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ON THE EXISTENCE, UNIQUENESS, AND FINITE ELEMENT 
APPROXIMATION OF SOLUTIONS OF THE EQUATIONS OF 

STATIONARY, INCOMPRESSIBLE MAGNETOHYDRODYNAMICS 

MAX D. GUNZBURGER, AMNON J. MEIR, AND JANET S. PETERSON 

ABSTRACT. We consider the equations of stationary, incompressible magneto- 
hydrodynamics posed in a bounded domain in three dimensions and treat the 
full, coupled system of equations with inhomogeneous boundary conditions. 
Under certain conditions on the data, we show that the existence and unique- 
ness of the solution of a weak formulation of the equations can be guaranteed. 
We discuss a finite element discretization of the equations and prove an optimal 
estimate for the error of the approximate solution. 

1. INTRODUCTION 

In this work we study the equations of stationary, incompressible magnetc- 
hydrodynamics which describe the steady state flow of a viscous, incompress- 
ible, electrically conducting fluid. There is interest in these equations since 
they have applications in fusion technology and novel submarine propulsion 
devices; they also model the flow of liquid metals in magnetic pumps that are 
used to cool nuclear reactors (see [10, 15, 18-211). The majority of the work 
done on these equations has been for the time-dependent problem with homo- 
geneous boundary conditions. Those studies done for the steady state problem 
usually treat homogeneous boundary conditions, except in the few cases where 
simplified and unrealistic nonhomogeneous boundary conditions are treated; 
see [2]. In addition, many previous studies only consider one- or two-dimen- 
sional domains, where many effects unique to physical, three-dimensional space 
are lost; see [21]. Also, many studies assume other simplifications to the equa- 
tions, such as vanishing magnetic Reynolds number, which allows the fluid and 
magnetic equations to uncouple; see [14]. 

In this work we treat the full, coupled system of equations in a three-dimen- 
sional domain. These equations are specified in ?2 along with the definition of 
various function spaces that will be needed. In ?3 we give a weak formulation 
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for these equations and in ?4 we prove an existence and uniqueness result. An 
alternate choice of boundary conditions is discussed in ?5. Section 6 deals 
with various aspects of discretizing the equations by finite element methods. 
We prove an existence and uniqueness result for the solution of the discrete 
equations and derive error estimates for the discrete solution. In ?7 we describe 
three possible iterative schemes for solving the nonlinear algebraic equations 
which result from discretization. Our work is in the spirit of some of the well- 
known analyses done for the Navier-Stokes equations; e.g., see [6, 7, 9, 17]. 

2. EQUATIONS AND FUNCTION SPACES 

2.1. Equations and boundary conditions. We consider the equations of sta- 
tionary, incompressible magnetohydrodynamics in a bounded domain in three- 
dimensional space. Let Q be a simply-connected, bounded domain in R3 

which is either convex or has a C1' 1 boundary aQ; see [8]. We assume these 
restrictions on the domain Q throughout this discussion. Consider the follow- 
ing equations which hold in Q: 

(2.1) -I AuIu+ -uVu+Vp-j xB=f, 
M 2 N 

(2.2) V * u = 0, 
(2.3) j= E+u x B, 

(2.4) V * j = 0, 
(2.5) VxB=Rmi, 

(2.6) V * B = , 

(2.7) V x E= 0. 

Here M, N, and Rm are the Hartman number, interaction parameter, and 
magnetic Reynolds number, respectively, and are given by 

M=BL NI -= aN R = ya-uL, 

where u , B , and L are a characteristic velocity, magnetic field, and length, 
respectively; see [18, 19]. The unknowns have been nondimensionalized as 
follows: the velocity u by u7, the pressure p by T-IB L, the electric current 
density j by (aBW, the magnetic field B by B, the electric field E by -B1, 

-2 
and the body force f by 7iffB . The other parameters appearing above are 
the density p, the electrical conductivity a, the viscosity t , and the magnetic 
permeability ,u. We assume that the scalars p, a, t, and ,u remain constant 
in the fluid and that these, as well as the vector f, are given. The unknown 
variables are the vectors u, j, B, E and the scalar p. 

We require the solution of (2.1)-(2.7) to satisfy the following boundary con- 
ditions. For the velocity we specify 

(2.8) ulan = 8, 
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where g = 0 if there is no flow through the boundaries and a no-slip condition 
is satisfied at the boundaries. For the magnetic field we specify 

(2.9) (B * n)lI0 = q, 

where q = 0 for a perfect conducting boundary and n is the outward-pointing 
normal to Q. Lastly, we impose 

(2.10) (E x n)I0, = k, 

where k = -(ub x B) x nl0, for a perfectly conducting boundary, where Ub 

denotes the velocity of the boundary; if ub= 0, the boundary is fixed, and then 
k = 0 for a perfectly conducting boundary. 

Instead of the boundary conditions (2.9) and (2.10), we can also consider the 
problem with the alternative boundary conditions 

(2.11) (B x n)l,, = q 

and 

(2.12) (E n)I0 =k, 

where we need impose condition (2.12) only when solving for E. A derivation 
of these equations and boundary conditions can be found in [10, 11, 15]. 

2.2. Function spaces. In this subsection we introduce some function spaces 
and their associated norms, along with some related notation; see [1, 4, 7, 8]. 
We define the Sobolev spaces Hm(Q) for nonnegative integers m by 

Hm(Q) := {w E L2 () :D7w EL2(Q) VY: lYI < m}, 

where y = (yI, Y2, y3) is a multi-index and IYI = YI + Y2 + Y3 * Clearly, H0(4) = 

L2 (Q). The norm associated with Hm(Q) that we will use is 
IIWIIm A 2'\ 1/2 

II Im: I DI J 

For vector-valued functions we define the Sobolev space Hm (Q) by 

Hm(Q) := {w: wi E Hm(Q), i = 1, 2, 3}, 

where w = (wl, W2, W3), and its associated norm 11 E ,m by 

3 1/2 
llim = (? iIwiim)l/ 

Three particular subspaces of H' (Q) that satisfy specific boundary conditions 
are needed; they are 

Ho(Q) :{w E H1 (Q) :wl0 = 0}, 

H1(Q) :{w E H'(Q): (w x n)l0, = 0}, 

H1(Q) :{w E H' (Q): (w * n)lI0Q = 0}. 



526 M. D. GUNZBURGER, A. J. MEIR, AND J. S. PETERSON 

For w E Ho(Q) H,(Q), or H (Q), we will use the norm 

22 1/2 
llwllI = (Ilwllo + llVwllo) 

We will also make use of the product spaces 

(Q) :=H1(Q) x H (Q) 

7/O' (QH) =H(Q) x Hn(Q) 

W/0',(Q) =HI(Q) x H' (Q), 

all of which we will equip with the usual graph norm; i.e., if (w, 1) E 7(Q), 
or (Q) then 

11(W, 0)110- := (Ilwlll2 1Iq>l) 

Next, we define 

Z(Q) := {wE Ho(Q) V w= O}, 

which is a subspace of (weakly) divergence-free functions, and the subspace of 
L2 (Q), 

Lo(Q):= {qEL 2():fqdx=O}, 
2 

which consists of L 2() functions with zero mean over Q; the subspaces have 
norms inherited from their parent spaces. The only Sobolev space that we will 
need with a negative integer is H 1 (a), which is defined as the dual of Ho(Q). 
The norm of a function in H1 (n) is given by 

l fI l _1 := sup (f| w)| 

WOO0 

Here, (, *)Q denotes the duality pairing between the function space Ho(Q) and 
its dual. In general, (, *)Q denotes the duality pairing between a function space 
V(Q) defined on the domain Q and its dual (V(Q))*, and (., .)a, denotes 
the duality pairing between a function space W(On) defined on the boundary 
aO and its dual (W(On))*. The spaces V(Q) and W(On) will be different 
function spaces depending on the specific situation. 

Certain trace spaces will also be needed. In particular, 

Hl/2(On) :Wlon: W E H (Q)}, 

H1/2 (an) = { :{Wi EIH 1I2 (w) 
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which are equipped with the norms 

1Iq11 2,0 := inf llw 111 / WEHI(aI) 
wIl,=q 

1111/2,,,, = inlf llwll 
wEH (a) 

W180=g 

IIkII_1/2,0Q := sup (k ' g),9 a 
gEH 1/2 (,Q) 11gl111/2,,9fl 

goo 

respectively. We refer the reader to [1] for further details on these spaces and 
their norms. 

We will make use of the well-known space L4(Q), equipped with the norm 
11 IIL 4 We also make frequent use of the following formulas of vector analysis: 

(a x b) x c d = (a x b) * (c x d) = -(a x b) (d x c) 

and 
f(V x I) Tdx=- ( x n)WTdx+f | (V x P)dx. 

2.3. Elimination of the electric field and current density. For the present, we 
consider the equations with the first set of boundary conditions, namely (2.8)- 
(2.10). We require the data to have the following regularity and compatibility 
properties: 

(2.13) fe H 1(Q), 

(2.14) ge H1/2 (Q) withj g .ndx=0, 

(2.15) q E H112(aQ) withj qdx =0, 

(2.16) kEH-1/2(aOQ) withk*n=0, (k, 1)8Q=0 

and (k, V)0Qn = 0 V E H 2(Q). 

In (2.14) and (2.15) the compatibility conditions on the data, i.e., f g. n dx = 

0, f0Qqdx = 0, are a result of the fact that V . u = 0 and V .B=0 in Q; 
the compatibility conditions of (2.16), (k, 1),g = 0, (k, Vq)0Q = 0 for all 

E H 2(), result from the equation V x E = 0 in Q and the identities 

JV x Edx= -((E x n)I0,, 1),, 

and 
JV x E* Vq$dx = -((E x n)I0,, Vq)0Q, 

and kn = 0 from the fact that (E x n) *n = 0. 
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With the aid of (2.3) and (2.5) we may replace the boundary condition (2.10) 
by 

x B) x n]l9 - [(u x B) x n]I9, = k. 
m 

This implies that Ohm's law, (2.3), as well as (2.5), holds up to the boundary. 
The substitution of (2.5) into (2.1) and (2.3) yields 

-MAu+ iuVu+ VP - j-(V x B)x B = f 

and 
V x B - RmE - Rm(u x B) = 0. 

Finally, E may be eliminated from this last equation through the use of (2.7). 
In summary, the system of equations that we consider is given by the follow- 

ing: 

(2.17) Au +/u\u+ -uVu+ VP-- R-(V x B) x B =f, 
m 

(2.18) V.u = 0, 

(2.19) 1 V x (V x B) - V x (u x B) = 0, 
Rm 

(2.20) V B = 0, 

along with the boundary conditions 

(2.21) ulIQ = g with jg ndx = 0, 

(2.22) (B.n)1,9a=q with f qdx =0, 

1 
W-[(V7 x B) x n]1I9 - [(u x B) x n]19 = k 

(2.23) Rm with ken = 0, (k, l) = 0 
2 

and (k, Vb)0Q = 0 Vq E H (Q). 

3. WEAK FORMULATION 

In this section we present a new problem and show that its solutions are 
weak solutions of the system of differential equations and boundary conditions 
(2.17)-(2.23), i.e., it is a weak formulation of the original problem. Before in- 
troducing the new problem, we define the following forms. For (u, B), (v, I), 

(w, ZI) E 7(Q) and X E L 2(n) let 

ao((u , B), (v, )) = / Vu: Vv + R2 [(V x B). (V x IF) 
M 2~R 
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a, ((u, B), (v , I), (w, 0)) 

(3.2) N= k Vv* wdx 

-I +[(V x 'I) x B*w-(V x x) xBv]dx, 
Q m 

(3.3) b((v,F), X) :=-/ XV.vdx, 

(3.4) F((v, IF)) := (f, v), + R (kg Pion)a,n 
m 

where: denotes the scalar product from R 
3x3 

x R3x3 -+ R, denotes the scalar 
product on R3, and x denotes the vector product on R3. Furthermore, let 

(35) a((u, B), (v, 'I), (w, F)) := a0((v, 'IF), (w, Ia)) 

(~~~~~~~~~~~~ a, +((u , B) , (v , ), (w , 4b)). 

Consider the following problem: find 

(3.6) (u, B) E {w E H (Q) :wl.=g} x {f E H( () :(I.n)l,0=q} 

andp E L 20 

such that 

(3.7) a ((u , B) , (u , B) , (v , T)) + b ((v , T), p) = F ((v , T?)) V(v, T) Ei 7/On(Q 

and 

(3.8) b((u, B), X) = O VX E Lo(). 

We now proceed to show that a solution of the problem (3.6)-(3.8) also 
satisfies (2.17)-(2.20) in a weak sense and the boundary conditions (2.21)- 
(2.23). 

Proposition 3.1. If there exists a ((u, B), p) satisfying the problem (3.6)-(3.8), 
then it is also a weak solution of the original system given by (2.17)-(2.20) and 
boundary conditions (2.2l)-(2.23). 

The proof of this proposition requires the following result. 

Lemma 3.2. If B E Hl (Q), then there exists a scalar b E H 2() such that 
(3.9) V * Vb = V * B and (Vb * n)lj0 =O. 

Moreover, Vb E H' (Q). 
Proof. Since B E H1(Q), we have that V . B E L2(Q). Then the result follows 
easily, since it is known (see [7] or [8]) that the problem (3.9) has a solution 
b E H 2() provided Q is bounded and of class C ', or Q is a bounded 
convex polyhedron, Q c R3. Clearly, Vb E Hn(Q). 0 
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Proof of Proposition 3.1. Taking T = 0 in (3.7), we have 

{1VU: VV+ !u.Vu.v-pV.v-R-(V xB)xB.v dx 
NmJ 

=(f , V)Q, VV E H' (Q); 

or, upon integrating by parts, we obtain 

1(AU v)Q + 1 u * Vu * -R (VxB)xB.v dx 
(3.10) M-juv ~ .V.~~V 

+ (VP,~ V)Q = (f,~ V)Q Vv E HO (Q), 

so that (2.17) is satisfied in a weak sense, i.e., in H 1(Q). Recall that (3.8) 
states that 

(3.11) JV.uxdx=O VXEL 2(), 

and since 

JV.udx= j (u.n)I0,,dx= j gndx= 0, 

(2.18) certainly holds in a weak sense. Setting v = 0 in (3.7), we obtain 

| -{ 2-[(V xB) *(V xP) +(V tB)(V * )]+ R-(Vx ) xB *u} dx 

Rn 

Now, since there exists b E H 2(j) with Vb E H' (Q) and V.- Vb = V .B (see 
(3.9)), we set 'P = Vb in (3.12) and obtain 

f(V * B)(V * Vb) dx = f(V * B)(V * B) dx = Rm(k, VbIan)a0 . 

By the compatibility condition on k given in (2.16), we then have 

f(V*B)(V*B) dx= 0O 

so that V * B = 0 almost everywhere in Q; hence, 

(3.13) f(V.B)cdx=O VKEL 2(Q), 

and (2.20) is satisfied in a weak sense. The incorporation of (3.13) into (3.12) 
yields 

(1 {+(VxB).(Vx )+(VxP)xB.u} dx 
(3.14) Q Rm 

= (k STjI,n),, V E Hn (Q); 
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or, upon integrating by parts and restricting T to belong to Ho(Q), we obtain 

(3.15) R (V x (V x B), )n-|V x(uxB).'Pdx=O V'EHo(Q). 
m 

Thus, 

(3.16) R Vx(VxB)-Vx(uxB)=0 inH (a), 
Rm 

i.e., (2.19) is satisfied in a weak sense. In fact, (3.16) also holds in L2 (Q), so 
that from (3.14) it also follows that 

| {R- (VxB).(VxaP)+(VxT)xB.u dx 

I| {R Vx (V x B) .-V x (ux B) . dx 
Q m 

= (k, 'lQ),. VFE EH (Q) 

and therefore 

(3.17) R +[(V x B) x n]lj8 - [(u x B) x n]lj8, q Iii) 

= (k, TI V'P E H (Q). 

Thus, equation (2.23) holds in H 1/2(O( ). 
The boundary conditions (2.21) and (2.22) are obviously satisfied because 

the solution satisfies (3.6). Also, we have shown that if ((u, B), p) satisfy 
(3.7)-(3.8), then they satisfy the system of equations (3.10), (3.11), (3.13), and 
(3.15). By definition, this means that they are weak solutions of (2.17)-(2.20). 
The boundary condition (2.23) is satisfied in a weak sense because of equation 
(3.17) and the compatibility conditions. Thus, Proposition 3.1 is verified. 0 

It can also be shown that weak solutions of (2.17)-(2.20) with boundary con- 
ditions (2.21)-(2.23) are weak solutions of (2.1)-(2.7) with boundary conditions 
(2.8)-(2.10). 

4. EXISTENCE AND UNIQUENESS RESULTS 

4.1. Reduction to homogeneous boundary conditions. We can split the velocity 
into the sum of a function that satisfies the given inhomogeneous boundary 
conditions and a function that satisfies homogeneous boundary conditions. Let 
u = u 0 + u, where u E Ho() and 

(4.1) u0 E H1 (Q), V *u0 = 0, u0I8 = g, IIuOII1 < Y IIgI1/20,8 
for some positive constant y1 < o0. The existence of such a uo can be demon- 
strated as follows. First, given g E H1/2(OQ), there exists u1 E H1(Q) such 
that 

Ul l|Q = g and Ilul Iu1 < Cllgll 1/2,20 
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Let u2 satisfy 

V*u2=-V.ul withu2ja= 0. 

Since V * u E L 2(Q), it is well known [7] that there exists such a u E H 
that also satisfies 

lU2111 < CIIV Ul I0 < CIIUI III 

Then, u0 = u1 + u2 is easily seen to satisfy (4.1). Likewise, for the magnetic 0 1 

field, let B=B+B0, where BEH (Q) and 

(4.2) B0eH (Q) VB0=0, VxB0=0, 
(Bo' n) IQ = q, 1IBo0111 < y2IIq1,12,9aQ 

for some positive constant Y2 < 00. If Q is bounded and of class C1 1, we 
can find a Bo satisfying (4.2) by solving the problem 

-Ab = 0 on 2, 
(Vb * n) j09 = q on a O. 

In this case, b E H 2() and 11b112 < Cllqllll2,,, (see [7]). With B0= Vb, 
(4.2) is clearly satisfied. If Q is a convex polyhedron, q will have to satisfy 
an additional compatibility condition in order to ensure the existence of a B0 
satisfying (4.2). One such condition is that qn e H" 2( 4); this condition will 
be satisfied if q vanishes along edges and at the vertices of the polyhedron. 
Assume this condition holds. Note that 

j qn * ndx- qdx = 0, 

where the first equality follows from the fact that n is a unit vector, and the sec- 
ond equality holds because of the compatibility condition (2.15) on q. Hence, 
there exists B E H1 (Q) with V * B1 = 0, BjI0Q = qn, and 

IBI B I,l < Cllq l ll2,OQ' 

Note that 

(B, * n)l19 = (qn * n)l19 = q, 

since n is a unit vector. Now since V. (V x B1) = 0, it is also known (see [7]) 
that there exists a vector potential B2 E H' (Q) such that 

VxB2=VxBl, V-B2=0, (B2.n)I0,=O, 

11B2111 < C|IV x Bljlo ' CIIB1II, 

With Bo = B1 - B2, again (4.2) is clearly satisfied. 
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We now rewrite (3.7) and (3.8) using the above splittings for u and B. We 
obtain 

a((i + u0, B + B0), (i + uo, B+ Bo)0) (v, 
IF)) 

+ b((v, ), p) 

= F(v, I) V(v, I) E 7O,(n) 

and 

b((ui+uo,B+Bo),X)=O VXEL (Q); 

or equivalently, 

a((u', B),~ (u, B) , (v , IF)) + a, ((u, B),~ (uo , BO) , (v , I)) 

(4.3) + a, ((uo, BO), (u, B), (v, )) + b((v, IF), p) 
= F((v, IF)) - a((uo, BO), (uo, BO), (v, 'I)) V(v, 'I) E 7on(Q) 

and 

(4.4) b((u, B), X) = -b((uo, BO), X) = 0 VX E Lo(Q) 

where the last equality follows from the fact that V - uo = 0. 

4.2. Continuity and coercivity properties. We now proceed to verify certain prop- 
erties of the forms which will be needed to prove the existence and uniqueness 
results. 

Lemma 4.1. The bilinearforms ao(., *) and b(., .), the trilinearform al (., *, 
and the linear functional F(.) are continuous on the indicated spaces. 

Proof. The results follow from the following inequalities: 

lao((u, B) , (v, IP))j < kjivu: vvl dx + 4 I(V x B) * (V x )I dx 

+ 2|j(V .B)(V )ldx 

(4.5) R (4. 5lull llvIl + B2 I 1B 1 1 l 1 + IIBII 1 I'Pl 

RmR 
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which holds for all (u, B), (v, ) E W(Q); 

lal((u, B), (v, I), (w, V))J 

<k fIu.Vv.wl dx 

+ R fI{I(V x ') . (B x w)I + (V x I) . (B x v)l} dx 

<2'3~~~~~/ 
mQ 

which<hl o alUl(4u,VB) IJW( 4 +) R(w 1)l I JIB (L 4 lWL4 + ||;PIIB IIL411;IIL4) 

< Y311UII lIIIVII lIIIWII l 
(4.6)N 

(4.7)+ib((,JBJJj, x)i ?Jf l1v v IIBII, dx + V iiiivi?ll] 

? Y3 
lull Illlvll lllwll I+l '2-y3JIBIJIII(v, IY)IJ-11(w, 4))lw- 

which holds for all (v,WT) E (Q) and X EL2(Q); and 

iF(v, ')i ? i(f, V)Q| + R-i(k, Wi0Q)0Qi 

N R~~~m 

(4.8) ? l _ IIfIK1 Ilvi + R-IIkIK1 _ 1 2, anII I112 llW2, 2a 

<max -{ 11 Rm B _[kll-/21 AWI}2+11(V~, 11 
ma {III. +l2 ~I11(u 

which holds for all (v, ') e Ho(V ) x H1 (). In the above formulas, y3 = 2 
where y.4 is the imbedding constant of H1 (Q) c L4(Q) (here denotes 
continuous imbedding) and y,4 is a positive number. We have also made use 
of the following inequalities, which hold for u, v e L2a 

Iu vi ? iiUiiR3iiVliR3, 

liii x viiR3 ? iiUiiR3iiVii3, 

IV x UllR3 ? fVlliUR3x3, 
iv.*ui ? dlVIIuIIR3x3, 
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and, for S E R13x3 

IISUIIR23 < IISIIR 3 x3IIUIIR23 

In the following two lemmas, we will show that ao(.,.) is coercive, that 
b(., ) satisfies an inf-sup condition, and that under certain restrictions al (., ., .) 
is antisymmetric in its last two arguments. These conditions will eventually 
enable us to show the existence and uniqueness of a solution to our problem 
provided the data satisfies some additional constraints. 

Lemma 4.2. The bilinear form ao(., *) is coercive on ton(Q), and the bilinear 
form b(., ) satisfies the inf-sup condition 

(4.9) inf sup b((u,B), X)> 
XEL0) (f, B)E0n(O) Ii (u, B)I l,llx 

Proof. Since (fi, B) E t"on(Q), we have that 

ao((u, B) , (u, B)) 

f{? 2 VU: VUi + i [(VxB).(VxB)+(V.B)(V.B)]} dx 

(4.10) = 12+ (jV xB2 + liv. 112BII0) 

Rm 

where k1 is the constant in the inequality 

lVl0 > I llwll2 I 0o( 

which follows from Poincare's inequality; see [7] for details. Also, k2 is the 
constant in the inequality 

liV x wIl2 + ,V. wII1 > k2IIwII2 Vw E H (Q). 
This is a result of the imbedding H' (Q) -+ H1(Q) and of the following in- 

equality, which holds for domains of the type being considered here (see [7]): 

llwjlo < C(jjV X Wlo + JIV * wiho) Vw E HnQ 
Thus, the coercivity of the form ao(., *) on the indicated spaces is evident. 

Next, there exists ,B > 0 such that 

sup 
> flllXllo bx 

E 
Lo(Q), 

IImE N (u, B)IIW 

since, obviously, 

s 1- b((>,B),X) sup b((i'), > fllixilo VX E L(), 
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where the last inequality is a standard result from Navier-Stokes theory; see [7]. 
Dividing by lix lb and taking the infimum over X E L2(I) then yields (4.9). 0 

Lemma 4.3. Let (u, B), (v, 9i), (w, b) E t4) with V* u = 0 and at least 
one of u, v, w E H'(Q). Then the trilinear form a, (., *, *) is antisymmetric 
with respect to its last two arguments; i.e., 

(4.11) a, ((u , B) , (v , I) , (w , 0)) = -a, ((u , B), (w , 0), (v , T)). 
Proof. Recall that 

a, ((u, B) , (v, I), (w, 0)) 

= {UVV W-R-[(VxP) xB.w-(Vx )x B.v] dx 

so it is obvious that 

( ) {-+[(VxP)xB.w-(Vx ()xB.v]} dx 
'4.12' 

= Jf {-R [(V XCI) xB*v-(V x'9) xB*w] dx. 

Using the divergence theorem, we conclude that 

f(u * Vv * w + u * Vw * v + (v * w)V * u) dx = f(v * w)(u * n) dx, 

so that 

(4.13) Ik u.Vv.wdx= -I u.Vw.vdx, 

whenever the hypotheses are satisfied. The combination of (4.12) and (4.13) 
yields (4.1 1). Note that (4.1 1) implies that 

(4.14) a,((u, B), (v, ), (v, IP)) = O. 0 

4.3. Existence and uniqueness results. Now let 

a'((u , B) , (v , I), (w , 0>)) 
:= a((u, B), (v, 'I), (w, 0I)) + a,((v, 'IP), (uo, BO) (w, b)) 

(4.15) + a, ((uo , BO) , (v , IF) , (w , b)) 

+ao((v, 'IF), (wu, B0)) + a,((u, B) ,wv) , I))) (w ,Bw, ()) 
+ a, ((v' , I) (po 5BO) , (w, . ()) + a, ((uo BO) 5 (v, I), (w, . )) 

and 

(4.16) F((v, 'I)) F((v, IF)) - a((uo, BO), (uo, Bo), (v, 'I)), 

where uo and Bo are as above, i.e., as in (4.1) and (4.2). We restate the 
reduced problem (4.3) and (4.4) in the following form: find (ui, B) E Wo& 
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and p E L2(a) such that 

(4.17) a((ui, B), (u, B), (v, 'P)) + b((v, P), p) 

= F((v, )) V(v, 'I) E '/On(a) 

and 

(4.18) b((ui,B),X)=O VXELo(a). 

For the existence of a solution to our problem given by (4.17) and (4.18), we 
must show that the linear functional F(.) is continuous on '/on()I that the 
form a(, *,*) is continuous on '>on(a) x '>on(a) x '>on(a), and that the form 

b(., ) is continuous on >on(Q x Lo(a) and satisfies the inf-sup condition. In 

addition, we also will have to show that the space Z(Q) x HI (a) is separable 
and that the form a(., *, *) satisfies certain coercivity and weak continuity re- 
quirements that will be made precise. Continuity of a(., *, *) follows trivially 
from the continuity of the forms ao(, *) and al (, *, *); the continuity of F(.) 
follows from the continuity of F(.), ao(., *), and a1 (., *, *) (see (4.5), (4.6), 
and (4.8)); the continuity of the form b(., *) follows from (4.7); in addition, 
we have shown in Lemma 4.2 that b(., *) satisfies the necessary inf-sup condi- 
tion. Clearly, the space Z(Q) x HI (a) is separable, since it is a subspace of 

Ho(a) x H1 (a). We now must show that, under certain conditions on the data, 
a *, ) is coercive on (Z(Q) x H I(Q)) x (Z(a) x H' (Q)) x (Z(a) x H' (Q)) . 

Lemma 4.4. There exists a constant a > 0 such that whenever 
I 

~ 1 mm Nk k2 
(4.19) < y {~ mi 1 R 2 

I ~~m 

then 

^ ^ ^ ~~~2 ^0 (4.20) ((i, B), (ui, B), (Ui, B)) > aII(i, B)IIr V(u, B) E Z(Q) xZHn(Q 

Proof. Through the use of (3.2), (4.14), and (4.15), one easily finds that 

a'((u , B),~ (u, B), (U, B)) - ao ((u, B), (u, B)) 

>-la (u, B), (uo Bo) (U, B))l 

= It{yu uo -R (V xB0) xB u} dx 

+f {1Rm-(VxB) xBuo }dx 

which certainly holds for all (ui, B) E Z(Q) x Hn(a). From (4.2) we have that 
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V x Bo = 0. By substituting (4.10) into the above expression, we find that 

a'((u , B),~ (u, B),~ (u, B)) 

>k, lI2+ k2 I2B z2 
Rm 

-N f|u*Vu0*udx|-k J| (VxB)xB.uo dx 

? (M-N I 11111d + - Rm - jUQR 11)B1 

where we have used the bounds from (4.6) and the bound for 11u011 1 from (4.1). 
Clearly, (4.19) then implies that (4.20) is valid with 

(4.21) e 1= min{iL2I-?N 112 k2 _2 2 ugh ', . 

> 
m j U01I I 

R Iuoilm jI 

It is interesting to note that the restriction (4.19) on the data g for the 
velocity can be removed for two-dimensional problems. Indeed, the result of 
Lemma 4.4 is valid in R 2, for any data g. Since here we are interested in 
three-dimensional problems, we do not consider the two-dimensional case any 
further. 

The last ingredient needed to prove the existence of a solution to (4.17)- 
(4.18) is the following lemma. 

Lemma 4.5. The map 

(u, B) E Z(Q) x H l(Q) a ((, B), (u, B), (v, IF)) 

is weakly sequentially continuous on Z(Q) x H I(Q); i.e., 

w-lim(fi, B)m = (ui, B) in Z(Q) x Hn () 

implies 

lim 'a((u , B) m s (u S B) m (v , 

a '((u, B),i(u, B), (v, 'P)) V(v, ) E Z(Q) x Hn(Q). 
(Here w-lim denotes the weak limit; see [7].) 
Proof. If (u, B)m (u, B) in Z(Q) x H1 (Q) (here denotes weak con- 
vergence), then it follows that um u in Z(Q), that Bm Bin H1(Q), 
and that {'um} and {Bm} are bounded in Z(Q) and Hn(l) respectively. 
Since Hl(Q) L4(Q) (here r-+ -) denotes compact imbedding), we have 
that um -iu and Bm --+ B in L4(Q) (here -* denotes strong convergence), 
and also that Dyfum Dyuf and DYBm DYB in L2(Q) for all IYI < 1. 
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Therefore, 

a((U, B)ma (U(, B)m' (v , )) - a((U , B) , (U , B) , (V ,P 

Ja((u , B)m, (U B)m (v, IP))-a((ui, B), (Ui,B), (v,P)) 

+a 1(U B)m, (UO BO) ,(V ,)) -a1 (U 'B) ,(UO BO) ,(V , )) 

+ a1((uo BO) , (Ui, B)m, (v, IF)) - a1((uo, BO) , (U, B) , (v, ))I 

=laO(('u B) m (V , I)) - aO ((U, B) , (V, I)) 

+a1((i, B)m- (U, B)m, (V, B))-a ), (V, ')))) 

+ 1(UB)m, (UO, BO) , (V , I)) 
- 

a,( (U B) , (UO, BO) , (V , I)) 

+ al((uo BO),~ (U, B-)m (V, T)) - al((uo BO),~ (U,~ B) , (V, T))l 

= laO( u B) -(U ,B) ,(V ,3) + a1(('U ,B)m-('U ,B),('U ,B)m, (V , )) 

+a1((u, B), (U, B)m - (Ui, B), (v, IF)) 

+a 1(u B)m -(U, B), (UO BO), (V, )) 

+al((uo BO)u('umB)m-('UmB)u(vvI))I 

2 f| (Vm-VUi): Vv dx + R2 
f(V X Bm-V X B) * (V x P)dx 

m 

+ R2 j(V *Bm-V *B)(V *?)dx + N IIm - IIL4 IUmIIlIIVIIL4 
m 

+ R[JIIBmIIJIIBm-BIIL4IIVIIL4 + Il'PlIIiIBm - BIIj 41IUmIIL4] 

+k f |iiu*(Vum-Vu) *vdx + f(V x Bm-V x B) * (B x v)dx 

1R 11Il IIllBIIL4II'm UIIL4 + NiUm - U'IL4IIU0JIjIIVIIL4 
RmN 

+ [IIBO I JIBIBm - BIIL4IIVIIL4 + II?II I IIBm -BIIL4IIUOIIL4] 

m +~ 
J 
|UO (VUm-VU) Vd 

+ I |(V xBm-V xB)* B x v) dx 

+ I'PII IIBOIIL4 IIIm - UIIL4 
m 

0 asm - x. Z 

Lemmas 4.1-4.4 lead to the following existence theorem. 

Theorem 4.6. Given f, q, and k satisfying (2.13), (2.15), and (2.16), respec- 
tively, and g satisfying (2.14) and (4.19), there exists at least one ((u, B), p) 
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satisfying (3.6)-(3.8). Moreover, 

II(u, B)II- < a +llfll IRllkllK/2,a 2 + Aj. llqii2 , 

(4.22) + 2 'i(Y3 + VYRm) IIlIIi2,a] 

+ Y2 _1 + II ) 1/2,an + R ( 1 + 2) g1 

and 

IIPIIO < a [maX{ 12 f 52 } Il(u 
B)lIIgIt 

(4.23) +V'y2'3max{kY N }II(u 1B)II 

+11f11.1 + 1 + YI 1+ aM] 2 2 

Proof. The existence of a ((ui, B), p) e Z(Q2) x H1 () x Lo(Q) satisfying (4.17) 
and (4.18) follows easily from Lemmas 4.1-4.5; see [7]. Moreover, we also have 

II(u1 B)IIax ? sup 11((u P)(], ) I 

Then, by (4.16), we have that 

II(uB)IIA<a [( )SUP I(||(v, lr))I 

+ sup l(u o,(o o,(,) 

Through the use of (3.5) to write a(, *, *) in terms of a0(., .) and a1 (., *,) 
(4.2) and the continuity conditions (4.5), (4.6), and (4.8), one easily finds from 
(4.24) that 

+NIIuII1 + Wm _ u1 21B01l, 

But u = u + u0 and B = B + B, so that the triangle inequality and (4.1), (4.2), 
i.e. Thue111 ? YiIIegI o1f2, aQ and 1B)11 ? Y2(1< q 1 2, yields (4.22). Finally, from 
(3.5) and (3.7) we have 

b((v, u), p) = - a((u, B), (v, <)) - a((u, B), (u, B), (v, )) 
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Thus, given (u, B) E 7(Q), it follows from (4.9) that there exists a unique 
p E L2(Q) satisfying (3.7). Moreover, using (4.5), (4.6), (4.8), and (4.9), we 
easily arrive at (4.23). o 

It should be noted that there is no restriction on the size of q or k, the data 
for (B * n)lI, and (E x n)lI, on the boundary, respectively. Thus, if g = 0, 
i.e., the boundary aQ2 is a solid wall and a no-slip condition is satisfied at the 
wall, we have existence regardless of the size of q or k. 

For the uniqueness of the solution to the problem (3.6)-(3.8), we have the 
following theorem. 

Theorem 4.7. There exists at most one solution ((u, B), p) E ?f(Kl) x L 2(Q) to 
the problem (3.6)-(3.8) such that 

(4.25) 1I(u, B)II 1 miMk R2 f 2 max N Rm} 
Moreover, if the data f, g, q, and k satisfy (4.19), the hypotheses of Theorem 
4.6, and 

a [llfll_l + - -lkil l/2an 
+ 

l'R IIqII/2,8f 

+Y1 Y3 (YI + ',Y:2 1 ll2/2 an] 

(4.26) + Y2 + 
R2 

+ j 4qj/2,,m+) 1 aMI2111j 
k2) k~112 + (i + 2) 

< +Emin { 2'R /max 
- 

N R 

then the problem (3.6)-(3.8) has exactly one solution ((u, B), p) E ?f(91) x 

Proof. Suppose ((u, B), p) , ((w, c) s) E ?f(91) xL2(1) are two, nonidentical 
solutions of (3.6)-(3.8). Then (u - w, B - cI) E ton(Q) . In fact, from (3.8), 

b((u - w, B - 0), X) = b((u, B), X) - b((w, b), X) = O VX E Lo(Q), 

so that (u - w, B - cb) E Z(Q1) x H (Q2) . Since both candidate solutions satisfy 
(3.7), we have 

a((u, B), (u, B), (v, I)) + b((v, I), p) = F((v, I)) V(V, ') E t/o'n(Ql) 
and 

a((w, ), (w, cI), (v, ')) + b((v, '), s) = F((v, ')) V(v, ') E ton(Q) 
Upon taking the difference of the last two equations and then setting (v, ) = 

(u - w, B - cb), we have, using (3.5), (4.11), and the definition of Z(Q1), that 

ao((u-w, B-cb), (u-w, B-cb)) 

+a,((u-w, B-cb), (u, B), (u-w, B-cb)) = 0. 
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Then (4.6) and (4.10) yield 
k ll-i2 k 22 0B112- IIuII I IIu-wl I Iu- w lI+ -2 JIN W11 

- R3[IIBII Ilu-wll I JIlB - DI 1 + Ilull 1 JlB- < 0 
Rm 

or 

7'llul, 
- 7' 

.11BI2 

M- NIII v/'-R 
(4.27) m l 

+ - _ _ _ 
I 

- _ _ _ 

From (4.25) we have 

(4.28) NIlull + /4RmIIBII? < \/23 max {1 ' } II(u, B)II. < ki 

and 

(4.29) 2ii + 3Rm 1IBI ? -V3max{m N ' R} II(u, B)1 <k2 

The combination of (4.27)-(4.29) easily yields IIu-w1-1 = 0 and IIB-b1 1 = 0, 
contradicting the assumptions that u # w and B # c1). Once (u, B) is uniquely 
determined, the uniqueness of p E L 2(a) follows; see Theorem 4.6. Now, if 
(4.19) is satisfied, a given by (4.21) is positive and by Theorem 4.6, there exists 
a ((u, B), p) satisfying (4.22). Then the latter and (4.26) imply that (4.25) is 
true so that this solution is unique. 0 

We remark that in order for condition (4.26) to hold, all the data f, g, q, 
and k must be sufficiently small. 

5. ALTERNATIVE BOUNDARY CONDITIONS 

We now consider the boundary conditions (2.8), (2.11), and (2.12). The 
governing system is now given by (2.17)-(2.21) and 

(5.1) (B x n)lI, = q with q * n = 0, 

where again we require the data to have the following regularity: f, g should 
satisfy (2.13) and (2.14), respectively, and q should satisfy q E H1/2(aa) . The 
compatibility condition in (5.1), i.e., q * n = 0, results from the fact that (ob- 
viously) (B x n)1I,, and therefore q, lies in the tangent plane to the boundary 
aQ . 

Let (u, B), (v, ?), (w, b) E 7o,(fi) and X E Lo(Q). Then we define the 
forms ao((u, B), (v, IF)), aI((u, B), (v, IF), (w, Cb)), and b((v, '), X) as be- 
fore (see (3.1)-(3.3)), and we now define F(.) by 
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Consider the following problem: find 

(5.3) (u, B)E f{w E H (Q): wla, = g} x {b EH (Q): c x nla, = q} 

andp eLO( 
such that 

(5.4) a ((u , B) , (U, B), (V, I)) + b ((v, T), p) = F ((v, T)) V(V, T) E 0/ol,(i2) 
and 

(S.S) ~~~b((u, B), X) = O VX E LO2(Q2) 

In order to show that solutions of (5.3)-(5.5) are weak solutions of (2.17)-(2.2 1) 
and (5.1), i.e., that (5.3)-(5.5) is a weak formulation of (2.17)-(2.21) and (5.1), 
we proceed as in Proposition 3.1, with the following lemma replacing Lemma 
3.2. 

Lemma 5.1. If B E H1 (Q), there exists a scalar b E H2(Q) such that 

(5.6) V*Vb=V*B and blI,=O. 

Moreover, Vb E H'(Q). 

Proof. Since B E H1 (Q), we have that V *B E L2(Q) . The result follows easily, 
since it is known that (5.6) has a solution b E H2(Q) provided a is bounded 
and of class C1' 1, or Q is a bounded convex polyhedron, Q c R3 (see [7] 
or [8]). Now since blI = 0, the tangential derivative of b on the boundary 
vanishes, i.e., (Vb x n)Ia = 0 (see [7]), and thus we have that Vb E H (Q). 0 

In order to derive existence and uniqueness results, we again proceed as in ?4, 
beginning with the splitting u = iu + uo, where u0 satisfies (4.1) and u E H'(n) . 
We also let BO satisfy 

(5.7) Bo E H (), V * Bo 0= V x Bo , 
(BO x n)l, = q, 1IBoI11 ? Y2IIqII1/2,8Q 

for some positive constant Y2 < 00 . We then set B = B + BO, so that B E 
Hl(Q). Finding B0 satisfying (5.7) is more problematical than the analogous 
problem for the first set of boundary conditions; i.e., having BO satisfy (4.2). 
In the general case, q must satisfy some additional compatibility conditions. 
Assume that, in addition to (5.1), q satisfies n x q E H1/2(aQ); obviously 
(n x q) * n = 0, and thus 

(n x q) .ndx= 0. 

Hence, there exists a function B1 E H (a) with 

V *B1 = 0 B1IJQ = n x q, JIB1 11 < Clln x qllI/2 , . 

Note that 
(B1 x n)lI, = (n x q) x n =q - (q n)n = q, 
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because of the compatibility condition (5.1) on q, i.e., q n = 0. If in addition, 

(5.8) | q.Vq5 0,dx=O VqEH 2(A), 

we get that [(V x B1) 'n]l0, = 0, so there exists (see [7]) B2 E H (Q) such that 

V x B2= V x B1, V.B2 =0 ? IB2111 < CIIB11II. 

Setting Bo = B1 - B2, (5.7) is clearly satisfied. 
Now the rest of the analyses for the existence and uniqueness continues sim- 

ilarly to the one for the other boundary conditions (see ?4); the major differ- 
ences are replacing the space H1(Q) by H1(Q) and now defining F((v, IF))= 
(f, v)Q - a((uO, Bo), (uo, BO), (v, P)) . Of course, the exact form of the condi- 
tion (4.26) for uniqueness and of the bounds (4.22) and (4.23) will change to 
reflect the different nature of the data for the problem. 

Note that if the boundary is smooth, e.g., C 2, then slightly stronger results 
may be obtained by a vector potential formulation of Bo . 

If the additional condition (5.8) does not hold, in general there does not exist 
a Bo with V x Bo = 0 which satisfies the boundary conditions. However, one 
can still carry out the analyses if the data q is "sufficiently small". Indeed, one 
canalwaysfinda BoEH1 (Q) suchthat VBo0=0 in a, (Boxn)19a=q,and 
IIB01 1B < Y21q Ik 1/2,0 Q, where, of course, we require q * n = 0 on aL . Then, if 
q is small, so will V x Bo be small, and again a lemma analogous to Lemma 
4.4 can be proved. The subsequent analyses proceed as in ?4. 

6. APPROXIMATION 

6.1. The approximate problem. We now want to consider approximating solu- 
tions to our problem. In order to keep the exposition simple, we restrict our 
attention to cofvex polyhedral domains. We start by choosing families of finite- 
dimensional spaces Xh(fi) C H1(fi) yh C H(1n) 'and h 2 
parametrized by a parameter h such that 0 < h < 1 . We then define 

h ~~h yh 1j) y h~ (Q2) =xh (Q) n H1 (Q2) Y Q): (Q2) n H' (Q), 

yh(fi) :=yh (f) n H'(fi) 

with corresponding norms induced by the norms on H1 (Q) and Lo(Q). Next, 
we define the product spaces 

W'h(n) =Xh(Q2) X yhpf), 

)n (Q) n Xo Pf) x Yn (a) f 
h (f) = h (f) X yh (a) 

with corresponding norms induced by the norm on W(n) . We also define the 
space 

(K2) E X (a) / XVW dx=OVx E s(). 
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Note that, in general, Z (K2) ? Z(Q). A measure of the "angle" between the 

spaces Z(Q2) and Z (K2) (see [9, 13]) is given by 

e:= sup inf ii -Z z h11l 
zhE h() 

ZEZ(Q) 

lzh 111=1 

Note that 0 < e < 1. A consequence of Z (i) ? Z(Q) is that the form 
a1(,*,*) defined by (3.2) does not satisfy the antisymmetry property (4.11) 
whenever u E Zh (). In order to preserve this useful antisymmetry property 
over the subspaces, we introduce the form (see [6] or [17]) 

a, ((u , B) , (v , IF), (w, 0>)) 

=| f 1 [u.Vv.w-u.Vw.v]dx 

(6.1) f| R [(V x ') x B * w-(V x cI) x B * v] dx 
Qm 

- -[a ((u, B), (v, IP), (w, bD)) - a,((u, B), (w, b), (v, 'P))] 
21 

Using the divergence theorem, it is easily verified that 

(6.2) a,((u, B), (v, E), (w, 0)) = a,((u, B), (v , (w, 

on (Z(Q2) x H1 (2)) x W(Q) x (K2) . In addition, we now have that 

(6.3) a ((u, B), (v, IF), (w, 0)) = -a ((u, B), (w, P), (v, I)) 

on all of I'(K2) x I'(K2) x 7(K2), and in particular, this antisymmetry property 
holds on the finite-dimensional subspaces, e.g., even when u E X (2) . 

We now modify the form a(., *,*) defined in (3.5) into the form a(., *,*) 
defined by 

(6.4) a((u, B), (v, IF), (w, cb)) ao((v, '), (w, 4c)) 
+ al, ((u , B) , (v , I) , (w , 0>)) . 

Owing to (3.8) (respectively, (5.5)) and (6.2), it makes no difference whether 
one uses a(., *, *) or a(., *, *) in (3.7) (respectively, (5.4)). In fact, all of the 
results of ??3-5 remain valid if one uses, throughout those sections, a (' , 
and a(., , *) instead of a,(., , *) and a(., , ). 

Next, we approximate g and q or q by gh and qh or qh, which belong 
to the restriction to the boundary of elements of Xh (), to the restriction to 
the boundary of normal components of Yh(K2), and to the restriction to the 
boundary of tangential components of Yh(K2), respectively. There are various 
ways to choose these approximations to the boundary conditions. For exam- 
ple, they may be chosen to be the interpolants in the boundary spaces of the 
corresponding functions, or they may be chosen to be some projection of the 
given data onto the boundary spaces. For now, we assume that we have avail- 
able approximations g E Xh(n)l,, and q E {(Vh n)1 h E Yh (i)} or 
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qh E {(n x v 
h 

: vh E yh (g)} to g and q or q, respectively. Note that 
for polyhedral domains, g , q h, and qh are piecewise polynomials on the 
boundary whenever the underlying finite element spaces X*h () and Yh (Q) are 
themselves piecewise polynomial spaces. (This is due to the fact that for poly- 
hedral domains the components of the normal to the boundary are piecewise 
constant functions.) 

The discrete problem we consider, for the boundary conditions (2.8)-(2.10), 
is given as follows: find 

(6.5) (uh B ) E {Vh E Xh (): Vh gh} X {qjh E Yh(i) :(oh n)l.q h} 

andp E So() 

such that 

a6((u ,5B ), (Uh Bh) (v ,h )) + b((vh P h)p) 

(6.6) h h((v , Th V(Vh v*h E ph(j2) 

(6.7) b((uh Bh) x h) = 0 VXh ESh(Q) 

where F(.) and b(., *) are defined by (3.4) and (3.3), respectively. 
For the boundary conditions (2.8), (2.11), and (2.12), the approximate prob- 

lem is given as follows: find 
h hh h h h h h h h 

(6.8) (u ,B ) E {v EX (Q):Vh gh=Ig x{h E yh (Q) :(o X n)l) =q h} 

and p E 
h 

such that (6.6) is satisfied for all (vh, Th) E OT (9i) and (6.7) is satisfied, where 
F(.) is now defined by (5.2). 

6.2. Existence and uniqueness results for the approximate problem. Let us con- 
sider the discrete problem given by (6.5)-(6.7) corresponding to the boundary 
conditions (2.8)-(2. 10). The derivation of existence and uniqueness results for 
this problem closely mimics that of ?4 for the continuous problem (3.6)-(3.8). 

We begin by restating, in the present context, Lemmas 4.1 and 4.3, and part 
of Lemma 4.2. 

Lemma 6.1. The bilinearforms ao(,*) and b(, *), the trilinearform i (, 
h (n _h h X and the linear functional F(.) are continuous on W/ (Q)x h (Q), h (Q)x 

Sh (Q) h () X W (Q h (Q and XO(Q) X yh(Q), respectively. Fur- 

thermore, the form ao(,*) is coercive on 0In( On) X (i) and, on 7h(fi) x 

71'h (i) X t- (a), theform al (, *,*) is antisymmetric in its last two arguments, 
i.e., (6.3) is satisfied. 
Proof. The continuity properties are an obvious consequence of Lemma 4.1 
and, for a (,),of (6.1) and Lemma 4.1. Since 711 Qc hthe 
coercivity result for ao(,) is an obvious consequence of Lemma 4.2. The 
antisymmetry property (6.3) is satisfied by construction. o 
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The constants appearing in (4.5)-(4.8) and (4.10) carry over to the present 
setting. 

The inf-sup condition (4.9) for b(., *) is not automatically satisfied over the 
subspaces tn(Q), So (a). This condition turns out, in fact, to be a constraint 

on the finite-dimensional subspaces Xo (a) and So (a) that can be used in 

order to have stable and accurate approximations. Thus, we assume that Xo (a) 

and So (a) have been chosen so that the inf-sup condition is satisfied on the 

finite-dimensional spaces; i.e., that there exists a constant fh > 0 such that 

b((h 
~ h Xh h 

(6.9) inf sup b((uh hB)I X) > 

xESo(fi) (Uh ,Bh)E h(a) II(U , Bh)IIrIIx lbo 

This constraint is exactly the one necessary for the analogous discretization of 
the Navier-Stokes equations to yield meaningful approximations. Thus, a va- 
riety of pairs of finite element spaces that satisfy (6.9) have been devised and 
analyzed; see the discussion and references in [7, 9, 16]. There is no constraint 
on the spaces Y h (K2), so in order to approximate the velocity and pressure, we 
can use the spaces that have been used traditionally for the Navier-Stokes equa- 
tions; to approximate the magnetic field we can use any appropriate subspace of 
H. (K2). When guided by the error estimates derived below, it is convenient and 
efficient to choose Y (Q) = Xh(Q), i.e., the underlying finite element spaces for 
the magnetic and velocity fields are the same. 

Next, we need to define extensions uh 
h 

Xh(Q) and Bh E yh(2) of the 
h h~~~~~~~ 

discrete data gh and qh , respectively. We emphasize at the outset that these 
extensions are used only to derive existence and uniqueness results, and are not 
explicitly needed in order to compute the solution of the approximate problem 
(6.5)-(6.7). We want these extensions to satisfy, on these subspaces, relations 
analogous to (4.1) and (4.2). 

Given g h, we seek uh E Xh () such that u0I0n = gh 

(6.10) f(V.uU)Xh dx=O VX Eh ES() 

and IuhII yhlgl h~ b eontae 
Ill ? ,2,gh 2 an. The existence of such a uo can be demonstrated 

as follows. First, given gh E X c H (0), we can easily find a uh E 

X (Q) such that u1Ij = g and lu1h11 < dIg 1Cl/2 oh . Then, we let u2 E 

Xo(Q) satisfy 

f (V. *Uh)x dx =-f(V. Uh) xh d VXh h 

The existence of such a u h follows from (4.7) and (6.9); moreover, these also 

imply that there exists a U h suchthat hI u h h lo V)Uh h-3 h U2 scta112111 ? (1/fl )I Vu l?(V/f)III, 11 
(v3C/fl)IIgh II,2an. Then uh := u1h +u 2 has the desired properties, including 
(6.10). 
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Ihh To construct an extension Bo, we proceed as follows. Given q h, we find 

Bh E Yh (() that satisfies (B* 
h 

n)189 = q and 

[(V x Bo ). (V x vh) + (V * Bh)(V. 3)]dx = OV ph E Yn(Q). 

It is not difficult to show, using the methods of [5], that such a Bh exists and 

moreover, that 1IB^111 < y2IIq"111120a and 

(6.11) hIBo-Bolj < C inf 11BO II1 
OhEYh(Q) 

(40 n)180=q 

where Bo is defined in (4.2). It can also be shown, again using the methods of 

[5], that if q h is chosen as either the interpolant or the L2-projection of q in 
the restriction of the normal components of Y h((2) to the boundary afl, then 
the right-hand side of (6.1 1) can be made as small as one wishes by choosing h 
sufficiently small. Thus, (4.2) and (6.1 1) imply that j 1V x B 110 and JjV - Bollo 
can be made arbitrarily small as well. 

To summarize, we have constructed extensions uh and Bh of the data gh 
and q , respectively, which satisfy, for any e > 0 and for sufficiently small h, 
(6.10), 

(6.12) uh E X (a), uhI6Q =hg 
h 

1u01 ? yhgh1/2 ,o' 

and 

(6.13) Bo E Yh (Q) (Bh *n)I0, = q 
h 

JIBh11 < y? lqhll 

|IV x B|I <10?e, and 1V*B hIo <e. 

It should be noted that the above construction processes also yield that y h and 

yh may be bounded from above uniformly in h whenever f/h can be bounded 

from below uniformly in h. Indeed, we may essentially take y h = yh and 
h 

Y2 = Y2 

Having constructed the extensions uh and B0, we proceed as in ?4. We let 
h h -h h h -h h h-h h 

u = uO + u and B =Bo + B , so that ui E XN(Q) and B E Y,(Q). In 
view of (6.12) and (6.13), this leads us to the following discrete problem with 

homogeneous boundary conditions: find (uh Bh) E On (Q) and ph e So (Q) 
such that 

^ ((Uh B*) 
(,'P 

) 
V(V h 

Fh ((v, T V(v , e E On 

and 
-h , Bh h h h b((u ,B )~ x )0 VX ES n 
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where 

F.((v > IF )):= Ff((v, WI)) - 
a-((u,' > Bh) (uo B;) , (v IFY ) 

and 

a. ((u B^ (V' +)(h&,:a((u , B ) (v, ) w k) 

+ -,(( IF (u. B0), (w Ohm)) 
ft f h ftht f 

+ 
l;(KU,. NO 31 (IV '), (* 41 D.m! 

We are now in a position to state results for the discrete problem analogous 
to those found in Lemmas 4.4-4.5 for the continuous problem. 

Lemma 6.2. For sufficiently small h, there exists a constant a. > 0 such that 
whenever 

(6.14) g< nun f N I2 

then 

a. ((U ,Bu),( yB),(u ,B)) 

Furthermore, the map 

uw* ,)(Q BY)f)>Cus Ei aV1 >B), v ) 

is weakly sequentially continuous an Zh (9} x Yn). 

Proof. The proof follows exactly the proofs of Lemmas 4.4 and 4.5, the only 
exception being that since V x B 0 0, we must choose h sufficiently small so 

that we can appropriately hide any terms involving V x Bx . 
Again, for reasonable choices of finite element spaces and for sufficiently 

small h, the constant a may be bounded independently of h and, in fact, we 
may essentially choose at = a. Armed with Lemmas 6.1 and 6.2, we may now 
state an existence and uniqueness result for the solution of the discrete problem 
(6.5)-(6.7). 

Theorem 6.3. Let gf E X (?)? satisfy (6.14), f and k swtisfy (2.13) and 

(2.16), and ,q e {(? n)f a P E Yh (0)} and assume (6.9) holds. Then 
there exists a solution (('uk, Bk), fpt) E %vh (0) x S~ (Q1) of(6.5)-(6.7). Mor- 
over, the estimates (4.22) and (4.23) hold with u, B, p, g, q, y7, a, and 
,8 replaced by. uh ,B ~ , ,ft qqft 71 ,y , and ,6 respectiely. Moreoe, 
there is at most one solution satisfing (4.25) (with te above mentioned replace- 
ments). Finally, if(4.26) (again with the appropriate replacements) holds, then 
the problem (6.5)-(6.7) has exactly one solution. 
Proof. The proof proceeds exactly- as those for Theorems 4.6 and 4.7. E 
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A similar existence and uniqueness result may be derived for the solution 
of (6.6)-(6.8), (ton(Q) replaced by OT in (6.6)), corresponding to the 
boundary conditions (2.8), (2.1 1), and (2.12). 

6.3. Error estimates. We now turn to the derivation of an estimate for the 
difference between the solution of the approximate problem (6.5)-(6.7) and of 
the continuous problem (3.6)-(3.8). Again, we consider in detail the case of 
the boundary conditions (2.8)-(2.10). We also only treat the case where both 
the continuous and discrete problems have a unique solution. We define the set 
7h(Q) by 

h(Q) := Wh(n)X yh(n), 
where 

Wh ():= fwhE Xh ( h): Wh gh 

Y1(Q):= 
eX 

E Y (Q): * (= q h} 

Then the basic error estimate is given by the following theorem. 

Theorem 6.4. Let ((u, B), p) and ((Uh, Bh), ph) denote the solutions of the 
problems (3.6)-(3.8) and (6.5)-(6.7), respectively. Let the hypotheses of Theo- 
rems 4.6, 4.7, and 6.3 be valid Then, there exist positive constants C1 < xc, 
i= 1, ..., 4, such that 

(6.15) 11(u, B) - (uh, B )II> < C1 inf 11(u, B) - (v , P )IIh 

+ C20 inf lip- sh110 
ShESo (Q) 

and 

(6.16) lIP ph11o < C3 inf I|(u, B)-(vh, vh)iI+C4 inf IlP-S h11 
(v', vh)E2r (Qi) s E Soh(f) 

Proof. Let (wh, (h) be an arbitrary element of "2h(Q) := Wh(Q) X yh(Q), 
where 

^(Q) {wh E Wh(Q): b((w, ) X = O 
h 0 S h E 

Then clearly, (uh - Wh Bh - 4) E on (Q) and, in fact, since 

b((uh wh ,Bh (Dh) X) b((uhI Bk), Xk)-b((w , o h), X ) 

-0 VX E Sh (Q) 

we have that (uh _ wh.w Bh _(h) E Zh (a) x yh (Q) . For the exact solution (u, B) 
we also have, from (3.7), (6.2), and (6.4), that 

(6.17) ao((u, B), (vh hPh)) + a((u, B), (u, B), (vh, h)) + b((vh , p ), p) 
r:,h th ,,h xthx as,h, 
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For the approximate solution (u , B ) we have, from (6.4) and (6.6), 

(( 
h 

) h hh)) + a h 
((uh B hh) (U 

h B ), (vh 
h 

(6.18) + b((v, Th), ph) 

hF((v, Th)) V(Vh h /2 
(n) 

Subtraction of (6.18) from (6.17) yields 

aO((u ) - (u , B h), (vh , h)) + a,((u, B) -(u h Bh ) (u B) ( 
h 

I h) 

+ a /((u h 
B h, ( B)-(u 

h 
Bh) (vh 2+ b((Vh ph) p _ ph) 

=0 V(v, h W)e hE h(Q). 

Then, with s5 E So (f) arbitrary, we have 

ao ((w, 
h 

h 
)(u hBh ) (vh u h )) h h h h2 h h h,T) 

+ a,(((w (u ,B _ B) (U B) (v) 

+ a, ((u 
h 

Bh),(wh 4h) (uh )B h (vh ,h) 

+ b(f(v ,Eh ) hsh _ ph ) 

(6.19) =ao((w ,h' )-(u, B),(v ,h )) 

+ a, ((W 
h 

4Dh )(u, B), (u, B), (v h T h) 

+ a, ((U 
h 

Bh,(whI 4Dh) - (U, B), (v h ? Th) 

+ b((v h M h), sh _-p) (vh , %ph) E 2ph n() 

(W h, 4Dh E 7/2h (2) 5 h E 5h Q 

Next, set (v h IFh (wh(Dw h 
(uh, Bh) and let z E Z(Q) be arbitrary. Then, 

using (6.3) and the definition of the subspaces Z(Q) and Z (Q), we have from 
(6.19) 

a(wh~ ,oh) (uh~ Bh) (w 
h 

4D )(Uh, B )) 

( ((W h) -(h (uh Bh) (U B), (w 
h )) (u 

h 
Bh 

( )((w h .0h) - ( (u, B), (wh ,h )-(u ,B B)) 

+ a, ((u, hBh) (w h (D sh) (U B), (wh (Dh) (u 
h Bh 

+ b((w,4 )(uh Bh_ (Z~ 0) 5hs P) 

The right-hand side of (6.20) may be estimated from above using the continuity 
properties (4.5)-(4.7). The left-hand side may be estimated from below using 
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(4.6) and (4.10). Thus, one easily finds that 

[min{i1. 2 }V 2-7max{N1}I(u, B)II.r] 
[mi {2 R R2 } ;23 {N Rm}] 

h h h h 

(6.21) ? [max{M? 2 }+Vy3a{N R} 
*(11(u, B)II%. + lI(uh Bh)II1>)] 

h h IIW~~~h -Uh- \l 
II(w m ) _()(u B) 1, + V3 ( wh _ sll h -Pllo. 

Now, using the definition of e, we have, since wh - uh E Z (Q), 

(6.22) inf Iwh uh zIl 
ZEZ(Q) ||W h_ uhlll 

Furthermore, from (4.25) we have 

(6.23) aI =min { 2. 'R} - V2y3max{ ' Rm 
1} 1(u, B) >0. 

Then, taking the infimum of (6.21) over z E Z(Q), and using (6.22), (6.23), 
and the triangle inequality, we obtain 

11(u, B) -(uh ,B 
h 

w- h- hh h 

(6.24) < a eIP -hS 110 + (1 + C)11(u B) -(wh, (D )II 

VS E S (fi), (wh Eh)e h(Q) 

where 

C1 = ~ ~ 1 Ff1 RmJ Cl = a max { 2 ' R r} Y3 ma - - 

(11(u, B)II.- + ll(uh, h )I IW)] 

Now, taking the infimum of (6.24) over sh E So (fi) and (Wh, h) E 
we have 

h h h~a s Sh Q 

(6.25) a1 hh(n) 
inf 11(u,) RA (w (D IV,h h 
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But, if (6.9) is satisfied, we can show that 

inf h1(u - B) - (wh h-h h)11 
(w ,' E# )/2" (ai) 

(6.26) tj r3 h\ 
(6.26) ~~< ( 1+ + h ) inf 11(u , B) -(v, Fi )IIAX 

(Vh ,h )EX/h (Q) 

To show that (6.26) holds, let vh E Wh (Q) be arbitrary. It is well known, e.g., 
see [6] or [7], that (6.9) implies that there exists a unique zh E Zh (2) such 
that 

b((z ,O),X)=b((u- v, O),Xh) VXh ES (92) 
and 

h~~~~~l h1 h h|- Wh1 h 

Now, let w/ =z +vh We then have that w EXh(Q) satisfies wh = VIan= 
gh and 

h(W , h , X ) (Wh, 0), Xh ) h h(( + v h ?) Xh) 

h h~~~~~~~~ = b((u, O), %) =O VxhEso(i 

so that wh E W2* (Q). Moreover, 

jju-wh 111 ||U + 11+ < v (1 + /h ) lh iII 

Since v h is arbitrary, it follows that 

inf ||u- w hII| 1 _ ( 
v/'3 

in)l v^6^ 
h 

S;2 
wh EWh() \/J/ VhEW'() 

Then, 

inf 11(u, B) -(w, qh )|| h 

(w , 0P )E02 (Q) 
179 

= inf jlu - wh2 + inf JIB _ oh j12 
whEW(Q) (,heyh(Q) 

< (1 +- h [inf ||u-v | I + inf JIB- IF III 

( -3\2 h h 2 

= lh) inf 11(u,B)-(v ,?' )II,V- 
(vh 'P ) E Xh (Q 

so that (6.26) follows. 
Substitution of (6.26) into (6.25) then yields (6.15) with 

C1 = (I + Cl)(l + V'3/fl) and C2= V3/aI. 
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For an arbitrary S E So (a), we have from (6.17) and (6.18), 

b((vh 5Ph) 5h _ ph =b((vh ,h), Sh _p)-ao((u, B)-(u ,B ), (vh v )) 

a,((u, B) -(u,h Bh), (u B) (v h v*)) 

al ((uh5 Bh), (u, B) - (uh Bh ) (vh Th)) 
h h ~~V(h , h h 

V(v, v ) E oni 

Using the continuity of ao(., ) and a (., *,*) and the inf-sup condition (6.9) 
then yields 

||s -P 
110 < Ah 

11 
[4| plo + (max { 2 }+ V2y3m {N m 

[jj(u, B)II,- + ll(uh, Bh )1-]) I(u -B) -(uh, Bh)I>] 

Then, using the triangle inequality, (6.15), and by taking appropriate infima, we 
are easily led to (6.16) with C3 = C3C1 /fh and C4 = 1+(C3C2/fl h) + V/3I, 
where 

1 5 1 v/2'- ~~~~~~~h h 

C3 = maX { M2 ' R2 } + X~~~~~~~~~VY3 m {N 'Rm } 11( ,)110- + 
ruA- 

One may obtain an upper bound for C1 and C3 through the use of (4.22) and 
the corresponding bound for (u , Bh). 0 

We remark that the error estimates (6.15) and (6.16) are optimal with respect 
to the graph norms employed. The right-hand side of these estimates involve 
approximation-theoretic terms using spaces constrained to satisfy boundary con- 
ditions. For a discussion of the approximation theory in such spaces, see [5]. 
Of course, similar estimates can be derived in the context of the alternative 
boundary conditions (2.8), (2.1 1), and (2.12). 

Theorem 6.4 provides an estimate for the velocity and magnetic field error 
measured in the H1 (Q)-norm. We now turn to obtaining estimates for these 
errors in the L2(K2)-norm. Such estimates are obtained using standard "duality 
arguments" with substantial modifications to account for the inhomogeneous 
essential boundary conditions. For the use of such procedures for the Navier- 
Stokes equations with homogeneous boundary conditions, one may consult [6] 
or [7]; for the inhomogeneous case, see [5]. 

The key ingredient in obtaining L 2(2)-norm error estimates is to introduce 
the following dual problem. We seek (w, 4I) E ton(2(Q) and s E Lo2(Q) such 
that 

a(((v, ), (w, 6)) + .)((u, B), (v, ), (w, 0)) 

(6.27) + a, ((v . P), (u , B),. (w, D)) + b((v , P),. s) 
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and 

(6.28) b((w, sP), ,v) = 0 Vq E 2(Q) 
2 

where (, *) denotes the inner product in L 2(Q). The left-hand side of (6.27)- 
(6.28) is merely the adjoint of the operator on the left-hand side of (3.7)-(3.8) 
with a (., *, *) replaced by Ca1 (, *, .), linearized about (u, B). If we assume 
the hypotheses of Theorem 4.7, then one may easily deduce that (6.27)-(6.28) 
has a unique solution. 

We assume that the solution of (6.27)-(6.28) satisfies w E H2 (2), ? E 

H 2(2), and s E H (a), and moreover, that there exists a constant C > 0 such 
that 

(6.29) 11(W, 'I)IIH2XH2 + IISIIHi < Cll(u, B) - (u , B )hAL2XL2. 

This additional regularity and a priori estimate require smoothness assump- 
tions about (u, B) and the domain K2. On convex polyhedral domains, this 
additional regularity for (u, B) has not been shown; indeed, even for the un- 
coupled Navier-Stokes equations with inhomogeneous velocity boundary con- 
ditions, it is not known, under general conditions, that velocity solutions on 

2 convex polyhedral domains belong to H (Q). Furthermore, even if this ad- 
ditional regularity of (u, B) were known, we would still be faced, on convex 
polyhedral domains, with the unsolved problem of the regularity of solutions 
of the linear systems such as (6.27)-(6.28) with corresponding nonstandard 
boundary conditions such as homogeneous versions of (2.21)-(2.23). However, 
it seems reasonable to assume, under certain conditions, that (6.29) is valid, 
even for convex polyhedral domains. 

We can now derive our L 2(n)-norm estimates. 

Theorem 6.5. Let'the hypothesis of Theorem 6.4 hold. Let ((w, c), s) denote 
the solution of (6.27)-(6.28), and assume that (6.29) holds. Then there exists a 
constant C > 0, independent of h, such that 

11(u, B)- (Uk, B )IL2 XL2 

(6.30) < C[h(II(u, B) - (Uk, Bh)II0 + II(u, B) - (uk, Bh)II2 + II_-P D0) 

+ jI(u, B)- (u, B )2 k+ jg - ghll + llq - 
qhl1- 

+ Ig +n_ g * n-g-/2+n] q 

Proof. Subtraction of (6.18) from (6.17) yields 

ao((u, B)-(u 
h 

Bh), (vh Ph)) 

+ &1((u, B)- (u , B ), (u, B) (vh v 'P)) 

(6.31) + &,((u, B), (u, B)- (uk, Bk) (vk 'PhD 

-a((u,B)-(uh ,B ),(U,B)- ,B ) (V 
h 

)) 

b(( h Th) p_ph) = h 
(Vh,Th Eh (Q). 
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Subtraction of (6.7) from (3.8) yields 

h h h ~h h h h'~ (6.32) b((u, B)-(u ,B B), ) =O Vq 8heS^(i). 

Recall the splitting u = u + u0, B = B + Bo, u=u + uo, and B =B +Bo 
Now in (6.27), set 

(v, IF) = (u, B)- (uh, Bh (0 B)+ (UQ, Bh) E 0;, 

and in (6.28) set 

=pp ELo2(Q). 

Combining the result with (6.31) and (6.32) yields 

11(u, B)-(u , B )1L2XL2 

ao((u, B) - (uhBh (Wh 10)_(h h 

+ a1((u, B) -(uh Bh), (u, B) (w, () - ( hh 

+ a, ((u, B), (U, B) - (uh Bh),(W,0 i- (vh h) 

h h h + ab((u, B)-(u , B ), (U, B)-(U,B (v 

(6.33) ~+ b((u, B) - (uh Bh) S - h) (6.33) h h h 
+b((w,1)-(v ,'),p-p) 

h h h A 
+ ((uo BO)-(uo , BO), (u, B)-(U , B)) 

-a,((u0, B) - (uO, BO), (u, B)) 

- a1(U, B) (UO 
BO) V-h 

(UO, 
BO),, oh 

< 

-b((uo , BO) -(UO BO), S) 8( )E >O()X+E (Q- 

One easily sees, by integrating by parts, that (6.27)-(6.28) imply that 

1 1[. VUT 1h 
M 2\w + N[w (Vu) -u*Vw+ -R(Vx4)xB+Vs=u-u infl, 

2 IV X (V X 0) -V(V * 4>)] R2 

+ [(V x B) x w - (V x )) x u- V x (B x w)l = Bh- Bhin n, 
Rm 

V*w=O inQ, 

Wla, = O, (B * n)a =O, (I (Vx)xn+wxBxn) =0 on Q, 
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where these equations hold in H I(a), H (a), L2(Q), H112(aQ), H'I2(aQ), 
and H-112(aQ), respectively. On the other hand, since (w, b) E H2(Q) x 
H 2() and s E H1 (Q), all the terms in the first two equations are in L 2(Q), 
so that these equations hold in L2 (Q) as well. Likewise, the last four equations 
hold in H1 (Q), H31/2(an) H312(an), and H1/2(OQ). Then, multiplying the 
first equation by (u0 - u ) and the second by (Bo - Bh), adding the results, 
integrating by parts, and using the boundary conditions on w and 0, we obtain 

((u0, BO)-(u0, Bh), (u, B)-(u , B)) 
-((0 B)(0, o) w ) 

(6.34) - b((uo0 Bo) - (u, B), s) 

= jQ {- n*Vw* (u0 -u) + s(u0-u).n 

R2 *IP(o-B) *n}dx. 

Recall that u0I0Q = g, (Bo0.nla = q, UIQ= gh, and (Bo * n)IaQ = qh. 

Substituting these into (6.34) and then the latter into (6.33), we obtain 

jj(u, B)-(u ,B )11L2XL2 

= a((u, )-(, h )(w4-vh Uh 
h 

+ al(-u a B)(u0 BO j uh~Bh, (u, B), (w, (D-vhv )) 

+ al((u, B), ((u, B)-~(uo BO) - (w, ?)h vh 
h 

=a0((u,B)-(u ,B ), (u,B)-(u ,B ), (0)-(v ,'P )) 

+6.34)- B)-(uo , B h,(u Bh-u,B) w ) 
+ t~~~~~o {- (un ow(-^ sgg) .n s2( )( q }d 

h h h h Az Azh 

1(V v h)DB B Kh(i 'n dx. (f 

hsn h aiu otiut rpriso h h h hhhh 
Substiuing theearose continuityan poetiesno the formsnt (se6?.23), we othen hv 
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that 

11(u, B)-(u ,B )1hL2XL2 

< [max { M2 R2 } _ B) - B 

{ N~_ ma Rm }\y (211(u, B)II.- + 11(u, B) - (u 
h 

B hl> 

11(u, B)- (uh, B )II + v'3IIP-P l] II(w, (D) - (v, 
h 

)h 

(6.35) + v2 max {Y, 3 } I1(u, B) - (u , Bh)IIVII(w, 1b)Ill 

+ V3jj (u, B) - (uh, Bh )!I I11s - 0 hI I 

1 h 
+ 2 |jVw. njlj/2, -Il g 11-1/2,o9 

h 
+ IsII I/2,,,, lg*n-g * nIj- 1/2, gQ 

+ R 11V ?11112 AQ11q-q1 h1/2,0Q 

Vh i h Vh ij oh h Vv ) E on(Q E So (Q1) 

Now, from approximation theory and (6.29), we have that 

inf lt(w, ,) - (, 11h h )Itw- < ChII(w, q)IIH2x H2 

< ChI|(u, B) - (u k Bk)IIL2XL2, 

inf 1s1- l h110: Ch(ls|ll < ChII(u, B) - (uk, Bh)IIL2XL2 

II(W, I)11j < II(W, O)IIH2XH2 < CII(u, B) - (u, Bh)1L2xL2 

IIVw *n1112 Q < CIIwII2 < CII(u, B) - (uk, B )IIL2XL2, 

IIS111280Q 
< CdIsII < CI|(u, B) - (uk, B )IIL2XL2 , 

IIV * Wl 1/2,aQ < CiiwIi2 < Cii(u, B) - (u, B AiiL2XL2 

Combining these inequalities with (6.35) then yields (6.30). O 

Whether or not the estimate (6.30) provides an improvement over the esti- 
mate (6.15) depends on the last three terms on the right-hand side of (6.30). 
For a discussion of estimates for jig - gh kl1/21,, and liq - q h 

111/2,80 'see [5]; 
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for the last term, one also has to consider the smoothness of n. In any case, 
the last three terms in (6.30) are at least 0(h /2) and in many situations are 
0(h). Thus, estimate (6.30) provides at least an 0(h112), and perhaps an 0(h) 
improvement over the estimate (6.15). 

7. SOLUTION METHODS 

We describe three possible iterative schemes for solving the nonlinear alge- 
braic equations which result from discretization. We describe the methods in 
the context of the continuous problem; the results hold as well for the discrete 
problems. 

In the first scheme we find, at each iteration, 

(7.1) (us9 B)m+l Efi w E H' (Q2) wlan = g} x {P E H' (2) : (M. n) I. = q} 

and Pm+l E Lo(Q) 

such that 

(7.2) a((u , B)m, (u , B)m+l, (v , I)) + b((v , UP), Pm+i) 
= F((v, UP)) V(v, 'I') E WOn(i) 

and 

(7.3) b((u, B)m+l X) = 0 VX E L2(n) 

This iteration scheme has the advantage that it converges for any initial guess 
whenever one can guarantee the uniqueness of the solutions; its disadvantage is 
that it results in a large coupled system of linear equations. 

In the second iteration scheme we find, at each iteration, 

(u, B)m+l E {w Ei H I(Q2): W,an = g} x {? Ei H I(2): (4> . n) 1,,= ql 

and Pm+l E Lo (i) 
such that 

ao((u, B)m+l, (v, I)) + b((v, W), Pm+i) 

= F((v, UP)) - a,((u , B)m , (u , B)m , (v, UP)) V(v, 'I) E ton(Q) 
and 

(7.6) b((u, B)m+j9SX)= ? VXEL L(Q) 

This iteration scheme has the advantage that the resulting linear equations for 
the velocity field and the magnetic field decouple. Moreover, for the magnetic 
field the equations for the components of this field also uncouple. In this case, 
the computation reduces to solving several much smaller systems of linear equa- 
tions. The disadvantage of this iterative scheme is that it converges only for 
initial guesses that are sufficiently close to the solution and that it requires some 
additional constraints on the data. In addition, convergence is slower, in gen- 
eral, than that of the first scheme. 
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A third iterative scheme is Newton's method, i.e., we find 

77) (u , B)m+lE fi w E H' (Q2): wl., = g} x {PD E H' (Q): (M - n) JO, = q} 

and Pm+l E Lo(Q) 

such that 

ao((u, B)m+i , (v, 'v)) + a, ((u, B)m , (u B)m+l (v, 'v)) 

(7.8) + b((v, UP), Pm+i) + a, ((u, B)m+l, (u, B)m, (v, UP)) 
= F((v, I)) + a,((u, B)m , (u, B)m, (v, I)) V(V, E) E to(Q) 

and 

(7.9) b((u, B)m+l, X)= ? VXE Lo(Q2) 

The advantage of Newton's method is its guaranteed local and quadratic con- 
vergence, at least when uniqueness can be guaranteed. On the other hand, it 
converges only for sufficiently accurate initial guesses. 

With regard to the three proposed schemes, we have the following results. 
The first and third of these follow by what are now standard arguments; see, 
e.g., [6, 7], or [12]. Note that the assumption (7.10) is more restrictive than is 
the condition (4.26). 

Proposition 7.1. If the assumptions of Theorem 4.6 and condition (4.26) hold, 
then the iteration scheme (7.1)-(7.3) is well defined and converges for any initial 
iterate (u, B)0.e 7(Q). 

Proposition 7.2. The iteration scheme (7.4)-(7.6) is well defined and converges 
provided the assumptions of Theorem 4.6 hold and the initial iterate (u, B)o E 
V(Q) satisfies 

1 
[ln 1 +-llklK112, N '2 llgll12~ a MN lifil _l + R ikl _ 112, an +YI (N + + )' qR 1/2, ]a 

(7.10) + aM + llgll120 + Y2 (i + 2llqll2 

+ 11(u, B) - (u, B)ollW 

< -min <-,- 2y3max?-,-Rm 2 1M 29RJ 2Lf2NR-M 
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Proof. One easily finds that 

ao((u, B) - (u, B)m+i (u, B) - (u, B)m+i) 

= a,((u, B) - (u, B)m, (u, B) - (u, B)m ,(u, B) - (u, B)m+i) 

- &1((u, B), (u, B) - (u, B)m (u, B) - (u, B)m+i) 
- &1((u, B) - (u, B)m, (u, B), (u, B) - (u, B)m+i). 

Using (4.6) and (4.10), we get 

II(u, B) - (u, B)m+lll 

< vy3 max {N 'R} min {k M R2} 

* [211(u, B) - (u, B)mIIWjI(u9 B)II|- + II(u, B) - (u, B)mII29r 

and using the a priori estimate (4.22), we obtain 

II(u, B) - (u, B)m+lll 

< vy3 max {N ' R } min {k M R2} 

L2 [ - (1f/2 sn + Yi Y3 (1 + Rm) 

+ YI k )Y3 llq N112 ) 
v2'iR 1/2,On + 

+ ( + a2 ) g1111/2 On + Y2 (1 + a2) ijqi2p,Oa] 

+ 1I(u, B)- (u, B)mW- 11hI(u, B) - (u, B)mllw. 

Finally, using condition (7.10), we have that 

1I(u, B) - (u, B)m+lll < cll(u, B) - (u, B)mhIWt9 

for some constant c < 1 , which gives the required result. E 

Proposition 7.3. If the assumptions of Theorem 4.6 and condition (4.26) hold, 
then equations (7.7)-(7.9) have a solution and the iterative scheme defined 
by them converges quadratically, provided the initial iterate (u, B)o E 7 (i) 
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satisfies 

II(u, B) - (u, B)01II 

< c[min{ 42} 
k 

max { 2R 

-[a (ll-l + RmIIkIK12,,9Q + YlY3 12+ A9) IgII12Xa 

+ I 7Y2: 3 liq 112 ) 

+y1(i aM 2) 11g11/2 ,+9 2 (1 + aR) 2 lqIii2,0a]] 

for some constant c < 1/2. 
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