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A QUASI-MONTE CARLO METHOD 
FOR THE BOLTZMANN EQUATION 

CHRISTIAN LtCOT 

ABSTRACT. A new quasi-Monte Carlo method for solving the Boltzmann equa- 
tion in a simplified case is described. The analysis is restricted to a spatially 
homogeneous and isotropic gas; in addition, the molecular model only involves 
isotropic scattering. The scheme makes use of particles and combines an Euler 
scheme with numerical integrations. The sequence which is used for the quadra- 
tures must possess some symmetry properties which prescribe energy conserva- 
tion for colliding particles. The error of the method is estimated by means of 
the discrepancy of the sequence which performs the quadratures. An algorithm 
for generating convenient sequences is proposed. In an example, where an exact 
solution is known, the computation of effective errors is included. 

INTRODUCTION 

Rarefied gas flows are usually simulated by Monte Carlo techniques. Besides 
the successful Direct Simulation Monte Carlo (DSMC) method of Bird [2], 
another scheme was derived by Nanbu [ 14] from the Boltzmann equation itself. 
A drawback of both schemes are numerical fluctuations caused by the use of 
pseudorandom numbers. An improved Monte Carlo scheme, which reduces 
fluctuations, has recently been developed at the University of Kaiserslautern 
[1]: it will be referred to as the KMC scheme. 

A fully deterministic method for solving the Boltzmann equation is proposed 
here. The constraints on the analysis are the following. We consider an infinite 
spatially homogeneous and isotropic gas (the velocity distribution is radially 
symmetric). The molecular model is characterized by isotropic scattering (the 
differential cross section a depends only on the relative speed g and not on 
the deflection angle). In addition, we assume that ga(g) is some nonnegative, 
nondecreasing, and bounded function. The hypothesis on the cross section 
allows physically relevant models, such as the VHS model of Bird [3], when a 
cutoff is used. In earlier communications [IO, I I] the simplest choice (ga(g) 
equals a constant) was considered. A deterministic version of the scheme of 
Nanbu, that we called the Low Discrepancy (LD) method, was described. An 
error analysis was proposed and it was shown that the LD method outperforms 
the original scheme of Nanbu in a test case where an exact solution is known. 
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The scheme of the present paper will be called the Quasi-Monte Carlo (QMC) 
method. The QMC method (as well as the scheme of Nanbu or the LD method) 

2f can be summarized as follows. The initial velocity distribution v fo(v) dv (in 
R+) is approximated by a sum of N Dirac measures 

N 

i=? 1 ~s-v?) 

The time is discretized by steps of length At; the approximation 

N 
i= 1 

(-() 

of the velocity distribution at time t(n) = nAt is obtained from f(n 1) in two 
steps. First, a measure g(n-i) is generated by an Euler (forward difference) 
scheme. Then f(n) is obtained from g(n-l) by a quasi-Monte Carlo integration. 
The v(n), 1 < i < N, are referred to as the velocities of simulated particles 

(or molecules) at time t(n) . The QMC method is different from the scheme of 
Nanbu but is similar to the DSMC scheme of Bird in two ways. First, the scheme 
is based on binary collisions, and energy conservation is prescribed for colliding 
particles (for the procedure of Nanbu, as well as for the LD method, the total 
energy changes at every time step). This is achieved by using a symmetrical 
sequence for the quasi-Monte Carlo integration. Second, the computing task is 
proportional to N log N, where N is the number of simulated molecules (the 
computing task of the algorithm of Nanbu is proportional to N 2, unless the 
molecular model is Maxwellian and the LD scheme only handles a simplified 
Maxwellian model). 

An error analysis of the QMC method is included in the paper. An essential 
tool is the concept of discrepancy, which was also used for the numerical analysis 
of the LD method. For P points xl, ... , xp in the s-dimensional unit cube 
Is = [0, 1)S, s > 1, the discrepancy (relative to the Lebesgue measure) is 
defined by 

Dp(X) = sup A(J L) AJ 
J P 

where J runs through all subintervals of Is, A(J, X) is the number of p, 1 < 
p < P, with xpE J, and IJI is the measure of J. The *-discrepancy of the 
P points x, ..., xp is defined by 

Dp(X) = sup A(JpXL1J1 
J P A 

where J runs through all subintervals of Is containing 0. Dp(X) and Dp(X) 
are linked by 

D1(X) < Dp(X) < 2sD*(X). 

For an infinite sequence xl, x2, ... of points in Is we define Dp(X), resp. 
Dp(X) , to be the discrepancy, resp. *-discrepancy, of the first P terms of 
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the sequence. We refer to [9, 16] for further information on the concept of 
discrepancy. We will measure the error at time t(') of the QMC method by 

(n) (n) the *-discrepancy of v(n, . N. , vn relative to the exact velocity distribution at 
time t . If the discrete velocities are ordered according to their magnitude, 
the error of the scheme can be estimated by means of the discrepancy of the 
sequence used for the quasi-Monte Carlo integration. 

The construction of the sequence that performs the quadratures is based on 
the recent theory of (0, s)-sequences [17]. We propose in this paper an al- 
gorithm for generating (0, s)-sequences which is suited to vector computers. 
A convenient symmetrical sequence is obtained from a (0, s)-sequence by re- 
flection. Its *-discrepancy is bounded by means of the *-discrepancy of the 
(0, s)-sequence which is used. When ga(g) equals some constant, an exact 
solution of the Boltzmann equation for a specific initial velocity distribution 
was discovered by Krook and Wu [8]. The effective error of the QMC method 
at a given time T can be computed in this case. 

The paper is organized as follows. In ? 1 the QMC method is presented and 
the assumptions on the sequence used for the quadratures are given. In ?2 
some error estimates are demonstrated. They are derived from error bounds 
for quasi-Monte Carlo integration. In ?3 the sequence used for the quadratures 
is constructed, its *-discrepancy is estimated, and effective errors in the case 
considered by Krook and Wu are computed. They are compared with errors of 
the KMC scheme. 

1. THE QMC METHOD 

We present the Boltzmann equation for a spatially homogeneous and isotropic 
gas. We introduce the weak formulation, which is used for determining an ap- 
proximation to the solution. We also discuss the assumptions on the cross 
section. We refer to [4, 18] for the derivation of the Boltzmann equation and 
for related concepts; the derivation of the weak formulation was given in an 
earlier communication [10]. 

Let fo be a positive function on R+ such that 

(1.1) f v2fo(v)dv = 1. 

Let f be a regular positive function on R2 which satisfies the Boltzmann 
equation 

(1.2)~ (vl At47 ) 
3S (f(| | ,~ t)f(|w, |, t) f(|v|,~ t)f(w|,I t)) (1.2) I) 

-Iv - wls(O, Iv - wl) dwdn, v E R3, tER+, 
where I is the Euclidean norm, n* is the number of molecules per unit 
volume, 52 W = {n E R3: InI = 1, n (v-w) > O}, v' = v-n (v-w)n, w'= 
w + n * (v - w)n, s is the differential scattering cross section, and 0 is the angle 
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between n and v - w; with the initial condition 

(1.3) f(IvI, O) =fo(lvl) v E R3. 

If B(R+) is the space of all bounded measurable functions everywhere de- 
fined on R+, f also satisfies 

dj- q,(v)v2f(v, t) dv 

( 1.*4) - (4,t)2 |/R62(7(V ") - (VD))IV - wia(x IV - WI) 

*f(lvl, t)f(jWI, t) dvdwdv, (o E B(R+), t E R+, 

where 

v= (v+w+ lv-wlv), 

X =X - 20 is the deflection angle, 

v = (v - w - 2n * (v - w)n). 
ly-wi 

The cross section a is related to s by s(0, g) = 4cos0a(, g), 0 E (O, ), 
g E R+. 

We only consider molecular models characterized by isotropic scattering, i.e., 
a does not depend on X. This restriction drastically reduces the computation 
time per collision when a numerical procedure is used. Moreover, Bird [3] has 
shown that "requirements for the accurate modelling of engineering flows are 
best met by a molecular model called the Variable Hard Sphere (VHS) model", 
which involves isotropic scattering. In the VHS model the total collision cross 
section aT = 47ra is related to the relative velocity g by 

(1.5) aT(g) (4(a1-2) ke -4/,-E) gE R+, 

where aref is a reference cross section calculated at temperature Tref' 71 is 
the exponent of the inverse power law molecular force, k is the Boltzmann 
constant, and mr is the reduced mass. 

The exponent q lies between 5 and oo ( = 5 for the Maxwell model and 
?I = xc for the hard sphere model). 

It is convenient at this point to introduce a new function q defined by 

(1.6) q(g) = n gaT(g) g e R+. 

We assume 

(1.7) q is a positive monotonic function, 
( 1.7') Q = sup q(g) < +oo. 

gER 
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Condition (1.7) is satisfied by the VHS model. Condition (1.7') means that aT 

must be truncated (in the case of the VHS model). This hypothesis is reasonable 
if the high-energy part of the velocity distribution is underpopulated. In earlier 
communications [10, 11], q(g) = 4k7r for some constant k > 0. 

The right-hand side of (1.4) is now expressed by using the variables 

I= I W= lwl X(4)= 1 (1+ V W)= 2 (I + (v + w) j) 

(4) ~ ~2 2 v w V+W 

For (v, w, x(4) , x(5) E R2 x I2 let 

[V, W; X(4); X(5) 

(1.8) _ (+ w2 + ((V2 + W2)2 - 4(2x(4) - 1)2V2W2)1/2(2x(5) -1)) 1/2 

21/2 

(4) 2 2 4)1/2 (1.9) [v,w;x ]=(v +W -2(2x4)-1 )vw) 

We then obtain the convenient weak formulation 

d+t p(V)V2f(V, t)dv 

(1. 10) 
2 xi2 (jv(I ) - o(v))q(g)V2f(v, t) 

w 2f(w, t) dv dw dx(4) dx(5), vEoB(R+), tER+, 
where 

(I. Il) V = [V, W; X(4); X(5) g = [V, w; x(4) 

Starting from (1.10), we present the QMC method. It combines an Euler 

scheme (step (i) and equation (1.14)) with quasi-Monte Carlo integration (step 
(ii) and equation (1.17)). The numerical procedure is linked with molecular gas 

dynamics by two conditions on the sequence used for the quadratures. 
We denote by 5(v - vo) the Dirac measure located at the point vo E R. An 

integer N > 0 defines the accuracy of the approximation. A time step At is 

chosen such that 

(1.12) AtQ < 1. 

This condition ensures the feasibility of the scheme. We also need a sequence 

X = {xn n > 1} c I5 

for quasi-Monte Carlo integration. We introduce discrete times t(n) = nAt, 
n > 0, and sets 

(1.13) X(n) = fXp: nN < p < (n + 1)N}, n > 0. 

A set V = 1 < i < N} c R+ is chosen such that 

f(?) = I E V-Vi) 

i=l 
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approximates (in a sense that will be subsequently specified) the initial velocity 
2f distribution v fo(v) dv. 

For n > 0 we describe the scheme to compute 

j$n+l) V(n+l) :1< i < 

and 

/n -N+0 (- (n+l) ) N 
f (n+l) - ik>6 V(n+) i=l 

(which approximates v f(v, t ) dv) if V) is known. 
(i) A measure g(n) on R+ is defined by 

( (v)g(n (dv) = (v)f() (dv) +Atf (9(v') - 9(v))q(g) 

* f (n (dv) )fl)(dw) dx (4) dx(5), 9 E B(R+), 
or, equivalently, 

| 

57(A)gtn) 

(dv) 

(1.14') =-N (1- N fq([v~n, ,vj ]) dx) (o(v,~) 
At N N tN() () () () () 

N E , |i q([v vI) x ]jv (AN N) (n) (4) (5) 5 

*(1 
(n) f) v (n) ; x (4), x(5) 1) dx (4) dx (5) 9 E B(R+). 

(ii) For 1 < i < N and 1 < j < N let Xi j be the characteristic func- 
tion of [ x, k) X J, 

- ), and let c. ) be the characteristic function of 
{(X (3) x(4)) E I2 X(3) < Atq([v(n), v7n); X(4)])}. If L(n) is defined by 

N N 
14(n) (eXi,(1) (2) (n)(X(3) X(4)))9(V(n)) L9~~(X) = 

jX MI C, 
1=1 j=1 

(n) (3) (4) 9 [ (n) (n) (4) (5) 
+ ci,j(X , x )q([vi ,v1 ;x , x ])), 

for x E I, then 

(1.16) jL(n)q,(x)dX= f q,(v)g(n) (dv), 9o E B(R+). 

Now define f(n+ ) by 

(1.17) j (v)f( (dv) = N EL )Xp(xnN+d), (0 E B(R+). 
+ ~~~~~~1=1 
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We denote by LzJ the greatest integer < z. For a fixed n let 

i(l) = 1 + LNx ()+, j(l) = 1+ [Nx, (2) I, 1 < N. 

If 

X = (X (1), X(2) X (3) X (4) X (5)) E I 5 

we set 

(2) (1) (3) (4) (5) 

Each molecule collides at most once within the time interval [t (n) t(n+l)), and 
energy is conserved at each collision provided two conditions are satisfied: 

i(l) and j(l) are one-to-one mappings 

( 1. 18) of the set {1, .I . , N} onto itself, 

(1.18 ') if x Ex(, then x* E x 

No condition is required for momentum conservation because the momentum 
density of a spatially homogeneous and isotropic gas equals 0 and is automati- 
cally conserved. The velocities of the molecules at time t(n+l) are then conve- 
niently expressed. 

If 
xn 3)+ < Atq ([V ((I) XV (( n ) +l ]4) 

then molecules i(l) and j(l) collide and the new velocities are 
(n+ 1) (n) (n) (4) (5) 

V1(l) = [vi(l) Vj(l) ; XnN+l XnN+I]X 

(n+1) (n) (n) (4) __ ) (n+) = [V(n)) V1(1) ; XnN+l, 1 xnN+I 

If 

nN+1 - i( (l) ' j(l); nN+I] 

then molecules i(l) and j(l) do not collide and 

V(n+l) V(n) V (n+l) = (n) 

An additional computational step will permit us to estimate the error of the 
QMC method: 

(1.19) each set V(n) is ordered such that if i < j, then v(n) < v(n). 

2. ERROR ESTIMATES 

We define the error at time t(n) of the QMC method and we introduce some 
error terms. An estimate of the first error term (Lemma 2.1) is derived from an 
error estimate used in quasi-Monte Carlo integration. The second error term is 
easily bounded (Lemma 2.2). 
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If r > 0, we denote by (Pr the characteristic function of [0, r). We sub- 
sequently use the following result. If (r, w, x(, X(5)) E R2 X I2, there exists 
s(r, w, X(4), X(5)) E [0, 0O] such that 

(2.1) VAV[ I W; X (4) s X(5 1)])-Ps(r w, X(4) X(S)) (V) V E R+. 

For n > 0 we set 

(n 
N 

() n 
(2.2) dN (r) =Pr(V )(V)V2fV t(n) dv, r > O, 

and we measure the error at time t(n) of the QMC method by 

(2.3) DN nVf) = sup Id5$) (r)I. 
r>O 

According to the definition of Hlawka and Muck [7], Dk(V(n), v2fn) is the 
*-discrepancy of V(n) relative to v2f(v, t(n))dv. We need some additional 
error terms: 

N (N ) 2 ((Pr(V ) - (Pr( i))q(g)f(f) (dv) f (dw) dx(4) dx(5) 
R+x 

(2.4) 
2 XI2(9r(v') - qr(v))q(g)v2f(V t(n)) 

w2f(w, t dv dw dx(4) dx(5 , 

where v' and g are given by (1.1 1), 

(2.5) (r) = 9r(V)V (2 {f (v, t(n)) -3 
f 

(v t)) dv dt, 

(2.6) 3n) (r) = k E L( )6Dr(Xn N+l)-f L( x) dx, 

n-I 

(2.7) A (n) - i _ 
m=0 

The various error terms are linked by the relation 

(2.8) d19(r) =dn-1) (r) + Ate(n-$1) (r) + E(n- 1) (r) + (n- 1) (r) n > 1. 

Consequently, 
n-l n-1 

(2.9) dN (r) =dN (r) +At eN (r) + e (r) + AN (r), n> 1. 
m=O m=0 

An estimate of the error term e n) (r) is obtained by using the following inequal- 
ity, which is due to Koksma (we refer to [9, 16]). 
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If g is a function of bounded variation V(g) on I and xl, ..., xp are 
numbers in I with *-discrepancy Dp(X), then 

(2.10) |PEg(xi) - g(x) dx| < V(g)Dp(X). 

Lemma 2.1. The error term (2.4) can be estimated by 

(2.11) le (n) (r)I < 11QD* (V (n) 2 2 

Proof. The error term e(n) (r) is split into sums or integrals where the following 
differences appear: 

Eq([v), W; X ] q([v, w; X()])vf(v, t )dv, 
N q ([v ,n w; (4]) -4 I"(n 

N Epr(v(n))q([v(n) W; x (4)]) f r(v)q([v, w; x ])v2f(v, t()dv, 

and 

1 FN ([V(n) (4) (5) (n) (4)]2 

-|9r([V I W; x(4),~ x(5) ])q([v , w; x(4) Dv2f(v, t(n) )dv. 

They are estimated by using (2.1), (2.10), and some techniques of Hlawka and 
Muck [7]. 0 

We add for the sake of completeness the following minor result. 

Lemma 2.2. The error term (2.5) satisfies the inequality 

(2.12) Ie(n)(r)I < At (, t( 1) v2 (vf, t) dvdt. 

The third error term A(n(r) is not so easily bounded, and we need some new 
notations and other tools. For P points z1, ..., Zp in Is and a measurable 
subset E of Is we need to estimate 

A(E, Z) _ JEl 

This is achieved by using Lemma 2.3, which is due to Niederreiter and Wills 
[15]. If 

E = {(x( ) x) E Is+: x(?) < g(x')} 
(where g is some positive function on Is), we will use Lemma 2.3 in conjunc- 
tion with Lemmas 2.4 and 2.5. After some preliminary results (Lemmas 2.6, 
2.7, and 2.8) we obtain a bound for A(n(r) (Lemma 2.9). 
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For 1 < i < N and m > 0 we deduce from (1.19) 

N 

(2.13) V(M < r 
< 

7(J ) 
j=1 

If (v, w, x(4)) E R 2x [0, 1], we define 

(2.14) 
* (4) ( /2r - _v - _w 21 g' (x =min max 22(( 2 2)2 - 4(2x(4) - 1)2V2W2)1/2 + 2' ) 

if v #4 w or v =w # 0 and x(4) 54 0, 1; otherwise 

gv(O) = gvv(1) = Pr(V), go0(X ) - 1 . 

The function * is continuous and satisfies 

(2.15) v < v, w < w = fg0 (x )) > g (x )) x4 E [0, 1], 

(2.16) [v, w; x( ) X(5)] < r - X(5)< g (x(4) 

We set 
(n) * 

g(=gj gv(n),V(n) 
1 << N, 1 <j<N. 

For 1 < m < n let ('n) be the characteristic function of [M-:L, m). We 
introduce the sets 

{ ~ ~~ N n-l 
(2.17) (n) I6 

(1) <1 X M 
<(m))(n)((x 

)' 
EN (r) X E Ni= m=0 

N N n-I 
(Nn) ( r) = t X E I6: X(3) < 

E (i (in) (2) ) 

2 i=1 j=1 m=0 

* Avtq([v(m), ~v(m. () (4)]) (x) (6) 

{ ~~N N n-1 
G(n) (r) XE I6 :X(5) < E % (X , X(2) 

t ~~~i=l j=l m=0 
(2.19) 

.gi1 (x )XM+i(X ) B 

and 

(2.20) X+N= p n ) :1 < p < nN} c I6. 
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By (2.13) and (2.16), 

^(n) ( ) X (() (r) n FNn) (r) 
c 

XnN _ (n) (r (n) (rc 
AN(r)=n nN Nk N 

(2.21) 
A(F(n)(r) n G(n) (r), X _ n 

+ n N nN _E IF (r) n G n)(r) I) 

We now state the Lemma of Niederreiter and Wills. 
For a subset E of Is and e > 0, we define 

(2.22) Ee = {ZEIS:3Z EE, IZ-Z'I<E}, 

(2.22') E_e = {zeI :VZ' EI\E,Iz-Z'I>E}. 

Lemma 2.3. If E is a measurable subset of Is such that 

(2.23) 3K > 0 Ve > Omax(IEe\El, IE\E_eI) < Ke, 

then, for any P points z1, ... , zp in Is, 

(2.24) A(E, Z) - El < (4Ks1/2 + 2K+ 1)Dp(Z)+/S P 

If E satisfies (2.23), we set 

(2.25) K(E) = inf{K > 0: Ve > Omax(IEe\EI, IE\E_eI) < Ke}. 

For a function g on Is we denote by V(g) its variation in the sense of Hardy 
and Krause (we refer to [9, 16] for the definition of this concept). 

Lemma 2.4. If g: Is- [0, 1] is a function of bounded variation V(g), and if 

E = {(X (), X' ,E IS+'1 X (0) < g(x')} 

then 

(2.26) K(E) < 6? - 
25 + 2 sV(g) + 1. 

Proof. Given E > 0, let N be the smallest integer such that 1 < NE. For 
1 < il < N,..., 1 < iS < N let 

.= [1 1 ii) i X [iN 1 is) 

mil ..., is = inf{g(x):xeI .}, M . = sup{g(x): x EI. }, is Li,..., 1~s ~ i** s L .. s 

and Xi be the characteristic function of Il . We define a new function 

g* by 
N N 

g (x) = .. Emil . %i, is (x) x isI. 
i1=1 is=l 
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if 

EE = {(x( ), x( ) E Is+l :x() < g*(xI)} 
N N 

F .* U [mil ,...,i, IMil 
, 

..., is] x Iil, ..., is, 

i is=l 

then 

Ee\E C ((E*)8\E*) U F. 

Let 

g (x )=max{g (y) :Ix'-y'I<e}, x' EIs, 

G(C) = (x(?) Ix' E Is+1: g(6) (x') < x (?) < g (6)(x) 

and 
N N i1+1 is+1 

H u.. U JU U ..UJ [min(Mi is, 34)... j9, 
i1=1 iS=1j1=i1-1 js=is-1 

max(Mi,..s, '1 Mj, vis)) 

X 11 Jl 
( 
ik) j SS 

k=1 

where 

N N) if ik =ik ' 

J(k) _ ) [!kSN I N + e if k =k 
i- 1 and Mi ,, ......... , is < Mj,, , 9jS s 

ji' is il . I;i 
s'Jl ~ ~ ~ ~ ~ ~ ~ ~ 1** ' 'A. .' 

t,N ) i f ik 
= 

ik + 1 and Mi, 1,.. s < Mj1',. ,is I 

0 otherwise. 

We have 

(E*)e\E* c G(U) U H(). 

Now we use the following inequalities for estimating IE,\El: 

IFI < sV(g) IG(e)I < e, H(e)l < (3s- l)s(eN)slV(g)e. N'I 

An estimate of IE\E-el is similarly obtained. 0 

Remark 2.1. If s = 1, then IH(e)l can be bounded by V(g)e, consequently 

(2.26') K(E) < 2V(g) + 1. 

We specialize to obtain a more useful version of Lemma 2.4. Let s > 2 and 
O < r < s be integers. We choose s - r integers Nr+ > ? > Ns . If O < e < 1, 
we set 

max{p:r<p<s,Np > if Nrl >e 

r otherwise. 
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For I <ir+1 <Nr+l 1 < 1?is<?Ns and r<p<s let 

r= I1 r+1 ~x* X 1i 

r+,I p L[Nr+l ' Nr+l / [N 'Np} 

r+I'~~~~~~~~~~~' p ~ ~ ~ ~ ~ 

ir+l ..ip I(jr+l I * p) 1< jr+l < Nr+l,.,1 < jp < Np 

3*E iir+l I ...,i 3Y* E I. l ..I 1 x* -y | < E}l, BXEJ'1 
~ip Jr+lI'jp 

I*~*<} 

and Xi be the characteristic function of Ir i. We use the Kronecker 
symbol 3; if h is a real-valued function, then h+ denotes its positive part. 

Lemma 2.5. Let E= {(x(?), x', x") E Is+1 x(?) < g(x', x")}, where 

Nr+ I Ns 

g(x , x) =E gir+1 i (x i )r+ is (x) , E Ir ,, E I s-r 

ir+,=l is= 

gi : Ir [0, 1], 1?1 < Nr 1?I 
< 

iS 
< Ns. 

For ?<ir+ <Nr+l 1<is<Ns let 

glr+, ..., I maxigs Jp(e) p()+, (Ir+1 * jp(e)) E Hi..) r - ~. 1 sr+I~ ip(e) 

glr+0, ,= min{gr+l (e) . p(e)+ (ir+ * ... Ip(e)) E H 
gir . s i() p(e)+l si+ pc 

If all the variations of gl() i and g<8) , 1 < tr+i < Nr+l1'*. 
ir+ I is gir+ II isr 1 

1 < is < Ns, 0 < E < l ,are bounded by some V, then 

IEA\EI < 3s p(c) (6 2 + 2rV + e 

Nr+I Ns ip(e)+I+l is+l 

+ E ... E ... E 
(2.27) ir+l=l is= I jp(.,+ I = ip(c,+ I1 i= is = 

k=r+1 5k k=p(e)+ 1 (e Nk) ik 'k 

JjrOgir+ I 1p(,) ' ip(e)+ I is (X gir+ is (x)) d x' 
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and 

IE\E_ I< 3s-p() (6- 2 +2rV+ + 

Nr+I Ns ip(c)+1+l is+1 

+z...z z ***zE 
(2.27') ir+l=l i5=I jp(e)+I=ip(e)+lI js=is-1 

p(8) s 

k=r+l k k=p(e)+l (eNk) 'k "k 

r(gi 1i(X) - gl7[ ).p(e) j . x ))+ dx'. 
Proof. Let 

F(e)= U U L(i)8(\ir..) 
i -1 i=1~i+1 

s +1 is 
ir+l=l is=1 

XI r+l x k (k k - k )+ 
k=p(e)+1 k N' 

Nr+I Ns ip(8)+I+l i5+1 

G = u .. . u U... Gi,, .... is, j (8)+l,..,j 
ir+l=l iS= 1 ip(,)+ I ip(c)+l I 1 js=is-1 Gir+UI . y- ̂ i() I G() *- iipe+ *- is "pe+'I 

S 

x ~~x 
17 

i (k) 
rI 

1 ip(..) 
k=p(e)+1 ip(e)+ is 'p(e)+ 

where 

F(e) (0) I xI) E 1r+1 X (e) 

G(se) + = {(x(0) xt) E 1r+1 gi (x') (0) 

<(e) 
< j+l 1. 1 ip(e) 'p(e)+ II 

( [ zk 1 Nj ) if 1k ik' 
Nk k ~ 

Jlp(e)+ '**-l is j p(,)+ I J .......s j k k N k k 

1N N-, ifk = ik +1. 

We have 
Ec\E C F U G(. 

Inequality (2.27) then follows from Lemma 2.4. Inequality (2.27') is estab- 
lished similarly. O 

Remark 2.2. If r = 1, then estimates (2.27) and (2.27') are improved by 
replacing (6r - 2r +2)rV/2+ 1 by 2V+ 1. 
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The following lemmas provide us with bounds for K(E(n)(r)), K(F(n)(r)), 
and K(G(n)(r)). We use the sets 

?D(n) (r) ={ (1) x(2) X(3) X(4) X(6) 
5 

N N n-I 

(2.28) x(3) < Exi(x,x , x ,x )eI 
i=1 j=1 m=0 

(in) (mn) (4) (n) , X(6)1 * Atq ([vi) v( ) x( )]XM+(( ) 

(2.29) X*N= { (1) (2) (3) (4) P 1 ) < p < nN c I. 

For the sake of simplicity we now restrict ourselves to n < N, which is in 
accordance with the hypothesis of Theorem 2.1 below. 

Lemma 2.6. The constant (2.25) associated with the set (2.17) can be estimated 
by 

(2.30) K(E.(n)) ? 3+ 4t1) + 4((4 . 51 /2 + 2)(90 + 9Qt (n1)) + 1) 
( (n - 1)D( ll)N(X;_XI)115 

Proof. Inequality (2.27) leads to 

1(En) r)e\(n)I <{e + 41e if e ? l/n, 

where 
n-1 N 

; N E ( Vr(v (t 'P_rv(v ( 
M=1I i=1 

By using 

, < A(Dn )(r), X 

N N 

k)(nll)NJ together with inequality (2.24), we obtain an estimate for I(ENn (r)),\ENn (r) j. 
The same estimate is valid for IE,n)(r)\(ENn)(r))__I. Then, since K('n-I1)(r)) - 

K(F (n-1) (r)), the desired result follows from Lemma 2.7. D 

Lemma 2.7. The constant (2.25) associated with the set (2.18) satisfies the 
inequality 

(2.31) K(F(n)(r)) < 90 + 9Qt(n- 1) 
Proof. Using estimate (2.27) together with inequality (1.12), we obtain 

((90 + 9Qt( 1))E if E < I 

|(FN (r))\F )(r)| < (17 + 2Qt(n 1)E if N?< E< 

1(4 + Qt(n- 1)e if I < E. 

The same estimates are valid for IF (r)\(FNNn (r))N 1. 
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Lemma 2.8. The constant (2.25) associated with the set (2.19) can be estimated 
by 

K(G n(r)) < 99 + 18Qt(n'1) + 18((4. 51/2 + 2)(90 + 9Qt(n-') + 1) 

( (n - 1)D(n- 1)N(X*n-1)N) 1/ 

Proof. Inequality (2.27) leads to 

( (99 + 90)e ife< 1 

(Gn)(r))8\Gn)(r)l < (21 + 0)e if I 
<6< 

(7 + 48)e if I < e 
where 

1N N n-11 

ev Fa E E I gi, j(x4) gi" j, (x(4 dx( 

Because of (2.16) we have 

J (m) ((4)) _ (m-1l) ((4) ) (4) 
gjg1j (x ) i j 1 (x d 

=FX 1v (in(m) v(m); x(4) x(5) ]2kDr([Vi ,1 ; x I 

(rM-i) v(m-); x(4) x(5) dx(4) dx(5) 
- 9r([Vi ,v ;x ,x]Id dx 

Thus, using (2.1), 

e < 2 
A (n- ) X 

* 

and an estimate of I(G(n)(r))8\G n)(r)l follows by Lemma 2.3. The same esti- 
mate is valid for I G9n) (r)\(GNn) (r)) . Then, since 

K(n -) (r)) = K(F( n) (r)) , 
the desired conclusion is a consequence of Lemma 2.7. 0 

Using (2.21) together with the results of Lemmas 2.3, 2.6, 2.7, and 2.8, we 
obtain the following bound for A(n) (r) . 
Lemma 2.9. The error term (2.7) satisfies the inequality 

jA n(r)l < ((4. 6 /2 + 2)(282 + 4OQt(n-1) 

(2.33) + 22((4. 51/2 + 2)(90 + 9Qt(n-1)) + 1) 

*(n -l)D(n-I)N(X(n-l)N) ) + 2)nDnN(XnN) 

We are now able to prove the convergence of the QMC method. Consider 
the Boltzmann equation in R+ x (0, T). We divide the time interval (0, T) 
into P subintervals of length At. 
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Theorem 2.1. Let S be a subset of N2, and let the following conditions hold: 

(i) lim D*(V ), v2fo) = 0, 

(ii) lim max nDflN(x)1/6l = O. 
(N,P)ES,N&P--+oo 1<n<P n N 

Then 
(2.34) lim max D fn) = 0. 

(N, P)ES, N&P-.oo 1<n<P 

Proof. If we use equation (2.9) and estimates (2.1 1) and (2.12), we obtain the 
inequality 

D(V(n), V2f ) lQ *(n ())2 n) IlQt ~V2f 

(2.35) +iAt e v l(v, t) dv dt 
QJ (nI-t1) (m 

+el' max sup/AN (r)I, n > 1. 
1<m<n r>O 

Using (2.33), we have the result. 0 

Remark 2.3. (i) If estimate (2.35) is used in conjunction with Lemma 2.9, we 
obtain an effective error bound for the QMC method. 

(ii) The *-discrepancy DnN(Xn+ ) can be shown [17] to satisfy the inequality 

(2.36) DnN(Xn+N) < 1 ( max PDP(X) + 1 nN 1<P<nN/ 

(iii) Halton was the first to show [6] that for any dimension s > 1 there 
exists a sequence H of points in I' with 

(2.37) Dp(H) = O((lgP)S) P > 2 

and it is a widely-held belief that the order of magnitude in (2.37) is best pos- 
sible. 

3. COMPUTATIONAL RESULTS 

Computer implementation of the QMC method requires some sequence X 
which satisfies conditions (1.18) and (1.18'). The construction of X is based 
on the theory of (0, s)-sequences, which was developed by Niederreiter [17]. 
We propose here an algorithm for generating (0, s)-sequences, which is suited 
to vector computers. Then a convenient sequence X is constructed by a sym- 
metrization of a (0, 5)-sequence. Its *-discrepancy is estimated by means of 
the *-discrepancy of the (0, 5)-sequence which is used. 

Let s > 1 and b > 2 be integers. An elementary interval in base b is an 
interval of the form 

s 0a(i) a(i) + 1 < 

with integers d, > O and integers O < a(i) < bd, for 1 < i < s. 
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Let m be an integer. A point set {xl, ... , xb} c Is is a (0, m, s)-net 
in base b if A(J, X) = 1 for every elementary interval J in base b with 
IJI= b-m 

A sequence xl, x2, ... of points in Is is a (0, s)-sequence in base b if for 
all integers k > 0 and m > 0 the point set {xp: kbm < p < (k + 1)bm} is a 
(0, m, s)-net in base b. 

The *-discrepancy of the first P terms of a (0, s)-sequence in base b > 3 
can be shown [17] to satisfy 

+1 S (- 1) (k+ 1) b k)0j 

where P > 1 and the integer k is determined by b k < P < bk+l. 
Faure was the first to show [5] that for any prime b and any s < b there 

exists a (0, s)-sequence in base b. Let Fb be the set {0, ... , b - 1} endowed 
with the field structure induced by the arithmetic of integers with reduction 
modulo b. We can choose s distinct elements b1, ...,bs of Fb. For p > 1 
let 

00 

(3.2) p - = Eaj(p)b, aj(p) E Fb, 
j=O 

be the representation of p - 1 in base b. We define yp= (y(l),* y(s)) by 

00 

y(i) b'' -j 1 < i < s 

j=l 

with 

(3.4) y,j =E j-1 bi ak(P) E Fb 1 < i <S, j > 1. 

We propose an algorithm for computer generation of Y = {y,, p > 1 } 
that generalizes an algorithm used for generating the Halton sequence [12]. Let 
A > 1 be an integer and v = bA. The point sets 

Y (n) = {y : nv- < p < (n + 1)v}, n > O, 

will be successively generated: 

(i) Computation of Y(O). Let 1 < m < b and 1 < 1 < A be integers. For 
any integer p, mbl < p < (m + l)bl, the representation of p - 1 in base b 
can be deduced from the representation of p - mbl - 1. Hence, for 1 < i < s 
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the digits of j() in base b are related to the digits of y(l) by 

(3.5) b + b m, < < I + YJ 1 ,p1?b<1+1. 

Relation (3.5) leads to recurrences regarding arrays of growing length: 

(YW ... ,Y( I }), 1<i<s, 1<j<?l+1,l <<A. 

(ii) Computation of y(n), n > 1. Let 

n 

n = Zaj(n + 1)bj 
1=0 

be the representation of n in base b . For any integer p, nv < p < (n+ 1)v, the 
representation of p - 1 in base b is related to the representation of p - nv - 1. 
Itfollowsthat, for 1 < i<s and 1 <j <i+n'+ 1, 

(3.6) W Wy,.~ + 1). (3.6) Yp,j YP-nv,j + (- )bi ak-A(n + 1). 
k=max(j-1, A) 

If the digits W 1 <i < s, 1 <p <v 1 <1j< , are stored, (3.6) is used 
for computing the following integer arrays: 

(YM>lj *. * *,YWnl>j 1 < i < s, 1 < j < A + n /+ 1. 

To use the QMC method, we consider the case s = 5 and b = 5. We select 
the number N of simulated molecules in the form N = 2bA, where A is some 
integer, and we set v = bA. If Y is a (0, 5)-sequence in base b, then another 
sequence X of points in I5 is constructed by the following procedure. For 
m > 0, define 

(3.7) p (2 ~ + Lv +* 1) , 2)L+ ( )4) 

2P+ (YyPJ + 1)) 

(where p* = p - mv), if 2mv < p < (2m + 1)v; 

(3.7') (~ (~+ LvY~)J) 1 (2)L LvY*J+1) j 
1- Lv ( + [yy)J + 1)v 

(where p* = p -(m +1)v), if (2m +1)v < p?<2(m +1)v. 
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Conditions (1.18) and (1.18 ') are obviously satisfied by X. Observe that no 
point of X lies in [iNI, i)2 x I3, 1 < i < N. Consequently, 

(3.8) a molecule cannot collide with itself, 

(3.9) Dp(X)-> P> 1. 
N' 

In fact, the *-discrepancy of X can be estimated by means of the *-discrepancy 
of Y. 

Lemma 3.1. The *-discrepancy DnN(X) of thefirst nN terms of X satisfies 

(3.10) D3N(X) ?D * 2 n > 1. 

Proof. Let n = 0% ajbb be the representation of n in base b. We split up 
the point set XnN = {xp: 1 < p < nN} into the point sets 

X],k={xp:nJ,kN<p<(nJ +l)N}, 0< j?n,0 <k<ajbj, 

where 
n 

nj,k k + E aib'. 
i=j+l 

Similarly, the point set Y,z, = {yp: 1 < p < nv} can be split up into the point 
sets 

Yi,k ={yp: nj,kv < p < (nj,k + l)v}, 0?I?n, 0?k<ab. 

Let J = Hi=1[0, U(i)) be a subinterval of I5. For h = 1, 2 consider the 
intervals 

Jh= f 4h 
i=l 

with 

Jh) [?,max (Lv 2u( _ [vh(h)j + )) 

= [o, mmn ( Lvu% + 1 2() Lvu(&)J)) 

(where g= 1,2 and~g #h), 
(2) ( v g L)vu 
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Lvu (5) 
_5 Lvu________ J() =[0, max ( L , 2u( ) L +1)), 

[1 - u 1 ) if LVU(5)J =MU(5) 

(5) = ] - u(5) + Lvu , 1) if Lvu(5)J < vu(5) < Lvu(5)J + 

l [ Lvu(5) +1 ) if Lvu(5)J + 2 < Lvu(5)i +1 

Then 

A(J, XJ,k)= A(Jl, Yj,k)+ A(J2, YJ,k), O?j?n, O?k<a1b1, 

and 

121JI - IJ11 - IJ211 < I,V2. 

Finally, we observe that 

IA(Jh, Ynv)-nvIJhIlI < hnvD,(Y) h = 1, 2, 

and the required result now follows. o 

Next we consider the question of approximating the initial velocity distri- 
bution. It has been shown [9] that DN(X) > 1/2N for any N numbers 

XI ... , XN in I, and that the lower bound is attained for the point set 

(3.11) U={(2i- 1)/2N: 1 < i<N}. 

The function 

(3.12) FO: v -/ u2fo(u)du 

is a strictly increasing function from R+ onto I, and so the inverse function 

Fo = Go exists. We define the initial velocities by 

(3.13) v(?) = Go((2i- 1)/2N), 1 < i < N. 

It is easily seen that 

(3.14) D*(V(?), v2f0) = D>(U) = 1/2N. 

We wish to assess the accuracy of the QMC method through computation 
of effective errors in an example where an exact solution is known. Krook and 
Wu [8] have discovered an exact solution of the Boltzmann equation, in the 
simplified case to which the present analysis is restricted. The solution was 
obtained by assuming 

(3.15) f (v) =20 ( 5)3/ v2exp ( v2), v E R+ 

(3.16) q(g)=6, geR+. 
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Then 

(3.17) f(v, t)= 2 (5H(t)-3+ 1-H(t) v2) 
(27r) 1/211(t)512Ht 

eP( 2H(t)) V v, t E R+ 

where H(t) = 1 - 52 exp(-t). 
The system is near equilibrium at T = 1.5, so that computations were car- 

ried out up to T = 1.5. We examine the effects of the number N of simulated 
molecules and the number P of time steps upon the accuracy of the approxima- 
tion. These effects are examined by computing the errors DN(V(P), V2fp) . For 
reasons of comparison we also applied the KMC scheme. A KMC calculation 
is based on pseudorandom numbers. Sequences of pseudorandom numbers are 
generated here by the routine G05CAF of the NAG [13]. The routine uses a 
multiplicative congruential method and the period of the generator is 2 . All 
computations were carried out on a CYBER 180-990 computer. The values of 
D*(V(P), V2fp) are listed in Table 1 for the QMC method and in Table 2 for 
the KMC scheme. The corresponding timing results are given in Table 3 for the 
QMC method and in Table 4 for the KMC scheme. From the results presented 
in Table 1, the following observations can be made: (i) for all P, the error of 
the QMC method regularly decreases if the number N of simulated molecules 
increases, (ii) for each N, the error is oscillating when the stepsize decreases. 
It is also true that, in general, high accuracy is obtained for large P. On the 
other hand, from Table 2 we see that (i) for all P the error of the KMC scheme 
irregularly decreases as N increases, (ii) for each N the error is oscillating as 
P increases. Unlike in Table 1, very poor accuracy is obtained for large P. For 
all P it is clear that the QMC solution converges to the exact solution faster, 
for an equal number of simulated molecules, than the KMC solution. More- 
over, it may be concluded from Tables 3 and 4 that the QMC method shows a 
substantial gain in efficiency (higher accuracy at the same costs) when compared 
with the KMC scheme. 

TABLE 1 

The Dk(V(P), V2fp) values for the QMC method 
N 10 50 250 1250 6250 31250 156250 

P 
16 2.80E - 1 9.05E - 2 3.09E - 2 1.05E - 2 4.36E - 3 2.19E - 3 1.34E - 3 
32 2.32E - 1 6.12E - 2 2.46E - 2 1.03E - 2 5.29E - 3 1.85E - 3 1.13E - 3 
64 1.98E - 1 5.39E - 2 2.71E - 2 1.29E - 2 4.86E - 3 1.60E - 3 6.24E - 4 
128 2.65E - 1 1.03E - 1 3.61E - 2 1.13E - 2 4.21E - 3 1.68E - 3 8.36E - 4 
256 1.94E - 1 8.36E - 2 2.73E - 2 1.33E - 2 3.98E - 3 2.15E - 3 6.23E - 4 
512 1.80E - 1 7.05E - 2 3.31E - 2 1.13E - 2 3.44E - 3 1.45E - 3 5.18E - 4 
1024 1.81E - 1 6.41E - 2 2.19E - 2 1.36E - 2 4.21E - 3 1.30E - 3 4.48E - 4 
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TABLE 2 
The DN( V(P), V2fp) values for the KMC scheme 

N 10 50 250 1250 6250 31250 156250 
p 

16 1.85E - 1 6.76E - 2 4.79E - 2 3.39E - 2 7.73E - 3 3.12E - 3 1.35E - 3 
32 2.33E - 1 9.03E - 2 6.64E - 2 2.29E - 2 8.70E - 3 4.19E - 3 2.15E - 3 
64 1.87E - 1 1.12E - 1 4.81E - 2 2.69E - 2 7.44E - 3 6.35E - 3 1.41E - 3 
128 2.09E - 1 6.15E - 2 3.67E - 2 2.56E - 2 8.81E - 3 4.77E - 3 l.51E - 3 
256 2.06E - 1 6.20E - 2 3.70E - 2 2.30E - 2 8.44E - 3 2.53E - 3 1.31E - 3 
512 2.62E - 1 9.93E - 2 7.76E - 2 2.OOE - 2 9.12E - 3 2.02E - 3 1.95E - 3 
1024 1.73E - 1 1.36E - 1 6.40E - 2 2.74E - 2 1.O5E - 2 5.91E - 3 1.57E - 3 

TABLE 3 

CPU times in seconds for the QMC method 
N 10 50 250 1250 6250 31250 156250 

p 
16 .01 .04 .22 1.21 6.64 35.85 193.84 
32 .01 .06 .30 1.68 9.53 52.81 293.65 
64 .02 .08 .44 2.60 15.30 87.00 492.64 
128 .03 .13 .72 4.44 26.86 155.41 892.96 
256 .07 .24 1.31 8.16 50.11 294.28 1697.21 
512 .13 .45 2.46 15.57 96.48 571.24 3311.92 
1024 .28 .90 4.82 30.56 189.29 1128.63 6623.83 

TABLE 4 

CPU times in seconds for the KMC scheme 
N 10 50 250 1250 6250 31250 156250 

p 
16 .01 .04 .19 .93 4.71 23.49 117.97 
32 .01 .05 .23 1.13 5.70 28.60 146.45 
64 .02 .06 .31 1.54 7.84 39.34 204.99 
128 .02 .10 .47 2.35 11.79 60.75 315.77 
256 .04 .17 .81 4.07 19.96 123.82 537.47 
512 .07 .30 1.45 7.16 36.51 185.83 989.33 
1024 .13 .57 2.79 13.65 69.09 352.59 1823.71 
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