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FINITE DIFFERENCE DISCRETIZATIONS 
OF SOME INITIAL AND BOUNDARY VALUE PROBLEMS 

WITH INTERFACE 

GEORGIOS D. AKRIVIS AND VASSILIOS A. DOUGALIS 

ABSTRACT. We analyze the discretization of initial and boundary value prob- 
lems with a stationary interface in one space dimension for the heat equation, 
the Schrodinger equation, and the wave equation by finite difference methods. 
Extending the concept of the elliptic projection, well known from the analy- 
sis of Galerkin finite element methods, to our finite difference case, we prove 
second-order error estimates in space and time in the 12 norm. 

1. INTRODUCTION 

Let p > 0 and x* E (0, 1). Given 0 < T < ox, we consider the following 
initial and boundary value problem for the heat equation in one space dimension 
with a stationary (straight) interface. We seek a real-valued function u = u(x, t) 
for (x, t) E [0, 1] x [0, T] that satisfies 

ut = (a(x)ux)x + b(x, t)u in ([O, x*) u (x*, 1]) x [0, T], 
(11l) a(x*-)ux(x*-, t) = pa(x*+)ux(x*+, t), t E [0, T], 

u(x,O) =v 0(x), xe[O0, 1], 

u(0, t) =u(l, t) =0, te [O, T]. 
Here, a(x) is a positive function on [0, I, smooth on [0, x*] and on [x*, 1] 
with a possible discontinuity at x*, and b(x, t) is nonpositive, smooth on 
[0, x*i x [0, T] and on [x*, lI]x [0, T] , with a possible discontinuity on {x*} x 
[0, T]. We assume that the coefficients and the initial value v0 are such that 
the problem (1.1) possesses a unique solution, continuous on [0, 1] x [0, T] and 
sufficiently smooth for our purposes on [0, x*] x [0, T] and on [x*, l]x [0, T] . 

We shall approximate the solution of (1.1) by an implicit finite difference 
scheme, second-order accurate in space and time. In space, we partition the 
intervals [0, x*], resp. [x*, 1], into uniform meshes with meshlengths h_, 
resp. h+. Specifically, we let J, m E N and h -, h+ be such that x* = mh_, 
mh_ + (J + I - m)h+ = 1, and set Xi := jh_, j = 0, .. ,m,-in particular, 
xm =x* and x :=(j-m)h+xm, j = m+ 1,..., J+ 1. We also let 
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k := T/N and tn := nk, n = O, ..., N, for N E N. If u is the solution of 
(1. 1), denote Ujn := U(Xj, tn), j = 0, ..,J + 1, n = ,.. N. and un : 

(Un ... Un T E R+ , where R+2 := {v:v = (v0, ...,V ) ERJ+2 
V0 = V +1 

= 0} 
Our finite difference method, given by (3.1) in ?3 below, produces vectors 

Un = (UN,..., U;+1)T E o+2 for n = ,..., N that approximate un and is 
based in space on a standard difference approximation of (1.1) (cf. [13]), which 
to the left and right of the interface xm = x* reduces to a simple, locally second- 
order accurate, centered scheme. Across the interface it becomes a standard 
simple relation involving the values of Un at the points xm-I xm, xm+i . The 
time stepping is effected by a Crank-Nicolson procedure. Hence, the scheme 
requires solving a J x J tridiagonal linear system of equations at each time 
step. 

In ?3 we analyze the convergence of this method in a weighted 12 norm 
defined, as is natural for this problem, by 

J 1/2 
IIVlIh := {h E+Ivi2+hIvm2+ph+ E 

t j=l j=m+1 ) 

where we henceforth use the notation h := {h_ +ph+}. II* - Il is given here in 

general for complex vectors in CJ+2 := : v = (vO5 ... . Vj+1 
T E CJ+2 = 

Vj+ = 0} . We shall use complex-valued vectors for approximating the solution 
of an analogous problem for the Schr6dinger equation in ?4. In Theorem 3.1 
we prove the optimal-order error estimate 

(1.2) max 11 Un _u n lIlh < c(k2 + h2), 
n 

where h := max(h_, h+) and c is a constant independent of k and h. 
The analysis of numerical methods of finite element and finite difference type 

for time-dependent interface problems, such as (1. 1), has often been considered 
in the literature. For an error analysis of a finite difference semidiscretization 
that yields optimal-order error estimates in space, cf. Budak [3]. For full finite 
difference discretizations see, for instance, Isaacson [5], Samarskii and Fryazi- 
nov [10], and Samarskii [8, 9]. Isaacson [5] analyzes the Euler and backward 
Euler schemes by maximum principle methods and obtains optimal-order error 
estimates under a restriction implying k = O(h 2). For Crank-Nicolson type 
schemes, Samarskii and Fryazinov in [10] prove an estimate of O(k2 + h3/2), 
while in [8, 9] Samarskii obtains the optimal-order error estimate. (Strictly 
speaking, the problem considered in [8-10] is the discretization of equations 
with discontinuous coefficients, possibly on nonuniform meshes. However the 
techniques of these papers could be ostensibly extended and applied to the prob- 
lem at hand.) 

The main contribution of the present paper is an apparently new technique 
for obtaining the optimal-order error estimate (1.2) and, in particular, the 
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optimal-order term h2 instead of h312; the latter bound can be derived in 
a straightforward manner and is due of course to the interface condition. Our 
technique depends on considering first an associated two-point boundary value 
problem whose (complex-valued in general) solution w, continuous on [0, 1], 
satisfies 

(a(x)w')' = f(x) in [O, x*) U (x*1], 
(1.3) a(x*-)w'(x*-) = pa(x*+)w'(x*+), 

w(O) = w(l) = 0. 

In (1.3), a is as in (1,1), and f is taken to be complex-valued in general 
(for the purposes of ?4), smooth on [0, x*] and on [x*, 1], with a possible 
discontinuity at x*; w will be supposed to be smooth enough for the purposes 
of its numerical approximation on [0, x*] and on [x*, 1]. In ?2 we discretize 
(1.3) by the analog of the scheme used in the space differencing of (1.1) and 
prove second-order convergence of the resulting discrete approximation to w in 
the discrete maximum norm and in a discrete H1 norm. This result is standard, 
and our proof uses ideas from Samarskii [ 1 1, pp. 78-82]. (See also Gartland [4] 
for a recent treatment of finite difference methods for two-point boundary value 
problems with interface.) The apparently new step here is to use these estimates 
in the proof of the error bound (1.2) in Theorem 3.1, where, motivated by the 
elliptic projection concept, well known from the error analysis of Galerkin finite 
element methods (cf. Wheeler [14]), we define a finite difference analog, an 
elliptic approximation W to the solution u of (1.1), which satisfies the finite 
difference scheme for a two-point boundary value problem of the form (1.3) 
with suitable right-hand side depending on u. We then compare Un to Wn, 
and the proof of (1.2) is concluded in the standard way by the energy method, 
with analogous estimates to those of the error analysis of Galerkin methods for 
parabolic problems (cf. Thomee [12]). It should be pointed out that Samarskii 
in [8, 9] had considered comparing the finite-difference approximation of the 
parabolic problem to the solution of associated discrete stationary problems 
with suitable right-hand sides, obtained by splitting the truncation error. His 
approximations, however, differ from the elliptic approximation used here. 

In ??4 and 5 the elliptic approximation technique is applied to prove estimates 
of the form (1.2) for finite difference approximations to the solutions of two 
other time-dependent problems with stationary interface. In ?4 we consider 
the following initial and boundary value problem for the Schrodinger equation. 
Using the notation of (1.1), we seek a complex-valued u = u(x, t) for (x, t) E 
[0, 1] x [0, T] that satisfies 

Ut = iauxx + if?(x, t)u in ([O, x*) U (x*, 1]) x [0, T], 

(1.4) ux(x-, t) =pux(x*+ t) t E[O,T], 

u(x, ) =v 0(x), x E [O, 1], 

u(0, t) =u(1, t) = O, t E [0, T]. 
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Here, i is the imaginary unit, a is a nonzero real constant, and f,(x, t) 
is real-valued, smooth on [O, x*] x [0, T] and on [x*, 1] x [0, T], with a 
possible discontinuity on {x*} x [0, T]. We assume that the coefficients and 
the (complex-valued) initial data v0 are such that (1.4) has a unique solution, 
continuous on [0, 1] x [O, T] and smooth on [0, x*] x [O, T] and on [x*, 1] x 
[0, T]. (1.4) occurs in underwater acoustics, as a two-layer horizontal interface 
problem with a horizontal boundary at x = 1 and a free surface at x = 0, for 
the Schrodinger equation viewed as 'parabolic' approximation to the Helmholtz 
equation. (For simplicity, we have assumed homogeneous Dirichlet boundary 
conditions at the endpoints; Neumann or mixed, and also nonhomogeneous, 
boundary conditions can be analyzed as well, with no additional conceptual 
complications.) McDaniel and Lee (cf., e.g., [6, 7]) have studied implicit, Crank- 
Nicolson-type finite difference approximations for this problem and used them 
in computations. In fact, our main motivation for the present work was to 
prove an error estimate of the type (1.2) for the McDaniel-Lee difference scheme 
(cf. [7]) for which numerical experiments clearly indicate second-order rate of 
convergence in x and t. (Actually, our method is slightly different from the one 
in [7] in that we use a different evaluation of the coefficient f,(x, t) to render 
the scheme conservative. However, the proof of optimal-order convergence for 
the scheme of [7] is very similar to the one for the scheme at hand.) The proof 
of (1.2) in the present case of the Schr6dinger equation follows broadly the lines 
of the analogous proof for the heat equation and uses energy techniques similar 
to the ones that we used for Galerkin methods in [1]. 

Finally, in ?5, we consider the analogous problem for the wave equation. We 
seek again a real-valued u = u(x, t) for (x, t) E [O, 1] x [0, T], satisfying 

Utt = (a(x)ux)x + b(x, t)u in ([O, x*) U (x*, 1]) x [0, T], 

a(x*-)ux(x*-, t) = pa(x*+)ux(x*+, t), t E [0, T], 

(1.5) u(x,O)=v0(x), [O, ], 

ut(X,0)=v (x), xe[O, 1l], 

u(0, t) = u(1, t) = O, t E [O, T]. 

Here the notation and assumptions on a(x) and b(x, t) are exactly the same as 
in the case of the heat equation (1.1). The (real-valued) initial data v?, v 1 and 
the coefficients are again assumed to be such that a unique solution u of (1.5) 
exists and is continuous on [0, 1] x [0, T] and sufficiently smooth on [O, x*] x 
[0, T] and on [x*, 1] x [0, T]. We approximate (1.5) by the classical explicit 
5-point Courant-Friedrichs-Lewy difference scheme, modified at the interface 
x* as in the previous sections, and prove again an error estimate of the form 
( 1.2) under the stability condition, of course, that (V/iai k/ min(h_, h+)) < ro 
for any fixed 0 < ro < 1. (Here, and in the sequel, . 1o will denote the 
L?(O, 1) norm.) Now the energy estimate is mildly more complicated, owing 



FINITE DIFFERENCE DISCRETIZATIONS 509 

to the presence of the time-dependent coefficient b(x, t); again, we use ideas 
from analogous proofs for Galerkin methods, here from Bales, Dougalis, and 
Serbin [2]. 

It should be pointed out that our technique of comparing the finite differ- 
ence solution U' to its elliptic approximation W' is a general device whose 
application is not limited to interface problems only. For example, it can be 
used to prove optimal-order convergence of finite difference approximations to 
initial and boundary value problems for nonlinear PDE's; its application there 
circumvents many tedious computations involving Taylor expansions. 

2. A TWO-POINT BOUNDARY VALUE PROBLEM 

In this section we consider the discretization of problem (1.3) by a standard 
three-point finite difference scheme modified at the interface node x*. We 
derive second-order accurate error estimates in the discrete maximum norm 
and in a discrete H' norm. These results will be used later for deriving error 
estimates for problems (1. 1), (1.4), and (1. 5). 

In the sequel we shall find it convenient to employ difference quotient nota- 
tion that conforms to the spatial mesh {xj }, 0 < j < J + 1, introduced in ? 1, 
and takes into account the interface at x* = xm . For a real or complex J + 2- 
vector (vo) v1, ... , VJ+1)T we define first the forward and backward difference 
quotients av1, &v1 as 

a9 f (vj+l - vj)/h if j = O, ..., m- 1, 

J (v -vj)lh+ if j=m,... ,J, 

a J(v1 -vj1)/hh if j=1,...,m, 

J (Vj - vj_ )/h + if j = m + l, ... ., J+ 1 . 

Consequently, centered second difference quotients that approximate the func- 
tion (a(x)v'(x))' at xj /6 xm will be denoted by 

laj+,12(V+l - Vj) - aj1112(Vj - Vj-l)]lh2 

f [aj+,12(Vj+1 - vj) - aj 112(Vj- vj=._)]Ihm 
ifj = m+ 1, ... , J , 

where we put aj+,12 = a((xj + xj+,)/2) for j = 0, ... , J. At the interface we 
let 

3p(am+1/29Vm) {Pam+l12 ( +h 
V am-1/2 ( h h) } h. 
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Now let wI = w(x), j = O, ... , J + l, where w (x) is the solution of ( 1.3). 
We approximate (wo, ..., wj+i)T by W E CJ+2, defined by the equations 

(2.1) (9 (aj+112aWj) = f(x;) if 1 < j j m, 

(p(am+1i2& Wm) = f(x*), 

where we put f(x*) := [h+pf(x*+) + h_f(x*-)]/2h. The J x J tridiagonal 
matrix of the linear system (2.1) is obviously invertible, i.e., W is uniquely 
defined. Introduce in C J+2 the sesquilinear form ah( ,) by 

m-l 

ah(v, u) : - [_Z& (aj+1/2&vx)iu 
- + h3p(am+1i29Vm)Tim 

J 
+ ph+ E j(aj+i/20v3)9T] 

j=m+1 
where the bar over u; denotes complex conjugation. It is easily seen that 

m-i J 
(2.2) Vv E 0J+2 ah(v, v) = h_ E > j+2VI + ph+ E a 

j+1121av il 
1=0 j=m 

(2.3) VV E CJ+2 a ) < 4IaKo jjv I2 
(0 h*(V, v) < [min(h, h)]2 h 

and that a (,*) is an inner product in ?J+2 
Further, letting p* := max(l, l/p) and a:= min <X<1 a(x), we see that the 

following discrete Sobolev-type inequality holds: 

(2.4) Vv E CJ+2 max I <, v) . 

In fact, for s < m we have 
s-I2 2 

21vsl2 = Z (vV+j-)v) + (v1+i-V1) 
j=0 j=s 

s-i rn-i 

j=O j=s 

J 
+2(J+ 1 -m) Zv1j+1 -vj 2 

j=M 

< 2(p* /a)ah(V, v) - 
A similar inequality holds for s > m, and the result follows. A trivial conse- 
quence of (2.4), that will be used in ?5, is that 

(2.5) 3c > O Vv E CJ+2 ah(V, v) 2cIIvII* 
Let ei := wj - Wj, j=0, ..., J + 1 . Two approximation results for W 

are given in the following lemma. 
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Lemma 2.1. Let the solution w of (1.3) be continuous in [0, 1] and smooth in 
[0, x*] and in [x*, 1]. Then, there exists a constant C, independent of h and 
w, such that 

4 

(2.6) max 1ejl < Ch2 E w loo 
O<j<J+l j~=1 

and 

4 

(2.7) [ah(e, e)]1/2 < Ch2 w 1W(i 
j=1 

where I w () I = max{supO<X<XFIw (ix) 4 , supx < <1 Iw(i)(x)Kl}. 
Proof. Let us first note that (2.6) follows immediately from (2.7) in view of 
(2.4). Therefore, it remains to show (2.7). Using (2.1), we have for 1 < j < J, 

a(aj+,12aej) = a(aj+1/29wW) - f (x). 

Therefore, 

(2.8i) 9(aj+1/12Oe) = hg if m + 1 < J < J 

and 

(2.8ii) h 3, (am+1/29em) = ph+ gm -h_ m 

where, by Taylor's theorem, 

4 

max I gj I + g< C w (1)100 

j=1 

Multiplying (2.8i) by h_ej if j < m - 1 and by ph+e1 if j > m + 1, and 
(2.8ii) by em, summing from j = 1 to j = J and using the definition of ah 
we obtain 

m-1 J 
(2.9) ah(e, e) = h3 2 + (phgm - h2gm)em + ph: z gje1j 

j=1 j=m+1 

We now essentially derive a discrete H-1 estimate for the vector g by intro- 
,J+2 ducing an auxiliary vector 1 E (Co by the relations 

(0j+1 -nrj =h3g, jg. mh-1, 

(2.10) pqm1 - qm ph 2gm - h2 g 
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Obviously, 
J 

r =- h+ gj, s = m + 1...,J, 
j=S 

m-i 
(2. 1 1) ?1s = - (ph+m - h2 gM) - h3 E g; 

j=s 

- ph+ S gj, s= l,.. ,m. 
j=mr+1 

Therefore, 

4 
(2.12) max ?ljl < Ch2 S Iw U)loo0. 

j=1 

Now, using (2.9), (2.10), we have 

m-i J 

ah(e, e) = S(qj+I - ?j1)ej + (P1m+i - ?lM)erM + p E (51+ - ViF) 
j= 1 j=m++1 

m-i J 

=-E q1j+ I Rj+ I - Zey) - P 5 qy+1 I Rj+l j 
j=0 j=m 

Therefore, using the Cauchy-Schwarz inequality, (2.12) and (2.2), we obtain 

( m-1 J }1/2 

ah(e, e) < jh E 
jqjI2 + ph+ S I 

qj+l l2 
j =O j=m 

m-1 1/2 

x {hS 19ejlo2+ph+ S +IoIej2} 
j =O j=m J 

4 
< Ch 2[ah e ) 1/2 U 

W() 

j=1 

and (2.7) follows. O 

We close this section with two remarks. 

Remark 1. There is an easier, direct way to prove (2.6), which avoids (2.7). In 
fact, from (2.4), (2.9) we obtain 

(a/p*)maxlejl 2< maxiej Ih3 lgjl1+glph2ggm - h2 +ph g31 
j=1 j=mr+1 

and the result follows. We shall use (2.7) only in the case of the wave equation 
in ?5. 
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Remark 2. Define, for functions u, v in L 2(0, 1), the inner product 

(u, v)= uvdx + p fudx. 

Then the two-point boundary value problem (1.3) has the following weak formu- 
lation: seek w in the Sobolev space H1(0, 1) such that for each v E H (0, 1) 

-(aw', v')p = (f, v)p. 

Consider now the finite-dimensional subspace Sh of H (0, 1), consisting of 
piecewise linear functions on the mesh {xj}, 0 < j < J + 1, continuous on 
[0, 1] and vanishing at the endpoints 0 and 1. Endowing Sh with the usual 
hat function basis {p,j}, 1 < j < J, one obtains a standard finite element 
approximation Wh ESh to w, given by 

(2.13) -(aw I? 1 < j < J. 

It can be seen now that equations (2.13) reduce exactly to those in (2.1), pro- 
vided one uses, in each subinterval [xi, xi+1], the trapezoidal rule to approx- 
imate the integrals in the right-hand side of (2.13) and the midpoint rule to 
approximate those in the left-hand side. The scheme (2.1) is therefore a finite 
element scheme, modulo quadrature. One could conceivably, therefore, use the 
techniques of Wheeler [16] to try to derive discrete maximum norm error es- 
timates for (2.1), taking into account, of course, the interface and the use of 
numerical quadrature. 

3. THE HEAT EQUATION 

In this section we consider the discretization of problem (1.1) by the Crank- 
Nicolson method niodified at the interface node xm = x*. For 0 < n < N, 0 < 
j < J + 1, we shall approximate un by U>, where Un=(U0,..., UJ+)T e 

J+2 0 0~~~~~~i J 
1R% , starting with U := v? . We denote U"2 = (U)/2 t 

t + (k/2), bj I = b(xj,tn+'12) and put QU3 =k-'(U - U7). Then, for 
0 < n < N - 1 our scheme becomes 

aTUn (a Un+112) +bn+112Un+1/12 j<J j+m 
(3.1) Jj(9(aj ?J2 I#m, 

nlm = p(a a/2 nm+112) + b(x* tn+112) Un+112 a 

TUM' pkm+1/2 UM)'M 
where, by analogy to f, b(x*, t) := [h_b(x*-, t) + ph+b(x*+, t)]/2h . 

Stability. Let 

lIgIl := {f Ig(x)l2 dx+p Ig(x)2 dx} , g e L2(0, 1). 

Multiplying ut = (aux)x + bu first by u, integrating by parts over [0, x*], and 
then multiplying the equation by pu, integrating by parts over [x*, 1] and 
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using the interface condition, we easily see that (d/dt)jlu(., t)j12 < 0, i.e., 

(3.2) lu(G, s)11 < lu(, t)l, 0 < t < s < T, 

and, in particular, 

(3.3) Vt e [O, T] Ilu(, t)ll < llv?ll. 
In the next lemma we prove discrete analogues of (3.2), (3.3) for scheme 

(3.1). 

Lemma 3.1. The approximate solution Un of(3. 1) satisfies 

llun+ llh?llUlih, n = 0, ...,N-, 
and, in particular, 

(3.4) llU ||h < llU Ullh n = 0, ..., N. 

Proof. Multiplying the first equation in (3.1) by h_ Un"+12 if j < m- 1 and 

by ph U3n+112 if j > m + 1, and the second by Un+j12, summing from j = 1 
to j = J, using (2.2) and the sign conditions on a, b, we obtain Ij Un+ ll1 - 

jIUn2ll < 0, and the results follow. 0 

From this lemma it obviously follows that for each n = 0, ... , N - 1, un+1 
exists uniquely as the solution of the J x J tridiagonal linear system represented 
by (3.1). 

Convergence. The main result in this section is given in the following theorem. 

Theorem 3.1. Let u satisfy (1.1) and Un satisfy (3.1). Then there exists a 
constant C(u), independent of h and k, such that 

(3.5) max Iun _ U nll < C(u)(k2 +h 2) 
O<n<N 

Proof. For 0 < t < T let W(t) = (WO,..., WJ+1)T E +2 be the elliptic 
approximation to u(., t) defined by 

9(aj+1/29Wj) = (Lu)(xj, t), 1 ?1< J, j o m, 

(p(am+ I2O Wm) = (Lu)(x*, t), 

where Lu:= (a(x)u,),. With Wn:= W(tn), denote 

(3.7) 
n := un _ Wn, on:= Wn _ Un n = O,.. N, 

so that un _ Un = 4n + 6n1. According to Lemma 2.1 we have 

(3.8) m<n<N 1l llh 

Hence, it remains to estimate IIon1l6h. Using (3.1), (3.6), (1.1), and letting 
n+12 = (6n+1 + on )/2, we obtain for I < j < J, j $ m, 

(3.9) Qj = &(a1+112071n+1/2) +nb"+12n+112 + n 
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where for j $A m, co n = COn + co n + ,n + ,n + ,n , and 

n n n+/ Cl lj =aT Wy -a U 

nt2 :=aTUn _U,(Xj, tn/1), 

(3.10) co 
n 

(Lu)(xj, tn+ 1/2 -[(Lu)(xj t) + (Lu)(xj tn+)], 

n = n+ 1/2 +J n n_(u+ 1 + Un>] 

co5 n=-b n+ 1/221(Un+1 + Un)- U(X tn+l/2)1. 

Now, we have for i= 1, 2, 3, 4, 5, 

(3.1li) maxIcon <IC(k +h ). 

In fact, the terms co, co n , co n are obviously of O(k2 + h2). An estimate 
of the same form for ,n follows immediately from (2.6), while the estimate 
for ,n results from (2.6) and the commutativity of the elliptic approximation 
operator and time differentiation. 

At the interface, using again (3.1), (3.6), we have 

aTon p(nl,, dbtQ+1/2) b (x*, tn+112)6n+1/2 

TW Wm- [(Lu)(x, t ) + (Lu)(x* tn+l)] 

-b(x , tn+ /2 )(W n+1 n 

and, as before, we see that 

naT 
( 9 Sn+1l/2) + g (X* tn+112) On+1/2 + , 6rn + p^Dn / (3.12) m = 3 p(am+i1i2O6 12 b(, tnl/ ) 1+ (h_ w + ph Wm%)h 

with 
n I + n 2 2 

(3. 1 1ii) l(tml l(O)m < C(k +h ) 

To derive (3.1 1ii), we write m,n 6.nk as sums of terms, as was done before. 
These terms are estimated easily, and (3.1 lii) follows because only differences 
in t are involved. From (3.9) and (3.12) we obtain now, as in the stability 
proof, 

rn-1 
k- (pl n+l 112 _l ni12 ) <h On on+ 1/2 n + (h?9 n P+),n)1/ (2k7-' ( h6~ hI~-I6~ ? h- o + (h_j4o +p (O 

j=1 

+ ph+ Z wovn+ 1/2 
j=m+1 

Applying the Cauchy-Schwarz inequality to the right-hand side, and using 
(3.1 li) and (3.1 lii), we obtain 

,,,n+1l _2 2 
l IIhHI_ Inlkh ? Ck(k + h) 
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and conclude 

(3.13) max lanIlIh < C(k2 + h ) 

The result now follows from (3.8), (3.13), and the proof is complete. cl 

Remark. In analogy to, and using the notation of Remark 2 in the previous 
section, consider the Galerkin-finite element formulation of (1.1), with respect 
to the inner product (., *)p, coupled with a Crank-Nicolson type time-stepping 
procedure, given by 

(3.14) (OTUn, j)p + (aU"n+12 I') -(b(., tn+1/2)Un+112 ) 0 

for 0 < n < N- 1, 1 < j < J, where Un = Un(X) is the fully discrete 
approximation of u(x, tn) in Sh, gTUn = k-(Un+l - Un), and Un+ 12 = 

(Un+1 + Un )/2. Use the trapezoidal rule on each subinterval [xj, xj+1] to 
approximate the integrals in the first and third term in (3.14) (which amounts 
to lumping into the diagonal the associated matrices), and the midpoint rule to 
approximate the integrals in the second term. It is seen that (3.14) reduces to the 
scheme (3.1) which, therefore, may be considered in this sense as a fully discrete 
finite-element type method, provided one defines U0 as the interpolant onto 
Sh of v0(x). Modulo interfaces and quadrature errors, therefore, one could 
conceivably derive discrete maximum norm error estimates for (3.1), using the 
techniques of Wheeler [15]. Similar remarks can be made in the case of the 
wave equation of ?5. 

4. THE SCHRODINGER EQUATION 

This section is devoted to the discretization of problem (1.4) by the Crank- 
Nicolson method modified at the interface node x*. For 0 < n <N, 0?1? 
J+ 1, we shall approximate un by U7 , where Un = (UOn,..., U4n+)T E J+2- 

0 0 starting with U? v?. As in the previous section, we let 

Un4+1/2 =(n+l + nfl 2l+ Uj = (U. + Uj )/2, t /2 t + (k/2) 
nfl+l/2 n+1/2 n = l(un+l n 

Our scheme, for 0 < n < N - 1, is: 
Un ~n+1/2 n+1/2 nJf+1/2 

1< J,jm 

(4.1) QU1 =ia0U l j + 
nt Um = ( n+1/2 + * n+1/2 n+1/2 9T U>"=ic3p (O9Um )+ifl'(x , t 

where we recall that T(0v1) = (vj+ I-2v+v-1)/h (where h = h- ifj < m- l 
and h = h+ if i > m + 1) and 

3p(dVm) = [p(h+)- (Vm+- Vm) - (h_Y1(Vm Vm 1)]/h. 

Stability. Multiply first ut = iaux + i/lu by 1a, integrate over [0, x*] by parts 
and take real parts. Then perform the analogous operations on [x*, 1] after 
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mulfiplying the equation by pu. Add the resulting equations, use the interface 
condition and obtain (d/dt)llu(., t)112 = 0, i.e., 

0 
(4.2) jju(., t)jj = liv O[l t e [0, T]. 

A discrete analog of (4.2) is given in the following lemma. 

Lemma 4.1. If Un satisfies (4.1), then 

(4.3) llUnllh = IIU0 lh, n = 0, ... , N. 

Proof. Multiplying the first equation in (4.1) by h - u71/2 if j < m - 1 and 
by ph tUn+il2 if j > m + 1, and the second by -Un+12, summing from j = 1 
to J, using (2.2) and taking real parts, we obtain IIUn+l Ilh = IIUnlI , and the 
result follows. Ol 

Using Lemma 4.1, it is easily seen that Un, n = 0, ... , N, are uniquely de- 
fined as solutions, for each n, of the J x J tridiagonal linear system represented 
by (4.1). 

Convergence. The proof of the following result is similar to the proof of Theo- 
rem 3.1 and will be omitted. 

Theorem 4.1. Let u be the solution of( 1.4), and Un the solution of (4. 1). Then, 
there exists a constant C(u), independent of k and h, such that 

(4.4) max IIu -U lIh < C(u)(k + h ) * 0<n<N 

5. THE WAVE EQUATION 

In this section we consider the discretization of problem (1.5) by the standard, 
explicit Courant-Friedrichs-Lewy five-point scheme, modified at the interface 
node xm = x* . Letting U := Vo, we construct approximations Un E RJ+2 to 
un as follows: letting bj7 = b(x1, tn), we first compute U&I by the formulas 

2 

(5.1) Uj :=Uj + kv1 + T [a(aj+ /2aUj ) + bj Uj ], Ij <J, .j # m, 

U$= Um + kvm + k2[;jp(am+1i209 U) + b(x*, O)Um]. 

Then, for 1 < n < N- 1, denoting 2U = k-2(Un+l - 2UW + U'l) ,we let 

(5.2) (JT 3U=(aj+12Un) + bnU 1 < ?<J, j m, 

(2UT = 63p(am+1i2OU,9 ) + b(x*, t m)Um. 
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Convergence. 

Theorem 5.1. Let u be the solution of (1.5) and Un satisfy (5.1), (5.2). For 
fixed 0 < rO < 1 let kIaI142/ min(h_, h+) < rO. Then there exists a constant 
C(u), independent of k and h, such that 

(5.3) max IIun-Unlh < C(u)(k2 + h 2). 
O<n<N 

Proof. Let Wn E RJ+2 be the elliptic approximation to u(., tn) given by (3.6) 
and set 

(5.4) C,n := Un _ w n on = wn _ Un, n = O,.. N, 

so that Un - Un = Cn + an. According to Lemma 2.1 we have 

(5.5) max 11 Cn Ilh < Ch2 
< 

Hence, it remains to estimate IIn IIh . Using (5.2), (3.6), we obtain for 1 < j ? 
J, j Sm, n= 1, ...- Nn- 1, Lu = (aux)xn 

62. n (. -)- b n6n = W2.Wn -(Lu)(xj, tn)-bb W.n 
T i -a(j+1/2a jjj i Tj j ii' 

i.e., 

(5.6) (56T = a(aj 126an) + bnn +0j> j1$ m, 

where for j m, ,n = n + n + t)3n with 
n j 2j n 2 

(0l}: (5T j T uj 

(5.7) con = 2u - u t(Xj1, tn), 
23j T ij (Un_ j 

Now, for i= 1, 2, 3, 

(5.8i) max Iwon7I < C(k2 +h) . 

In fact, Ionj I is obviously estimated by Ck2, and a bound of the form 
2 2 

C(k2 + h 2) for I (onj follows immediately from Lemma 2.1. Finally, to es- 
timate I(onwI, we use Lemma 2.1 and the fact that 

T2uj =f k k f(k - ITI)u tt (Xj, tn + T) dT. 

Further, for j = m, using again (5.2), (3.6), we have 

T 0M - 6p(am+1i2 6m) - b(x*, t )Om 
2 ' - (* t ) + (* , n -b(X , n 

=T Wm UttX , t)+ bkx , 1)m 
- 1 M" 
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As before, we see that 

(5.9) 31 T M= 3p(am+1/2O6i) + b(x*, tn)6n + (h_ w + ph+C4M)h 

with 

(5.8ii) m m < Ck +h 

Introducing the bilinear, symmetric, positive semidefinite form b n(., ) in 
RJ+2 by R0 b 

rn-i J 

bn(v, w) :=-h , bjnvw -hb(x*, tn)VmWm -ph+ E bnv jw. 
j=1 j=m+l 

multiplying (5.6) by h (61n+ I_ n-61) = h [(n+l _-n)+(6n_On-6)] if j < m-1 

and by ph(6n+1 - 6n-1) if j > m + 1, multiplying (5.9) by (Qn+1 - on), and 
summing from j = 1 to j = J, we obtain 

k 2(116n+ - 6nI12 - - n-1II2 k (1la 0 lh 1 lih) 

n[a(on , n n-1) + bn(n 'n+ _ -1)] 

m-i 
?h n( n+1 _ an-I ) + (h_ ,)n + ph +cln )(n+l n-1m ) 

j=1 
J 

+ ph c n (n+1 _ on-1). 
j=m+ 1 

Therefore, applying the Cauchy-Schwarz inequality and using (5.8), we have 

n+11 -n _ n -12 _n _n-1 2 

(5.10) <-k [ah(,n+l n) - a (,n ln-1), 

2k 2[b (,n+l 2n) - bn(n n-I 

+Ck (k + h2)116n+l _ n-1Ih 

Summing from n = 1 to n = l < N- 1 then yields 

11 1+1 01 2+ k2[a1+1 1 1+1 1+1 1 

< 110 -00,12 + k2 [a*0 )+ b? (00 01) 

(5.11) + Ck(k2 + h2) max 1| In+1 - 6nIIh 

+k L[bh (6n+l ,n)_ bn(n+l ,6n)]. 
n=1 
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Now, using (2.5), 
I 

Cb k EI(n+l, n) - b n(n+1 h n)] 
n=l 

< Ck II O n+ 
111hll an11 

n=1 

< -Ck j(|I0n+1 + Hn|12 + I|0n+1 On,12) 

<?CkZ[a(6n+l 
+ 6n n+1 +6Sn) + In+1 _6 anl2 

h h~~~~~~hh 

n=1 

Further, using (2.3), 
1+1 12 + k2[a 1+1 01 1+1 1+1 1 

II/6' Ih+ h( O +bh (6 0 )A 

2 
1+1 1 +2 ka 1+1 + 1', _ b+1 0+ 11 +1 

=116 - + [n(x lih+ 6 ,h(06+ H I +) -6)] 

[+ 7[bh + o + mibx t) 10 - + 0 b1+ ( 0 + 0 ' ) 

2 1S - 1l2 2 
k [2knin _1 1+1 n112 + +1 2+1 1+ + 0 1 H + 0 ) 

For k~~r sufcinl smal,tw oeta O2+k itbx t) >1 0 4. Then, 

There+-e,nbg (6 +6,6 +r)-bl (6 yields -6 
r 21 2 

2akx1+1 _12 k 1+1 I 1+1 

? [-ro+Tnin b(x ~t)JI -Ih+ h (6 +6,6 +6). 

Therefore, (5.11) yields 

2- k ( ? ++2 

? Ck IIOn1 _ nII2k nk 1 +1 +61,1+1n 

2 k2 

For k sufficiently small, we note that 1 - r + T minx,tb (x ,t) >O. Then, 
applying the discr'ete Gronwall lemma yields, for n = 1 , . .. , N - 1 , 

IIOn+ _ O II2 C 111 _ 0,12 2 2 1+1 1 

+ k(k 2+h)2 max /1601 -60 lkfh 

IIn+1 n 2 max II6 6lIh 
(5.12) 0?n<N-1I 

<C{I61-60I~h2Ih(60, 1) + b~(650, 6)I/+k2 (k2 +h22I 



FINITE DIFFERENCE DISCRETIZATIONS 521 

Using the Cauchy-Schwarz inequality and (2.3), we have 

k2la( 66)?2 (Q 0+21161 _60112 k I a, (H, O' -0 )| < k a, (O' O?) + r210 h0l 

Hence, from (5.12), 

max 116 -I|h 
(5.13) 0?n<N-1I 

? C{jj611 _ 0,12 + k 2[a (0 0, + 6 Ib(O, 01)1] +k (k +h ) }2. 

According to Lemma 2.1 we have 

(5.14) ah(60, 0?) + 110Ii12 < Ch4, 

and using the fact that 
1 1 ~ ~ ~~~~~12 2 

0 u jU)+(t4- U) =(Wj uj) + O(k(k + h)), 

we get 

(5.15) 1161 lh < Ch2. 

Further, since 
1 0 2 2) 

oi _i 0= Wj _W?+(U - U?) + O(k(k2 + h2) 

we obtain 

(5.16) 116' - 6011h< Ck(k2+ h2). 

Finally, using (5.14)-(5.16) in (5.13) yields 

max 116 -6 n||h< Ck(k + h ), 

i.e., 
n+1 

l2h<11, 2 1+Ck(k h2) n=O, N -1. 

Hence, 
max 16n lh < C(k2 + h2) 

0<n<N 

and the proof is complete. 0 
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