1/p' = 1. 

Proof. Since 

(2.17) (I3(qHhq)v)=j, f(q-Ihq).vdxdy, 

it is sufficient to analyze 

(2.18) fIx 3l , (q7 llhq) * vdxdy fj ,(q -Ilhq) * vdxdy = Ul + U2, 

where 

(2. 19) U f = Jl(q, -nhql)vl dxdy, 

(2.20) U2 f=(q2 - hq2)V2 xdy 

We may assume, without loss of generality, that qi (i = 1, 2) are polynomials 
of degree not exceeding two on each R. Then, by (2.1 1), 

U1 = / 3(q1(x, Y) - q1(x, yj))v1 dxdy 

(2.21) + / |, (x - xd)2Ox q, vI dxdy 

- fJO8q,v, dxdy - /fl yq,v dxdy 

I I +I2 I3 I4- 

Set 

+ R'- /=)(6 q v d+q(x,yj)-q,(x,y) v,dxdy 

+ a / y(f - f)ayq,V1 dxdy, 
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(2.23) R6,2(VI)= 2 J(f- (x) x - xi) - x qlvI dxdy, 

and 

V1 =co+C1(x-xi), 

where ,B and ,B' denote the average and the bilinear interpolant of ,B on R, 
respectively. Note that 

I1 = J13'(q, (x, y) - q, (x, yj))v1 dxdy 
(2.24) 

+ ](I3 1) (q1(x, y) - q1(x, yj))vl dxdy. 

Since for any fixed x, the function 13'(q1 (x, *) - q, (x, yj)) is a polynomial of 
degree 3 in y, it is easy to see that 

J 13'(q1 (x y) - q1 (x, yj))v1 dxdy 

= f 2(j+1' (q(x, y) - q,(x, yj))v,dy') dx 

(2.25) tit (2 / 3 

2I 

(2. 26) + I ~~ay(,B-lB (q, (x, y) - q, (x, yj ))vlx . j d xd 

6 I | v v dxdy + 3 gdxdyqlv, dxdy. 

Combining (2.24) with (2.25) and (2.22) gives 

As to '2' we observe 

JIN(x - xi)202q1v dxdyq = J(x - x3)2(cy + cd(x-xe))dxdy y q 

(2.27) = J(x - x1)2c0Idxdyfxlq1 - q 1h ( xy j0vq I dxdy 
= 2 

~x-xi ax..J v, dxdy +c (x -xi))dxcdy= l ( ~-JI xi))dxdy 'laq 
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which together with (2.23) yields 

I2 | fl (X -Xi) Oax q 1 vdxdy 

+ 2 J (,B - ,B) (x - x1)2O2q1 v1 dxdy 

(2.28) - =~- /613J2qlv1 dxd.y + 2 JR( - /3) (x - xi)2d4q1v1 dxdy 

2 
- n- f fl2q V1 dXdY + 2 

Thus, combining (2.21) with (2.26) and (2.28) gives 

(2.29) U1 = .3. J O/xOyql v1 dxdy- J x -i9qvvd dxdy+Rxdy 

The same argument leads to 

h2 

(2.30) = 

tJxloqvdd 
- J fl&q2v2dxdy + R"/1(v2) + R 2(v9, 

where 

R 61(v2= 6 X 

Ths cm (2V21)JR h( 2) and) q2 (x,Y y))v2d xdy 
(2.31) aa Lxdy- f xOqlvl dxdy 

3~ ~~ 6R 6,( 24)@ 2vdxd 

and 

(2.32) R7,2(v2) = 2-JUl- /) ((Y -Y - t) Oyq2v2 dxdy. 

Let 
2 

(2.33) R6(V) = ZZ(R6j'k(vl) + R7 k(v2)). 
k=l i,j 

It follows from (2.17) together with (2.18), (2.29), and (2.30) that 

(f?(q - lHq), v) = c9x t] f (Oyfyq1v1 - /W.q2v2) dxdy 

(2.34) 2 N 
L..d ID' (OXiOq2v2-fl&q1v1) dxdy+R6(v) 

with 

(2.35) 2R6(v)j < Ch3IIqII2 pI, 
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Now, the conclusion of Theorem 2.1 follows from (2.34), (2.35), and the 
Bramble-Hilbert lemma. 0 

Remark 2.1. Assume that q E [W2'p]2 with p > 1'. From the proof of Theo- 
rem 2.1 it is not difficult to see that 

(2.36) (fl(q - FIhq), V)I < Ch 2q2Ip|IV|IpI,, V E V, 

where p' = p/(p - 1) is the conjugate of p. 

Two particular choices of v and p will yield asymptotic expansions for either 
the scalar or the vector field of the mixed finite element approximation of ( 1.3). 
Therefore, (2.15) can be viewed as a general error expansion for lowest-order 
RT mixed finite element approximations. 

3. SUPERCONVERGENCE 

In this section, we apply the asymptotic error expansion (2.15) to obtain 
superconvergence for the approximation of the vector field along the Gauss lines, 
rather than only at the Gauss points, as in [21]. We begin with the following 
result. 

h hz Theorem 3.1. Let (q , u ) be the mixedfinite element approximation of (1.3) 
lying in the RT space of lowest order. Assume that q E [ W2'p(Q)]2 with p > 1. 
Then 

(3.1) Iqh -JhqllO2 < Ch 1q112P,p 

where T = min{2, 1 + 2/p'} and p' = p/(p - 1) is the conjugate of p. 

Proof. Set v = qh _ rlhq and recall that divv = 0. Thus, by relation (2.2) and 
the inverse inequality, 

#II -~hqlq 2 <? C(Vi, V) = C(fV, q - rhq) 

(3.2) < Ch2 

< Ch 2+min(O,1 2/1p) qj llqh -HhqIIO,2 

where we have used (2.36) in the second line. Thus, (3.1) follows from (3.2). 0 

As an immediate consequence of (3.1), we have the following result. 

Corollary 3.1. In addition to the assumptions of Theorem 3.1, let q E W N(Q)]2 
for p > 2. Then 

(3.3) liq_qh < J C(p)h7IIqII2,, 1 <p < 2, 
- 1o . Ch(jjqjj 1 00 + 1I4I2p)~ p > 2. 

Proof. Clearly, 

(3.4) liq 
_ 

qhj, < liq - h1O,oc + IIFIhq -qh jjo, 
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By the standard inverse inequality and (3.1), 

j3.5) j1 hjjQ <qCh l||hq-q 110,2 

< Ch hJJqjj2,p < Ch T- 

JqII2,,p 

Interpolation theory and the Sobolev inequality imply that 

liq -FI,h qllj00 < {_h jqjP 1< 2 

(3.6) Chqlljl p, p 2, 

? C(p)hp Iqj2,p 1< p < 2, 

ChJJqJJj,00 p > 2. 

Thus, (3.3) follows from (3.4) combined with (3.5) and (3.6). a 

With the help of (2.36) we are able to obtain a superconvergence result in 
the maximum norm for the vector field of the lowest-order mixed finite element 
approximation. It should be noted that all these analyses make strong use of 
the L1-error estimates for the regularized Green's functions (see Theorem 2 of 
the Appendix). 

Lemma 3.1. Let (qh, uh) be the mixed finite element approximation of (1.3) 
in the RT space of the lowest order. Assume that q E [W2,P(Q)]2 with p > 1 . 
Then 

(3.7) jjq -Ih~qii0 
< { Ch C log -JJqJI2p, p > 2, (3.7 liqh { Ch 011qjj, , 

Chp JJqII2,p, < p < 2, 

where p'=p/(p -1). 
Proof. By (A. 13), 

(3.8) llqh - hqllo, < I( (q-Ihq) G2)1- 

Further, by (2.36), 

(3.9) j(fi(q - Ilhq), Gh)I < Ch2qII2,p JIGh110 P 

Thus, it follows from (A.9) that 

h Chp logqll21, 1 p ? 2, 

which, along with (3.8), implies (3.7). 0 

To see how qh approximates q, it suffices to observe the approximation 
property of rl1h We already know that rI hq approximates q globally to an 
order of 0(h). However, from (2.11) it is easy to see that the error between 
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rHq, and q, has an order of O(h 2) along the Gauss lines [0, 1] x yj on the 
element Ix x I> Let 

(3.11) IFh = [0, 1] x yj; j=1, 2, ... M}, 

(3.12) 2 = [, 1 x{Y ;j= 1 , 2,... ,M- 1}, 

(3.13) I1 = { x i 1 , 2, N} x [0, 1], 

(3.14) Ih 2={x7; i=1,2 ...,N-1}x[0, 1]. 
Set 

(3.15) hufiz2' i= 1, 2. 

For any v= (vI, v2) E H(div), v* = (v*, v*) is defined on Ih =IrFh U r' as 
follows: Define v1 on Fh1 by 

(3.16) vl (x, y) = VI (x, y), (x, Y) Eit 
and 

(3.17) v* (x, y;)= (x, E )12 

where 
vt(x, y ;) = lim vI(x, y), 

and v (x, YJ) is defined similarly; a function v * can be defined analogously 
on ph 

Denote by III tv I11o a seminorm for piecewise continuous vector-valued func- 
tion yv such that 

2 

"11100wIll = E lvillo'1 ,0,r? 

Now we are ready to establish the superconvergence result along the Gauss lines. 

Theorem 3.2. Assume the hypotheses of Lemma 3.1. Then 

(3.18) IIIq- (qh)*ill < { ChOlogI IIqII2,p p > 2, 

ChOijqjj2,, 1 p < 2. 
Proof. By (3.7) and the definition of v*, it suffices to check that 

(3.19) lqi - (fhqi) IIO, 00,h < Ch IIqII2,p, i= 1, 2. 

The following result can be proved easily through an application of (2.1 1): 

(3.20) hql (x, Y) = q1(x, yj) + O(hr)llql/2,p on R1= IxI>y 
Thus, it follows from (3.20) that 

(3.21) llql - (lqq)* , 

l < Chf ll II2,n 

since, by (3.16), (hql)* = rhq, holds on rI. 
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Let (x, YJ) E r12. By (3.20) and (3.17), 

(q*(x; = 1 
(1-1q1 )*(x, y* ) =t+t[tjq, (x, .yj+l ) + tj+l q, (x yj)] 

(3.22) + O(h4)Iq1I2, 

= q1(x, y) + 0(hp )Ijqj 112,p 

so that (3.19) holds on Fh12, and the theorem is proved. 0 

4. POSTPROCESSED EXTRAPOLATION FOR THE PRESSURE 

We now investigate the validity of the technique of extrapolation for the 

approximation of the scalar field. We first derive an asymptotic error expansion 
for the approximation by using the general expansion (2.15), and then define 
and analyze a procedure of postprocessed extrapolation. 

To derive an asymptotic error expansion for the scalar field, let Rh be the 

partition defined at the beginning of ?2. Let (q h, u ) be the mixed finite element 

approximation of the problem (1.3) in the lowest-order RT space. 

Lemma 4.1. Let p be any number in (1, 2] and assume that q E [W3,p(K)]2 
for p<2 andqE [W3,2(a)]2 n [W2'o (Q)I for p =2. Then there exists a 
function E h(x) such that 

N M 

(4. 1) u (x) = P u(x)+Z hi Dlq G, dxdy+Z t] [ D2q.Gldxdy+E1 (x) 
i=1 xj=1 

with 

(42 fgE^ll { Ch 3log (jjqj2oo + 1q1132) p = 2, (4.2) IE1h iIo,", < 2+T 

1 Cp)h 2flog llqll3,p 1 <p <2, 
where 

(4.3) Dq= a(xqldq -9x4fl9q2) 

and 

(4.4) D2q= 2(fl2q q-c9Y/1q1) 

are two vector-valued functions. (G1, I ,) is the regularized Green's function of 
the first kind in mixed form. 
Proof. Since both uh and P*?u are constants on each element R E Rh, we need 
only establish (4.1) for x = (x, y) being the centers of the elements in Rh'. Let 
(xi, yj) be the center of gravity of the element Ix' x P . It follows from (A. 1) x y 
that 

(4.5) u (xi)yj)-POu(xiyj)=(uh 0P h), 
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where J5h is the regularized Dirac 65-function associated with the space Mh 
and the point (xi, yj). By the identity (A. 10), 

(4.6) u h(xi, yj) = P u(xXyh)+(fl(hq-q), Gh 

where Gh is the mixed finite element approximation of G1 (see the Appendix 
I~~~~~~~~~~~~~~~~~~~~~ for its definition). Thus, an application of (2.15), with v replaced by Gh, leads 

to 
h u (xi, yj) = y(xi Yj) 

IlN2 2 h h 
(4.7) +LEhi I' (flxq1(G1)1 -A Oxxq2(G1) 2) dxdy 

i=1 

+ E tID (fl6,'q2(G )2 ay-fayql (GI),) dxdy -R(G ), 

where 

(4.8) jR(GI)j < Ch3 liqll3 J IIG p' 

By using (4.3) and (4.5) we rewrite (4.7) as follows: 
N 

uh 
0 

u (xi, yj) =Pa U(xi, Yj) + Ehi DI Dq *G, dxdy 

(4.9) M 

+ Dt D2q. G dxdy R(G1) 

with 

(4.10) IR(GI)I < Ch2PTIlogh IIIqI3 p, 1 <p <2; 

here we have used (A.5) to estimate IIG II0o'p in (4.8). To get the relation 
h 

(4.1), replace Gh by G1 in (4.9) and let E h(xi, yj) denote the collection of 

remainders and other terms. Clearly, it suffices to estimate E* (xi, yj) . By the 
Holder inequality we have 

(4.11) IE h(xi, yj)I < Ch IIG1 - G h0o IqII2, + IR(Gh)I, 

where s = 2-P and s' is the conjugate of s. 2-p 
Thus, it follows from (A.3), (A.4), and the Sobolev inequality that 

(4.12) JIG - G hI f< ho) q12p=2 
(4.12) 1Is' l2,s < {C(C(p) +logh)h IIqhI3,p 1 <p < 2. 

Now, combining (4.11) with (4.12) and (4.10) yields (4.2). o 

The relation (4.1) along with (4.2) is actually the asymptotic error expansion 
desired for the approximation of the scalar field. It should be noted that uh was 
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expanded with respect to P*?u rather than the function u itself. We are then 
forced to take appropriate refinements in order to carry out the Richardson ex- 
trapolation process for this problem. This section will be devoted to an analysis 
of a procedure that uses less expensive refinements. The procedure is effectively 
a combination of extrapolation with local postprocessing. In other words, we 
shall derive a better approximation by using the superconvergence results for 
the vector field along with the technique of extrapolation for the scalar field. 
A procedure of pure extrapolation for the approximate scalar field will be con- 
sidered later in ?5, where different refined grids are needed. But we emphasize 
that all the results for the scalar field are valid for nonuniform grids, since the 
Green's function (G1, Al) has less singularity in comparison with (G2, )2). 

Let A2 X and A2 y be two partitions defined by 

A2x: O = XO < Xl < Xi < X2 < X2 < < XN < XN 

and 

A2,y O=Yo < Y1 < Y < Y2 < Y2 < < YM < YM 1 

where xi, yj are the centers of I and iP respectively. 
Denote by RI, h and R2, h the two refinements for Rh given by A2X x Ay 

and Ax x A2 y, respectively. Let V h x Mh be the RT space of the lowest 

order associated with the partition Ri and let 'I7h and i = 2, 
i,h ~ i, h Pi, h ' 1= 12 

be the corresponding projection operators. Let (qi h, ui,h) be the mixed finite 

element approximations of (1.3) lying in V1 x Mh for i = 1, 2. 

For any (xi, Yj), center of the element I' x IJ E Rh' denoteKby (G1K ,) 

the mixed finite element approximations of the regularized Green's function 
h h 

(G1, 1A,) at (xi, yj) in the spaces VK x MK, K = 1,2, respectively. The 
following analogue of (A.3) still holds: 

(4. 13) JIgG1 _ GI 110o I < Ch logh- 
K= 1 

The proof of (4.13) can be accomplished by employing the same arguments as 
those used to prove (A.3). 

For any R = I' x Ij E RhI there exist two elements RKI and RK2 in RK h 

such that R = RKI U R K2 (see Figure 2). 
Set 

-h ={(Xix Yj); 1 < i < N, 1I < j < M}; 

i.e., -h is the collection of centers of gravity of elements in Rh Let us define 

a new approximation, denoted by u#*, on -h to the scalar field u by 

Uh #(Xi, yj) = (4(u l' 
, 
h+ 92, 

h 
)5u^ h) (x y) 

( 44 ax ) + t>ay(hq))(Xi X yj) + _(hi a(fiql) + ,q 
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R R1 l R12 

FIGURE 2 
Illustration of refinement in the x-direction 

where 
..x,k 1 K,ch K,hK12 u =2(U IR +U IR KE19 2. 

Theorem 4.1. Let us be defined on Eh by (4.14). Let p be any number in 
(1, 2] and p' its conjugate number. Then 

II #11 f ~~Ch 3lo w(Il2 +113) p = 2, 
(4.15) IIu-uhIIO 0, l.C(ph 2,oo) II1II3,2) 1 p 2 

( ) 11 hll0,X,-^ - C(p)h 2+2log 
I 

Ilqll < p < 2 322 2 

provided that qE[W3' ]2 for p<2 and qe[W Ifnl[W '?]2for p=2. 
Proof. For any (xi, y1) E -h, let R E ff?h be the element centered at (xi, yj). 
It follows from Lemma 4.1 that the approximate solution uk can be expanded 
at (xi, yj) with respect to P*?u in the form (4.1). Let us derive an expansion 

for the average of the approximate scalar field u 'h analogous to (4.1). By the 
C5h definition of I , 

(4.16) d (xiy Yj)-POu(xi, yj) = (ulh Ph IuA*) 1= 1, 2. 

Thus, by (4.16) and (A. 1O), 
-J,h =0 G1, 1k2 (4.17) u (xi, Yj) =~ PU(Xi, Y) + (P (111 hq -q), 1) ,2 

The relation (4.17) for dU', = 1, 2, is actually an analogue of (4.6) for uh. 
Thus, by applying arguments similar to those used to prove (4.1), we obtain 

u (xli, yj) = Ph (Xi, Yj) + 4 Zhi D q* GI dxdy 

(4.18) + 7 3'Et J D2q G dxdy 

j=1 

+EI 1(xi,yj), l = 1, 2, 

where Eh 1, = 1, 2, are the corresponding remainders, which satisfy 

h4 f9) ChogC (II3I2g+IIqII32), p=2, 
(4.19) AE1(Xi, y1)i ? +- C C(p) h2 flog)IIl3~ 1 <p < 2. 
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Thus, it follows from (4.14) together with (4.1) and (4.18) that there exists a 
function E2 such that 

z4(xi, y1) = ~ P,u(xi , y1) +1- 2(h phz\flq +tjO fq (4.20) h i Y 2h ))(X 5 yj+ 

+E2(xi, yj), 
where 

j' Ch 3logh (jjqII2,oo + 1q113,2), p = 2, 

C(p)h , 1 < p <32. 

Further, by the superconvergence result (3.18) we can find a function E3 such 
that 

(hi A(l8q) + tja iy (q2)) (Xi, yj), 
2 o t29 hi 

(4.21) = (hia(flq1) + ty (flq2))(xi, yj) +E3(xi, yj) 

=-(hi Ox' u(xi, yj) + tj ay u(xi, yj)) + E3 (xi, yj), 
where, by the Sobolev inequality, 

{ Ch 3log 1jIqII2,., p = 2, 

(4 22) (xi j I 
Cho2+logs IIqIj2 ., 1 <p < 2. 

{ Ch log' IIqlI2, p=2, 

C(p)h 2+logI llqll3P' 1 <p < 2. 
Thus, combining (4.20) with (4.21) gives 

(4.23) u (xi X yj) = Pu (xi y yj)-I (hi axh U + tjay u)(xi, yj) + E (x, yj), 

where the remainder Eh can be bounded by the right-hand side of (4.2). 
It is not difficult to verify that 

(4.24) P u (xi, yj) = u (xi, yj) + (hjgu+t9u) (x, yj) + O(h2+f)Ilull3 . 

Hence, (4.15) follows from (4.23) and (4.24). 0 

Remark 4.1. It is clear from the definition of the regularized Green's function 
that the so-called regularized Green's functions contain the mesh size h as 
a parameter. However, this dependence does not affect the estimate in the 
extrapolation, since we can always choose the same regularized Dirac 5-function 
for the approximations used in the extrapolation. One may want to use the true 
Green's function in doing the expansion rather than the regularized one. The 
difficulty of doing so is that one has to deal with the singularity caused by 
the 3-function. Doing the estimates for the regularized Green's function is 
much easier than for the true Green's function. This idea can be applied to the 
expansion for the standard Galerkin approximation for the Laplace equation. 
This remark is also applicable to the vector field in ?5. 



494 JUNPING WANG 

As in [20] and [3], a local postprocessing procedure can be applied to produce 
an approximation defined globally, which has the same accuracy as u0, on -. 

This result is stated as follows. For any x E R = Ix x iy, let = (xi, Yj) be 
the center of gravity of R. Define u* (x) by 

(4.25) Uh(X) = Uh(x) - (x) q (x) (x-) 

-(X- 
h 

)(X) (X- , x E R, 

where t ' indicates the transpose of the vector v . 

Theorem 4.2. Under the assumptions of Theorem 4.1, 

{ Ch3 log h(IIqI2 +IqI3 9, < p < 2, 

where p' =p/(p - 1). 

The superconvergence result of Theorem 3.2 plays an important role in de- 
riving (4.26). As the proof of Theorem 4.2 is quite simple, we omit the details. 

5. EXTRAPOLATION FOR THE VELOCITY 

It is well known that the technique of extrapolation is contingent upon the 
existence of an adequate asymptotic error expansion for the approximation 
considered. Therefore, we begin with the derivation of an asymptotic error 
expansion for the RT approximation of the vector field. 

Let Rh = AX x AY be the rectangular partition of Q. We shall assume 
throughout this section that Ax and AY are two uniform partitions of (0, 1). 
In order to describe two sets of points on which the approximate vector field can 
be extrapolated, let R = (-1, 1) x (-1, 1) be a reference element. Introduce 
two sets of points on R by setting 

1= {(-1, 0), (-2X 0), (0, 0), (2X 0), (1, 0)} 
and 

2= {(0, -1), (0, -2)' (0 0) (0, 2) (, 1)}. 
For each element R = Ix x E ERhI let F be the affine mapping 

F: R - R. 

Then we can introduce two sets of points on each elemerit by setting 

-l'h = F(=1) and -2 h=F(_2) 

Let -1 h and 
-2,h 

be the collection of ='j and 
-2' , respectively; i.e., Let 2,h h and 2, h~epciey .. 

-l,h~~ =<-,h i< N, I < j < MI 
and 

-2,h = {-2,h; I < i < N I < j < M}. 
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We shall extrapolate the approximations of two components of the vector field 
on the sets -l h and -2 h' respectively. For the sake of simplicity of analysis, 
we shall confine ourselves to the treatment of the first component of the vector 
field, as the analysis of the second component is similar. 

Lemma 5.1. Let (q h, u ) be the mixedfinite element approximation of (1.3) in 
the RTspace of the lowest order. Let q E [W3'p(Q)]2 with 1 < p < oc . Then, 

(5.1) qh(x) = h2DqG (x)h-h 
2 

DIq G dxdy- tj Dq G dxdy + R( ) 

with 

h5.2) { Ch3IP I IqII3 1< p < 2, 
where Dlq and D2q are two vector-valuedfunctions defined by (4.3) and (4.4), 
respectively. 
Remark 5.1. Since the partitions Ax and AY are uniform, we can denote by 
hi and t1 the mesh sizes in the x- and y-directions, respectively. Moreover, 
the terms of second order in the expansion can be represented as single integrals 
rather than sums of integrals over elements. 

Proof of Lemma 5.1. For any point x E Q, it is easy to see that 
h h _h (5.3) ~~ql (X) - rhql (X) = (qh _i 0n qa2) 

where ah is a regularized Dirac 3-function at x. Let (G h h whr 28 i G2, )L2) be the mixed 
finite element approximation of the regularized Green's function (G2, )L2) as- 

&h sociated with 2 . By (A. 11), 

(5.4) (q -h _ 2) 
h 

( HO)h G 
h 

It follows from (5.3) and (5.4) that 

(5.5) q~~h ( I -h) Gh (5.5) q1 (x) -I Fhql(x) = (f3(q -hq)' G2). 

Thus, applying (2.15), with v replaced by G2h, leads to 

h56 h(X ,2 D 2 h t2 f2q h +h (5.6) qI (x)h-Fql (x) = -hi D q G2 dxdy-t1 I D2q G2 dxdy + RI (x) 

with 
(5.7) JRhl < Ch 

311q13,pJJGhh 
h 

where DIq and D2q are two vector-valued functions defined in (4.3) and (4.4), 
respectively. To estimate (5.7), we apply (A.9) to obtain 

(5.8) JRCh3-? 3 2 <3p <x 
Ch 5IIII3,p, 1 < p < 2. 

Thus, it follows from (5.6) and (5.8) that (5.1) and (5.2) hold. 0 

If we restrict the point x to vary along the Gauss lines in the x-direction, 
we shall obtain an asymptotic error expansion of the following form. 



496 JUNPING WANG 

Lemma 5.2. Let q E [W3'p(Q2)]2 with 2 < p < oc. Then for any (x, yj) E 

Ix Ix , there exists a function R2 such that 

q1 (x, yj) = q1 (x, yj) + 2[h, - (x - xi) ]ax'q (x, yj) + hq (x yj) 

h Diq * G2 dxdy - t D2q * G2 dxdy + R2 (x, yj) 

with 
(5.10) IRz(x, yj)I ? C (C(P) +logh) 3 

Proof. Since the point (x, yj) lies on the Gauss lines of the element I x y 
it follows from the assumption and the expansion (2.1 1) that 

rFhql (x, yj) = q1 (x, yj) + _[h1 - (x -dxl)a]xq (x, yj) 
(5.11) t2 

+ ayql (x, yj) + O(h3 P 
)IlqII3,p 

Here, hi and t1 represent the mesh sizes in the x- and y-directions, respec- 
tively. Note that the partition is uniform in both directions. Thus, combining 
(5.1) with (5.11) yields 

q, (x, yj) = q, (x, yj) + - [hl- (xd la X)xq, (x, Yj) + 6ay q, (x , yj) 
(5.12) l\j \J 2 l lI l'16 l 

- h f DIq* Gh dxdy- t2f D2q* G dxdy + R h(x y1), 

where 

(5.13) R3(x, yj) = R2(x, yj) + O(h P )llqI3,p' 

To deal with the integral terms in the right-hand side of (5.12), we observe that 

fDlq * G hdxdy = DIq * G2 dxdy + Dq * (G -G dxdy. 

Thus, by (5.23) below, 

(5.14) jDiq.G2 dxdy = f D,qlG2dxdy + O(h1 )(C(p) + I logh I )IlqII3,p 

Similarly, 

(5.15) f D2q.G2 dxdy = f D2q@G2 dxdy+ O(hlIp)(C(p)+ I loghli)lIIj3,p. 

Thus, it follows from (5.12) together with (5.14) and (5.15) that there exists 
Rh(x, yj) satisfying (5.9) and (5.10). o 

The relation (5.9) is in fact the asymptotic error expansion for the approx- 
imation of the first component of the vector field. It should be noted that the 



MIXED FINITE ELEMENT METHODS ON RECTANGULAR DOMAINS 497 

R -i*R2 1 

FIGURE 3 
Illustration of refinement in the x-direction 

point (x, yj) can vary along the Gauss lines in the x-direction. But we shall be 
interested in those points on which the terms of second order in the expansion 
(5.9) can be extrapolated out. It will be seen that these points form the set 

-1 ,h 
Before presenting any procedure of extrapolation for the vector field, we 

describe two different refinements for the original partition Rh = AX xAy. Let us 
subdivide each interval of Ax into three equally sized subintervals, and denote 
by A3 Xthe corresponding refinement of Ax. Then a refinement of Rh can be 
defined to be 3 k = A3 X x Ay. Similarly, if A3 y is an analogous refinement 
for Ay ,then 4h = AX X A3,y can be defined as another refinement to Rh. 
Let R be any element in Rh; then there must be three elements RKI, RK2, 
and RK3 in R2+K,k such that R = RKI URK2 URK3, K = 1, 2 (see Figure 3). 

Let V h M h be the RT spaces of the lowest order associated with the parti- K K 

tions X, h' K= 3, 4, respectively. Denote by (qKh k uKh) the corresponding 
finite element approximations of (1.3) lying in VK X Mx , K = 3, 4. An extrap- 
olation procedure for the first component of the vector field can be described 
as follows. Let x E1 h, and define a new approximate solution to q1 (x) by 

(5.16) q#(x) = 1 3(9(qk3h+ q4k,h) _ hOq )(X)* 1 8 1 +1 ) 10)() 

The following theorem provides an error estimate for this new approximation. 

Theorem 5.1. Let q# be defined on El by (5.16), and assume that q E 

[W3'p(Q)]2 with 2 < p < o. Then 

(5.17) lqj - qj IIO,O,EI < C (C(P)+log h) ̂ P jjq113,P- 

Proof. Since any point x E E1 , h is on the Gauss lines of the partitions Rh) 

h, and 4 h,h we can expand q h (x), q3, (x) and q4 k h(x) in terms of q1 (x) 
and powers of the corresponding mesh sizes. The main purpose of the procedure 
(5.16) is to eliminate the terms of second order from the asymptotic expansion 
for the error. More precisely, let x be any point in E1k,h According to the 
definition of the set -1,h we can have the following configurations for x: 

(1) x=F[(O, 0)], 
(2) x = F[(- 1, 0)] or F[(1, O)], 
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(3) x = F[(- I, 0)] or F[(' , 0)]. 
Here, F is the affine mapping from the reference element onto elements in Rh. 

Let us deal with the first case; the second and third can be analyzed similarly. 
Thus, the point x is the center of an element in R Assume, without loss 
of generality, that x = (xi, yj) is the center of the element Ix x P E Rh 
Applying the asymptotic error expansion (5.9) at (xi, yj) to q h, h and 

4,h 
q49hx respectively, yields 

ql (xi, yj) = q1(xi, yj) + (xi, yj) + 6 !2q (xi, yj) 

(5.18) h2 Dlq G2 dxdY - t D2q G2 dxdY 

+ R2h(xi, yj), 

(5.19) - lf|DqG3 dxdy - t fD2qG2 dxdy + R2 (Xi d 2 j) d r 

and 

q4h (xi, yj) = q(xi, yj) + 1 axql(xi, y,) + ay4'q1(xi yj) 

(5.20) - h2 f Dlq * G2 dxdy - f D2q G2 dxdy 

+ R2 (xi, Xyj)X 

where R23'h and R24'h are the corresponding remainders. It is obvious that 
their maximum norms can be bounded uniformly from above by the right-hand 
side of (5.10). Thus, combining (5.16) with the relations (5.18), (5.19), and 
(5.20) yields 

Iq (xi, y1) - ql (xi, Y1)I h C (C(p) + log h-) G dxy3, 

which establishes Theorem 5.1 in the case (1). o 

A similar result can be derived for the second component of the approximate 
vector field. To do so, let us define a new approximation to q2 on the set -2 h 
by setting 

(5.21) qy(x y)=1 3h 4h) h 

Jq*(xiyj 89(qj2yj+q2C C-02(x),Io hE 2 

Theorem 5.2. Let q be defined on t 2h by (5.21), and assume that q E 
[W3'p(Q)]2 with 2 < p < x3. Then 

(5.22) 11q2 - q0o, o, -2 h < C (C(P) + logh) h3IP qI3,p. 
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To complete the proof of Theorem 5.1, we still need to establish the following 
lemma. 

Lemma 5.3. Let (GIi 22 A be the mixed finite element approximation of 
(G2,) 2) . Then 

(5.23) hs, G - G )I < C(C(p) + I loghl)h1-PIJsIJ, p, 

provided that s E [W1 P(Q)]2 with p > 2. 

Proof. Let (a , T) be a vector-valued function defined by the equations 

/?o+ VT= s in Q, 
(5.24) diva = O in Q, 

T=0 ondQ. 
h Let IIh a be the projection of a into the finite element space V . It is easy 

to see that 

(5.25) (,B lha , G2-G2) = (div(fl a), A2-/) = 0. 

Thus, by (5.24) and the fact that divG2 = divG2h = 0, 

(5.26) (s, G - G2)( 
h 

h-2 

Combining (5.26) with (5.25) gives 

(s, G2-G = (fl(u -flHh), G2 -Gh 

Thus, 

(5.27) I(s, G2 - G2)I < Ch G-flhGIlo,p [IG2 - G20 h ' 

< ChIlloI1 pIIG2 -G 
h 

where p' = p/(p - 1) is the conjugate of p. An a priori estimate in LP (cf. 
[14]) implies that 

(5.28) Ila h11,P < C(p)jIsIj1 P 

Thus, combining (5.27) with (5.28) and the estimate (A.8) gives 
h 

| (s, G2 - G2^)1 < C(C(p) + I logh1 i)h1 P lIsIJ, p 

which verifies the conclusion of the lemma. 0 

We conclude with a result on the approximation of the scalar field. In ?4, we 
have presented a procedure of postprocessed extrapolation for the scalar field. 
It is clear that the refinements given in ?4 are cheaper than those stated in this 
section, since fewer unknowns are possible there. However, if one is interested 
in the refinements of this section (this is the case for extrapolating the vector 
field), a procedure of pure Richardson extrapolation can be obtained for the 
approximate scalar field. 
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Define on Eh a new approximate solution to the scalar field as follows: 

(5.29) uh(x)= (9(u3'h +u 4u)-lOuX)(x) XEE- 

where -h is the collection of centers of elements in Rh. An error estimate for 
this new approximate solution is given in the following theorem. 

Theorem 5.3. Let us be defined as in (5.29). For some real number p with 
< p < 2, assume that q E [W3'p(n)]2 for p < 2 and q E [W32(Qj)]2 n 

[W' (Q)] for p=2. Then 

(5.30) jju - {Ch3log )(IIqII2,. + 4qII3,2), p = 2, 

C(p)h2+-log)i IIII3,p, 1 <p < 2, 

where p' = p.l is the conjugate of p. 

The proof of Theorem 5.3 is a consequence of the expansion (4.1) combined 
with the expansion (4.24). It should be noticed that any point in -h is also a 
center point of two elements in R3,h and 4,h respectively. This allows us 
to use the expansions (4.1) and (4.24) directly to extrapolate out the terms of 
second order from the expansion. 

APPENDIX 

To make the paper self-contained, we present here the definitions and some 
basic estimates for the so-called regularized Green's functions. A more detailed 
treatment can be found in [23]. 

Let Rh be the given rectangular partition of the domain Q. For any point 
x E Q let R = Ix IJ E 3R be the element containing x. Denote by 6 a x y h 
function defined by 

(A. 1) bl(,x) = { EI Iy 

O( otherwise. 

It is obvious that the function 5 h is a smoothed Dirac 6-function associated 
with the point x. Thus, a regularized Green's function (G1, I,) of the first 
kind can be defined as the solution of the following linear system: 

flG1+VA) =0 inQ, 

(A.2) divG1 = 6h in Q, 

l =0 onAl. 

Let (G1, Ah) be the mixed finite element approximation of (G1, )1) using 
the RT methods. Then the following results can be established (cf. [23]). 

Theorem 1. Let (G1, 9 ) and (G h, iAh) be the solution and the mixed finite 
element approximation of (A.2), respectively. Let p' be any number in (1, oo). 
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Then 

(A.3) JIG1- Ghj, I < Ch logJj, 

(A.4) JIG -Gl 10p < C (C(p) + log h P 1 < p < o, 

(A.5) IIG'II0 _' < Chm'nl?'w-1}1loghli 1 < p < oo, 

where p = 9- is the conjugate of p'. 

Similarly, a second regularized Green's function can be defined by a different 
use of a smoothed Dirac 5-function in the differential equation. This can be 
done as follows: Let h2 be a smoothed Dirac 3-function at the point x. Define 
a second regularized Green's function (G2(4 9 x), 9 2(4 , x)) as the solution of 
the following linear system: 

flG2 + V12 = 62 in Q, 

(A.6) divG2=0 inQ, 

A2 = 0 on 09, 

where 6 2 = 6 h ,X) is either (63 , 0) or (0, ah ); 5h can be suitably adjusted 
to meet various needs of the analysis in ?5. Assume also that the vector-valued 
function 6 h E H(div) has compact support in Q . Let (G h, {Ah) be the mixed 
finite element approximation of (G2, A2) in an RT space. Then the following 
theorem is valid. 

Theorem 2. Let p' be any number in [1, 0oo]. Then 

(A.7) JIG - G h11o I < Cl loghli, 

(A.8) ||G2- G I~2 G2 ' < C(C(p) + I loghl 1)h" P, 1 <p < oo0 

(A.9) JIGhl0p h;P>2 

where p is the conjugate of p'. 

It follows from the definitions of the regularized Green's functions that the 
following identities are true: 

(A.10) (uh POu961)=(fl(hq-q) GI) 

and 

(A.Il) (q h-_hqJ (3(q- 
h 

Thus, it follows from (A. 10) and (A. 11) that the following relations are valid: 

(A. 12) Ilu -P*0h 0 h 
-q), Gh) 

(A. 1 3) llqh _ nh q) G h 1. 
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