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ON A CERTAIN (MOD 2) IDENTITY 
AND A METHOD OF PROOF BY EXPANSION 

RICHARD BLECKSMITH, JOHN BRILLHART, AND IRVING GERST 

Beauty is often the child of imperfection 

ABSTRACT. We prove the congruence 

(1-xn =) (xn(3n+2) + x7n(3n+2)+2) (mod 2) 
n=l -00 

n 7 (mod 14) 

by first establishing a related equation, which reduces to the congruence modulo 
2. The method of proof (called "expanding zero") is based on a formula of the 
authors for expanding the product of two triple products. A second proof of the 
result more fully explicates the various aspects of the method. A parity result 
for an associated partition function is also included. 

1. INTRODUCTION 

In two previous papers [1], [2] we proved a collection of identities which 
had initially been discovered as (mod 2) congruences during a computer search, 
but which were later found to be equations over the integers when certain signs 
in them were changed. All these congruences led to parity theorems for the 
corresponding partition functions. (Cf. [3, Table 2].) 

In this paper we prove another (mod 2) identity, discovered during the above- 
mentioned computer search, viz: 

Theorem 1. There holds 
00 00 

(1 1Xn) _ ,(Xn(3n+2) +X7n(3n+2)+2 ) (mod 2). 
n=1 -00 

n-7 (mod 14) 

(Throughout this paper congruences will be understood to be (mod 2).) 
Unlike the (mod 2) identities in [1] and [2], however, we found that this 

congruence had no equation over the integers of the same form standing behind 
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it. (This conclusion was reached after an exhaustive search failed to find a,n 
fln I and en equal to ? 1 for which the equation 

00 00 

E(alnx n(3n+2) + fln X7n(3n+2)+2)= II (1 +e nx n) 
-oo n=l 

n$7 (mod 14) 

holds. (Cf. [2, ?6].) However, since the identities proved in [1] and [2] were of 
interest in themselves and easily implied the mod 2 results, we take as our first 
task here the discovery of an equation that is equivalent to (1) modulo 2. This 
is accomplished in ?2, where the desired equation (9) is derived. Also presented 
in ?2 is the partition parity result associated with (1) (Theorem 3). The rest of 
the paper is then devoted to proving (9). (Actually we present two proofs and 
a discussion of the methods employed.) 

The first proof is given in two parts in ?3. The first part contains a transfor- 
mation of (9) into equation (16) by means of the expansion formula developed 
in [2] and first used there. The second part contains the transformation of equa- 
tion (16) into equation (17), which in turn is changed into the final equation 
(20). Equation (20) is then proved using a device we call an "expansion of zero". 
Since all of these steps are reversible, we have that (9) *-* (16) - (17) +-* (20). 

In ?4 we derive a further expansion formula and discuss other expansions 
of zero. The second proof of (9) is then presented in ?5. Although this proof 
employs the same ideas as the proof of (20), it establishes (9) without the use 
of the quintuple product. Since the second proof is more elaborate, we follow 
it in ?6 with a discussion of the ideas and analytic methods which were used in 
constructing that proof, such as the two algorithms, Forward and Backward, 
that allow us to discover which expansions are available to use. The second 
proof was primarily presented here to show that a proof of equation (9) (and 
similar identities) could be found in a somewhat systematic way and that the 
large number of terms which were generated by the expansions in the proof 
could readily be managed by using a computer. 

2. THE DERIVATION OF AN EQUATION THAT IMPLIES CONGRUENCE (1) 

We begin by recalling some material from [2, pp. 302-303]. Let r1, .. ., rt be 
distinct residues modulo m and let S = {n E Z+: n _ r1, ... , rt (mod m)}. 
Then (rl, ... , rd)m will denote the infinite product FlESO(1 - xn) and 

[r, , ... , rt]m will denote HnEs(1 + xn). 
For 5, e E {0, 1}, we define the four one-variable T-functions by the for- 

mula 
T X,1) _def a -L_ne kn2+In 
Tl 2+ X = ' ( 1) x 

-00 

00 

(2) = l_ [1-(_,)n3X2kn][ + 1)n3+e 2kn-k+l 

n=l 

. [1 + (_ )(n+1)6+ex2kn-k-l], 
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the Jacobi triple products being expressed concisely in the above notation as 

TO(k, 1) = (O)2k[?(k 1)-2k 

(3) T1(k, 1) = (0, ?(k - 1))2k ' 

T2(k, 1) = (0, ?(k + 1))4k[?(k - 1), 2k]4k, 
T3(k, 1) = (0, ?(k- 1))4k[?(k + 1), 2k]4k. 

(For simplicity we usually write T for To.) 
We also have the Gauss formula [2, (13)] 

(4) 1 = (O)2n = T(2n, n). 
2 2/ ()2 

To begin the derivation, we use (2) in (1), obtaining 
00 00 2 002 

(1 _ Xn)--1n )3n +2n 2 nx2(_ 1)nX21n +14n 

n=1 -00 -00 
n07 (mod 14) 

=T1(3, 2)+x2T1(21, 14). 

Writing all the terms in product form gives 

(0,? ),+ 2 _ 
,(0)1I (5) (0, ?1)6+X (0, ?7)42 (())4 

Next, by [3, Ex. 4] and [2, (18)], we have 

1 _ 1 
(?1)6 (?1)3(0)6(6)12 (?1)3 

and its companion (by x -* x7 ) 

(?7)42=(?7)2. 

Thus, (5) becomes 

(0)6 + x2 (0)42 - () I _ (?)14(?)1 

(?1)3 (?7)21 (7)14 (0, 7)14(0)1 

(?)14(?)2_ (0)14(0)2 

(0)7(0)1 (0)21 (?7)21(0)3(? 1)3 

Clearing fractions gives 

(6) (0)21 (?7)21(0)3(0)6 + X2(0)42(0)21(0)3(? 13 (0)14(0)2. 

By [2, (18)], we have (0)3-= , and so (0)221 1 Th21b 

( 7) (?)21?(+ 7)21 ((0)6 + X 2 (0)42 (7) ~~(0)21(?721 +x) 242(0)3(?1)3 (0)14(0)2. 
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As this congruence stands, it is not an equation, which can readily be determined 
by comparing the power series expansions of the terms on the two sides. But 
one finds, after numerous trial sign changes, that the following is an equation: 

(8) (0)21[?7]21 (0)6 2 (0)42 3[1]3 = (0, ?14)42(0, ?2)6. (0)1 
[712(~_)6 ( 2 1)42 

03?1)4( 

(Working with power series, one finds that the two sides of (8) agree up to 
degree 1000, which implies heuristically that (8) is an equation.) Using (3) and 
(4), we can express (8) in terms of T-functions, thereby obtaining an equation 
of the kind we wished to derive: 

Theorem 2. We have 

T9 T(21l 2 ) T(3 3)-_X2 T(221 2 21) T(32 1) =2TI(21, 7)TI(3, 1). 

Two proofs of Theorem 2 are given respectively in ??3 and 5. It is also clear 
from the way that (9) was derived from (1) that congruence (1) will be true if 
equation (9) is shown to be true. 

Before proceeding to the proof of Theorem 2, we will give two consequences 
of Theorem 1. Recall the definition of the Q-function and the Quintuple Prod- 
uct formula in our notation [2, p. 304], viz. 

00 
m( 2.n def ~ 2 3kn 3kn+k 

Q(m, k) LefEX (X -x 
-oo 

(10) ~~= T (3m m-_3k)-x T (3m ' m + 3k) 

= (O, ?k, ?(m - 2k), ?(m - k), m)2m 

Corollary. Let S = {n E Z+ n # 21 (mod 42)}. Then 

x (1 xn) = E(X3n+) + x 7(3n+l) )Q(6 1) + Q(42 7). 
nES -00 

Proof. Replacing x by x3 in (1) and then multiplying by x gives the first 

congruence. Then (10) gives 

?? g2 ?? 2 00 2 

Q(6, 1 ) = Zx~ -E x(3n+l)- 1 + Zx(3n+l) 
-00 -00 -00 

from which the second congruence follows. o 

Theorem 3. Let S = {n E Z+: n _ ?(1, 3, 5, 9, 11, 13), 14 (mod 28)} and 
let p(S; k) denote the number of partitions of k whose parts lie in S. Then 
p(S; k) is odd if and only if k = 3n2? n or 21n 2?7n+2, n>O. 
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Proof. Using the algorithm in [3, ?4] for finding the Euler reciprocal (mod 2), 
we discover that 

1 _ (O, ?2, ?4, ?6)14(?l, ?3, ?5, 7)24 

(O, ?1, ?2,? ?3,? 4, ?5, ?6)14 (O, I?, L2, ?3, ?4, ?5, ?6)14 

=(?1, ?3, 5)4(7)24 (?,3, ?5, ?9, l 1, ?13, 14)28 (mod 2). 

Thus, congruence (1) implies 

00 
)X 

I 1 00 
n 

I + Z7p(S; k)x F 1 _J x" I (- ) 
k=1 nES n=l 

n$7 (mod 14) 
oo 

- + (xn(3n?1) + X7n(3nl1)+2 

n=1 

from which the result follows. o 

3. THE FIRST PROOF OF THEOREM 2 

We begin this section by observing that each term of (9) is the product of 
two T's-two terms with To * To and the third with T1 * TJ . Because of the 
importance of an equation with this form, we introduce the following terminol- 
ogy. 

Definition. A set of terms, or an equation, will be called a " T2 set" or a " T2 
equation", respectively, if each of its nonzero terms has the form ax * Te 
where a is a constant and 61, 62 E {0, 1, 2, 3}. (Our use of " T" here is not 
short for " TO ".) Corresponding terminology will also be used for Q2 sets and 
Q equations. 

In [2, p. 306] we developed the following formula for expanding the single- 
variable product T. (k1, lj)T8 (k2, 12), 61, 62 E {0, I}, into a finite sum of 

terms which form a T2 set. We shall refer to this as "the expansion formula". 
It will be used extensively throughout the rest of the paper. 

Expansion Formula. Let a, b, m E Z+ and (kl,11), (k2, 12) E {(5 L) 

(i, j) E Z+ x Z, i -j (mod 2)} and assume eI, 62 E {0, 1}. If the separa- 
bility condition 

(11) k1b=k2a(m-ab) 

is satisfied, then 

T (k1, l )T (k2, 12) = (-1)e2rXk2r +x2r2 T (K,, L1(r))T3 (K2, L2(r)), 
rER 
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where 
K1 =k +k2a , K2=k2m(m - ab), 

(12) Ll(r) = 11 - 12a - 2k2ar, L2(r) = (2k2r + 12)(m - ab) + 11b, 

a1 = (el + 82a) mod 2, 52 = (elb + e2(m - ab)) mod 2, 

and R is a complete residue system mod m. 

(In (12), the expression x mod 2 denotes the remainder-O or 1-upon 
dividing x by 2.) We should point out that whenever this formula is used, all 
the terms in the expansion have the same K1 , K2 pair and the same 51, 52 

pair, since these quantities are not functions of r. These invariant numbers 
are central to the uses we will make of this formula in the proofs that follow. 
In particular, they show that a T2 equation transforms into a T2 equation. 
(Whenever we list the parameters a, b, m in this expansion, we will write 
them together in the notation [a, b, m].) 

After using the expansion formula, which has m terms, it is important to 
reduce the terms so they can be properly combined. 

Definition. If e E {O, 1}, then the function T,(k, 1) is said to be reduced, or 
in reduced form, if O < l < k. 

Because of the property (cf. [2, (14)]) 

(13) TI(k, -1) = Te(k, 1), e {O, 1}, 

we can assume 1 > 0. (For T2 and T3 we have the formula T2(k, -1) = 

T3(k, 1).) If 1 > k, we can reduce the value in the second argument by ap- 
plying the following single-step reduction formula and (1 3)-over and over if 
necessary-until T is in reduced form. 

Reduction Formula. For k, 1 e Z+, k < 1, and e E {O, 1}, 

(14) xrT (k 1) (-)Xr-X(l-k)IT(k, 2k - 1). 

Proof. From (2) we have 

0? 2 0122 2 

xrT(k, I) = r Z(-1)exkn +1n r (_ 1)(-n-l1)xk(-n-1) +(-n-1) 
-00 -00 

= (-_1 )eXr(1k) .F(- l)enxkn +(2k-l)n 

-00 

= (1)Xr-(l-k) T7(k, 2k - 1). o 

This kind of reduction was used previously in [2, p. 309], where it was worked 
out separately in each case. (The same reduction formula holds for T2 and T3.) 
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Lemma 1. If eE{0, 1}, then 

T8(k, l) = T(4k, 21) + (-l)"x T(4k, 4k-21). 

Proof. This expansion comes from splitting the index values in the sum on the 
left into even and odd parts. 0 

Also, from [2, (15)] we have 

Lemma 2. We have T1 (k, rk) = 0, where k is a positive integer and r is an 
odd integer. 

We are now in a position to give the first proof of (9). 

First Proof of Theorem 2. The proof falls naturally into two parts. 
Part 1. Our purpose here is to use the expansion formula to transform the terms 
of equation (9) equivalently into equation (16), an equation that involves only 
the Q-function defined in (10). 

We first transform the two terms on the left of (9) by the same expansion 
with the parameters [1,1,8]. (Note that (11) is satisfied.) This gives two groups 
of eight T. T terms, so the left-hand side of (9) with the T's reduced becomes 

x 6T(12, l0)T(84,70)+x9T(12, 11)T(84,49)+x 3T(12, 8)T(84, 28) 

+ T(12, 5)T(84, 7) + T(12, 2)T(84, 14) + x T(12, 1)T(84, 35) 

+ x9T(12,4) T(84,56) + x 8 T(12,7)T(84, 77) 

- x 2[x2 T(12,2)T(84, 70) + x 5T(12, 5)T(84,49) 
+ xT(12, 8) T(84,28) + T(12, ll )T(84, 7) 

+ T(12, l0)T(84, 14) + x 2T(12, 7)T(84, 35) 

+ x7T(12,4)T(84, 56) + x 5T(12,1 )T(84, 77)]. 

Since the third and seventh terms in the first group respectively cancel the cor- 
responding terms in the second group, we get the equation 

T( , 7)T(4, 4) - x2T(, Z1 )T(T , a ) 
- T(12, 2)T(84, 14) + T(12, 5)T(84, 7) 

+ x 3T(12, 1)T(84,35) + x 9T(12, l l)T(84,49) 

(15) +x 6T(12, 0O)T(84, 70)+x 8T(12, 7)T(84, 77) 

- x 2T(12, lO)T(84, 14) _ X2T(12, 11)T(84, 7) 

- x 4T(12, 7)T(84, 35) - x 7T(12, 5)T(84, 49) 

- x 4T(12, 2)T(84, 70) - X17T(12, 1)T(84, 77). 
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Rearranging and grouping the terms on the right of (15), we obtain 

T(,21 7 )T(3, 3) - x2T(21, 221)T(3 , 2) 2 2 2 2 2 
~2 7 

= [T(12, 5)T(84, 7)-x 2T(12, 11)T(84, 7)-x T(12, 5)T(84, 49) 

+ x 9T(12, 11)T(84, 49)] 
3 

+ x3[T(12, 1)T(84, 35) - xT(12, 7)T(84, 35) 

-x 4T(12, 1)T(84, 77)+x5 T(12, 7)T(84, 77)] 

+-[T(12, 2)T(84, 14)-x2 T(12, 10)T(84, 14) 

-x 4T(12, 2)T(84, 70)+xl6T(12, 1O)T(84, 70)] 
= [T(12, 5)-x T(1 2 , 11)][T(84 , 7)-x T(84, 49)] 

+x3 [T(12, 1)-xT(12, 7)][T(84, 35)-x 4T(84, 77)] 

+ [T(12, 2) - X2 T(12, 10)][T(84, 14) - x14 T(84, 70)] 
=Q(8, 3)Q(56, 7)+x3Q(8, 1)Q(56, 21)+T1(3, 1)T1(21, 7). 

(Here, (10) was used on the first four brackets, and Lemma 1 on the last two.) 
But the T1 's in the third term are also Q's, since T,(3, 1) = (0)2 = Q(8, 2), 
and so T1(21, 7) = (0)14 = Q(56, 14) (by x -+ x7). If we now equate this 
expression to the left-hand side of (9) (which equals 2Q(8, 2)Q(56, 14)), we 
arrive at the remarkable Q2 equation 

(16) Q(8, 3)Q(56, 7) + x3Q(8, 1)Q(56, 21) = Q(8, 2)Q(56, 14). 

Part 2. Our next purpose is to transform (16) into (17) and then to prove (17) 
by using the expansion formula and an expansion of zero. 

To begin, write the six Q's in (16) in their product form using (10), viz. 

Q(8, 3) = (0)8(?2)16(?3)8 = (?1)8(?3)8 * (?)8118 

Q(8, 1) = (0)8(?6)16(?1)8 = (?1)8(?3)8 * (0)8[?3]8 s 

Q(56, 7) = (?7)56(?21)56 * (0)56[?21]56, 
Q(56, 21) = (?7)56(?21)56 *(?)s6[7] 
Q(8, 2) = (0)2 and Q(56, 14) = (0)14. 

Substituting these products into (16), dividing by (?1, ?3)8(?7, ?21)56, and 
using (3) gives 

T(4,3)T28, )+xT(4 (0)2(0)14 -(0)2(0)14 T(4, 3) T(28, 7) + x3 T(4, 1 ) T(28, 2 1) = ()()4()()1 1)T(2,21)=(?1, ?3)8 (?7,~?21)56 (1)2(7)14' 

By (4), we have X0}:= T( ,) and {} = 2T(4, 7). Substituting these into 
the term on the far right, we obtain the new equation 

(17) 4T(4, 3)T(28, 7) + 4x3T(4, 1)T(28, 21) = T(2, 4)T(7 4 7). 
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Note that the terms on the left of (17) have the k-pair k1 = 4, k2 = 28, while 
the term on the right has k1 = I, k2 = 7. This difference suggests the following 
question: Can the right-hand side of (17) be expanded to produce terms with 
the k-pair (4,28) or (28,4)? The answer is "yes"; for if we take k= 7, k2 = 
with the parameters [1,1,8], we find that 

(18) T(7 :)T(I l) = Ex (+rT(4, 3 -r)T(28, 7r +7), 
r=-4 

or after reducing, 

6 T(2, 2 )T(I , 1) =2T(4, 3)T(28, 7) + 2XT(4, 1)T(28, 21) 

(19) + 2x T(4, 2) T(28, 14) + x T(4, 0) T(28, 28) 
+ T(4, 4)T(28, 0). 

Equating the left-hand side of (17) to the right-hand side of (19) gives 

(20) 2T(4, 3)T(28, 7)+2x3T(4, 1)T(28, 21)-2xT(4, 2)T(28, 14) 

-x6T(4, O)T(28, 28)-T(4, 4)T(28, 0) = 0. 

Now observe that the terms on the left of (20) are the same as those on the 
right of (19) except for the minus signs. Also note that the negative terms occur 
in the sum in (18) at the odd values of r. Thus, (20) can be written as the 
alternating sum 

3 

(21) Z(-1)rxi (r +r) T(4, 3-r)T(28, 7r + 7) = 0. 
r=-4 

But this equation is valid since the left-hand side results from applying the 
expansion theorem to T1 (2 2) T, ( I I) with parameters [1,1,8], and the latter 2' 2 12' 2 armtr[118,adheltr 
product is zero by Lemma 2. This establishes equation (9). Dl 

Remark. In the rest of this paper the phrase "expansion of zero" will be used 
to designate a linear sum of T2 terms, say f(x), which arise by applying the 
expansion theorem to a single TT term which is identically zero. Then the T2 
equation f(x) = 0 holds. Thus, the left-hand side of (21) is an example of an 
expansion of zero. 

4. AN EXTENSION OF THE EXPANSION FORMULA 

We begin this section by stating an important property of T3(k, 1). 

Lemma 3. We have T3( , rk) = 0, if k is a positive integer and r E 1 (mod 4). 

Proof. The argument is essentially the same as that given in [2, (15)]. a 
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We will also use this result as part of another expansion of zero. The problem 
with doing this, however, is that the expansion formula in ?3 only gives expan- 
sions for the four products Te TE , where , e 82 E {O, 1}. Thus, to be able 
to have an expansion of zero involving T2 or T3, we must consider whether 
there is an expansion formula for Tf Te, when e1, 62 E {O, 1, 2, 3}. If one 
examines the other 12 of the 16 possible products, it becomes clear that there 
is no expansion in some cases. Since further conditions on the parity of a, b, 
and m (and in some cases even more complicated conditions) are required for 
other expansion formulas to exist, we will not go into this more general question 
here. Instead we will confine our discussion to the case we will actually use in 
the second proof of (9). 

Theorem 4. Let a, b, and m E Z+, where a 2 (mod 4), b 1_ (mod 2), 
and 4 1 m. Also, let (kl, 11), (k2, 12) E {(1, ):(i, j) E Z+ x Z, i = j 
(mod 2)} . If the separability condition 

k1b = k2a(m - ab) 

is satisfied, then 

T k I T k I -F 1 ~r(r- 1)/2 k2r2+12rT 1(k 11) T3(k 2 12) (-1 ) /x T(K1', l(r)) T(K2 L2(r))' 
rER 

where 
2 K1 = k1 + k2a, K2= k2m(m - ab), 

L1(r) =11 - 12a - 2k2ar, L2(r) = (2k2r + 12)(m - ab) + 11b, 

and R is a complete residue system mod m. 

Proof. The proof is substantially the same as the proof in [2, pp. 306-307]. 
Here, however, the exponent of (-1) in the definition of T3 is quadratic in n, 
so the way it transforms when the variables are changed in the proof is more 
complicated than before. In particular, we have 

T, (kl, 11) T3(k2, 12) = Z(-1)ixk i 2+11 i ZQ 1)i(iU1)/2xk2i2+l2i 
i i 

= Z(- 1)i(ij 1)/2+i k1 i2+11 i+k212+12j 

i,j 

After carrying out the three transformations in the proof (viz. j = n - ai, 
n = sm + r, and i = t + bs ) on just the exponent of (-1) (the rest is the same 
as before), we find that the sign in the final sum is determined by 

(22) (-1 )t+bs+ [r+(m-ab)s-at]lr-1+(m-ab)s-at] 
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Separating this power into its r, s, t, and st factors, we find this is 
1 )r(r- 1)/2 1 bs+(m-ab)rs- i (m-ab)s+ I (m-ab)2s2 
(- ) (- ) 

(-1 )t-art+jat+a2t (-1 )-a(m-ab)st 

Since a is even, the fourth factor equals 1. Also, since b is odd and m - ab 2 
(mod 4), then 

(-1)bs+(m-ab)rs- i (m-ab)s+t(m-ab)2s2 )S++s+o 

and 
(-1)t-art+jat+jat= (-1)t+O+t+O 1 

Thus, the sign in the sum indexed by r is given by (-_1)r(r- 1)/2 while the signs 
in the sums indexed by s and t are all plus, so the expansion contains only 
TO's. 0 

5. THE SECOND PROOF OF THEOREM 2 

We begin this section by introducing some useful terminology. 

Definition. A T2 set, or a T2 equation, will be called balanced if the (k1, k2)- 
pair in each of its terms is the same. We will also say that the set or equation 
is balanced "at (k1, k2) ". 

For example, equation (20) is balanced at (4, 28). By analogy, one might 
also say that equation (16) is a " Q2 equation balanced at (8, 56)". 

In this section we will prove (9) without first transforming it into a Q2 equa- 
tion. Nonetheless, we will still use the two ideas in the proof of (17), viz. (i) the 
expansion formula is employed to change a T2 set into a balanced T2 set; (ii) 
this balanced set is, then shown to be zero by grouping its terms into subsums, 
each of which is an expansion of zero. Although the ideas in this proof are the 
same as in the first proof, the new proof is more complicated because of the 
large number of terms that must be dealt with. 

Second Proof of Theorem 2. Our goal here is to verify equation (9) written as 

(23) T(21 , 7) T( 2, 3) _ X2 T(22 , 22)T(3 , ) - 2 T1 (21, 7) T1 (3, 1) = 0. 

The first step is the same as the beginning of the proof of (15): Expand 
T(21 , 7)T(3, 3) and x2 TiQ21 , 221)T(3 T ) with [1, 1, 8] and cancel terms in 
T(21 ) 7)T(3 , 3) - X2 T(21 , 21)T(3 , I) to obtain (1 5). Next, expand all but 
the first and fifth terms on the right side of (15) with k1 = 84, k2 = 12 and 
[1, 1, 8]. Expand the first and fifth terms in (15), i.e., T(84, 14)T(12, 2) and 
x6 T(84, 70)T(12, 10), with k1 = 84, k2= 12 and [7, 1, 8]. (For conve- 
nience, we write the factor T(96, *) first in the T. T pairs in the second ex- 
pansion.) We now write Ai(x) and Bi(x) , 1 < i < 48, for the surviving terms 
in the expansions of T(21, 7 )T(3 , 3) and -x2 T( 2, 2 )T(3, I), respectively. 
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Here, each of the 48 Ai-terms (all are positive) and 48 Bi-terms (all are neg- 
ative) have the form x'iT(96, LI1)T(672, L2d). (These are listed in Tables 1 
and 2 respectively.) Expanding the third term, -2T1(21, 7)T (3, 1), in (23) 
with [5, 5, 32] gives the Gi(x) terms of the form ?x'iT(96, LI1)T(672, L2d) 
listed in Table 3. (Each of these appears twice because of the coefficient 2.) 

At this point we have 160 ( = 48 + 48 + 2. 32) terms in the expansion, viz. 

T( 21 , 27)T(3, 23) _ X2 T( 21 , 221) T(3 2 2) - 2TI (2 1, 7) TI (3 , 1 ) 
(24) 48 48 32 

E >ZAi(x) + ZBi(x) + 2EGi(x). 
i=l i=l i=l 

Thirty-two of these positive and negative G.'s cancel with the (positive) A 's 
and the (negative) B 's. (The terms that cancel are indicated by 'C' in Tables 
1 - 3. In Table 3, those G's numbered G1,..., G16 cancel once and those 
numbered G17, ..., G24 cancel twice.) This leaves 96 uncanceled terms in 
the three tables. We next group these terms into three classes labeled "D", 
"E", and "F". The sum of the terms in each of these three classes is zero, 
because each sum is an expansion of zero. In particular, the expansions of 
-2x T1(42, 14)T, (6, 6) with [3, 3, 16], as well as -T (42, 7)23(4, 4) and 
x7T7 (42, 35)7T3(4, 4) with [6, 3, 32], exactly give the groups D, E and F re- 
spectively, i.e., 

16 

-2x 2T (42, 14)T3(6, 6)= 2 E Di(x), 
i=1 

32 

-T1 (42 , 7)7T3(3 4 3) = Ei(x), 
i=1 

and 
32 

x T1(42, 35)773(4, 4) = ZJF(x). 
i=l 

(Note that each of the terms denoted by D appears twice in Tables 2 and 3.) 
Thus, we find that 

T(21 7)T(3, 2 ) _ x2 T(221 221) T(3, 5 ) - 2TI (21,~ 7) T, (3, 1) 
16 32 32 

2EDi(x) + E,(x) + EF(x) 
i=l i-1 i=l 

- -2x2T, (42, 14)T (6, 6) - T1(42, 7)T3(3, 4) 
+x7T1(42, 35)T3(4, 3) = o 

since each term in the final trinomial is zero by Lemmas 2 and 3 with r = 1. 
This establishes (9). a 
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TABLE 1. Ai(x) = xaJT(96, L1j)T(672, L2d) 

All the terms in this table are positive 

T(84, 14)T(12, 2), [7, 1, 8] T(84, 7)T(12, 5), [1, 1, 8] 

i type ar L1i L2i i type ar L1i L2i 
1. E 0 16 0 9. C 0 2 42 

2. F 10 8 168 10. F 7 26 126 
3. F 14 40 168 11. F 17 22 210 
4. F 44 32 336 12. C 38 50 294 
5. F 52 64 336 13. C 58 46 378 

6. F 102 56 504 14. F 93 74 462 
7. F 114 88 504 15. F 123 70 546 

8. E 184 80 672 16. C 170 94 630 

x 3T(84, 35)T(12, 1), [1, 1, 8] x 9T(84, 49)T(12, 11), [1, 1, 8] 

i type ar L1i L2i i type a& L1i L2i 
17. E 3 34 42 25. E 9 38 126 

18. C 14 58 126 26. C 10 62 42 

19. C 16 10 210 27. C 32 14 294 

20. E 49 82 294 28. E 35 86 210 

21. E 53 14 378 29. C 70 82 378 

22. C 98 86 462 30. E 79 10 462 
23. C 114 38 546 31. E 119 58 546 

24. E 157 62 630 32. C 150 34 630 

x 16T(84 70)T(12, 10), [7, 1, 8] x 18T(84, 77)T(12, 7), [1, 1, 8] 

i type ar L1i L2i i type a, L1i L2i 
33. F 16 80 0 41. C 18 70 126 

34. E 18 56 168 42. F 23 94 42 
35. E 30 88 168 43. C 30 74 210 

36. E 44 32 336 44. F 37 46 294 

37. E 52 64 336 45. F 59 50 378 

38. E 94 8 504 46. C 80 22 462 

39. E 98 40 504 47. C 112 26 546 

40. F 168 16 672 48. F 147 2 630 
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TABLE 2. Bj(x) =XaiT(96, L1)T(672, L2d) 

All the terms in this table are negative 

x 2T(84, 14)T(12, 10), [1, 1,8] x 2T(84, 7)T(12, 11), [1, 1,8] 

i type ai Lli L2i i type a, L1i L2i 
1. D 2 4 84 9. D 2 4 84 
2. C 4 28 84 10. E 3 20 84 
3. C 24 20 252 11. F 25 28 252 
4. D 30 52 252 12. C 28 44 252 
5. D 70 44 420 13. C 72 52 420 
6. C 80 76 420 14. F 77 68 420 
7. C 140 68 588 15. E 143 76 588 
8. D 150 92 588 16. D 150 92 588 

x 4T(84, 35)T(12, 7), [1, 1,8] x7 T(84, 49)T(12, 5), [1, 1,8] 

i type ci Lli L2i i type ci Lli L2i 

17. C 4 28 84 25. F 7 44 84 
18. E 9 52 84 26. D 14 68 84 
19. F 23 4 252 27. C 24 20 252 
20. D 38 76 252 28. E 45 92 252 
21. D 66 20 420 29. C 80 76 420 
22. F 87 92 420 30. E 65 4 420 
23. E 133 44 588 31. D 130 28 588 
24. C 140 68 588 32. F 135 52 588 

x 14T(84,70)T(12,2), [1, 1,8] x 17T(84 77)T(12, 1), [1, 1,8] 

i type ai Lli L2i i type ai L,i L2N 

33. D 14 68 84 41. F 17 76 84 

34. C 24 92 84 42. C 24 92 84 

35. C 28 44 252 43. D 30 52 252 

36. D 38 76 252 44. E 35 68 252 
37. D 66 20 420 45. E 67 28 420 

38. C 72 52 420 46. D 70 44 420 
39. C 128 4 588 47. C 128 4 588 

40. D 130 28 588 48. F 129 20 588 
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TABLE 3. Gi(x) = ?xa'T(96, L1i)T(672, L2d) 
-2T1(21, 7)T(3, 1), [5, 5, 32] 

Each term occurs twice 

Negative Terms Positive Terms 
i type ai L1i L2i i type ai Lli L2i 
1. CE 0 2 42 17. CC 4 28 84 
2. CF 10 62 42 18. CC 24 20 252 
3. CF 14 58 126 19. CC 24 92 84 
4. CF 16 10 210 20. CC 28 44 252 
5. CE 18 70 126 21. CC 72 52 420 
6. CE 30 74 210 22. CC 80 76 420 
7. CF 32 14 294 23. CC 140 68 588 
8. CE 38 50 294 24. CC 128 4 588 
9. CE 58 46 378 25. DD 2 32 0 

10. CF 70 82 378 26. DD 14 40 168 
11. CE 80 22 462 27. DD 30 88 168 
12. CF 98 86 462 28. DD 42 16 336 
13. CE 112 26 546 29. DD 58 80 336 
14. CF 114 38 546 30. DD 94 8 504 
15. CF 150 34 630 31. DD 102 56 504 
16. CE 170 94 630 32. DD 178 64 672 

6. COMMENTARY ON THE SECOND PROOF 

The problem of putting together the second proof was solved by first finding 
what expansions could be used on the left of (23) and then discovering how the 
resulting terms could be grouped into subsums that were expansions of zero. 
To help in analyzing this problem, we devised two algorithms, Forward and 
Backward. 

The variables k1, 1k2, K1 , and K2 used in both these algorithms are positive 
multiples of .. When x and y are rational, the notation x I y means Z is 
an integer. 
Algorithm Forward. Given kl, ck2, and bound M. Find all values of K1, 
K2, a, b, and m < M that satisfy ( 11) and the first two equations in (12). 

for m = 2 to M do 
for a = 1 to m - 1 do 

2 
K1 = kl + k2a 
if K1 I ak2m then 

b= Ki , K2 =k2mm-ab) 
output K1, K2, a, b, m 
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Proof. To verify the algorithm, we need only show that ( 11) is satisfied: 

b=ak2m =- b(k1+k2a2)=ak2m =- k1b=k2a(m-ab). o 
K1 

The Backward program is somewhat more elaborate, but needs no bound, 
because, given Ki and K2, the formulas in (12) clearly show that only a finite 
number of positive integers can satisfy them. 

Algorithm Backward. Given K1, K2. Find all possible values of k1, k2, a, 
b, m that satisfy (11) and the first two equations in (12). 

for a such that 1 < a < K1 do 

for k2 such that 2 < a2k < K1 and k2 K2* do 2 - 2 
k K1 - k2a2 

k7K 2 
if k = s , a perfect square, then 

b=as, m= aK 

output k1, k2, a, b, m 

Proof. Since K1 = k1 + k2a2 and k1, k2 > 0, the right-hand side in this equa- 
tion is > 0, so there are at most a finite number of values for k1, k2 and a for 
which the equation holds. We must show that the numbers k1, k2, a, b, and 
m satisfy the required conditions. There is nothing to prove for k1, consider- 

2 a2k7K a2k K 
ing how it was obtained. Toshow(1): b = bK X ak m. 

kiK b1 bk-- =a2m 
Thus, 

b(k1 + k2a ) = ak2m ==* k1b = k2a(m - ab). 

The second equation in (12) now follows, since 

bk m 
bk m = ak2m(m - ab) == k2m(m - ab) = =K2. ? 1 ~~~~~~~~~~a 

Used together, these programs allow the tracing of composition "paths" 
starting with (k1, k2) and ending at (K1, K2)-through all possible interme- 
diate pairs, which are discovered by using Backward on (K1, K2). Our first 

problem is to turn the T2 equation (23) into a balanced equation. The ques- 
tion is: At what K-pair should the equation be balanced? In the first proof we 
were able to expand just the right-hand side of (17) to balance the equation at 
(4, 28). This is the first possibility to consider here: Starting with k - 21 

12' 
k2 = 3 (or kl=2, 23 = 2 ), can we expand to K 21, K2= 3, the K-pair 
of the third term? Using (12), we would have to have either 

21 3 2 2 
21 =-f+-~a = a = 7 ==- a 0Z+ 

*For example, if K2 = 15, then the positive values of k2 such that k2 I K2 are 1, 3, 5, 15, 
1 3 5 15 
2'2'2' 2 - 
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or 3 21l2 2 13+ 
21= + -a a = -== a % Z+. 22 ~~~~7 

Thus, an expansion of just the first two terms of (23) will not work. We therefore 
conclude that all the terms will have to be expanded to terms with a common 
K-pair if equation (23) is to be expanded to a balanced equation. The next 
question is: What are the possible common K-pairs? To determine this, we used 
Forward to find all expansions of (2, 4) with their parameters for 2 < m < 64 
(the complete set of values are listed in Table 4A only for 2 < m < 32 and 
m = 64) and of (21, 3) with their parameters for 2 < m < 32 (these are given 
in Table 4B). These tables show very well just how restrictive condition (11) 
is. Actually, it would be important (and remarkable) if there were always a 
balanced equation to which one could expand from a T2 equation in which all 
the terms cancel directly, making any further proof unnecessary (cf. [2, (37)]). 

TABLE 4A. Forward TABLE 4B. Forward 

k =221, k2 =, 2<m<64 k =21, k2=3, 2<m<32 

K1 K2 a b m K1 K2 a b m 
-+12 84 1 1 8 *24 168 1 1 8 
-84 12 7 1 8 *168 24 7 1 8 

33/2 231/2 2 2 11 33 231 2 2 11 
12 336 1 2 16 *24 672 1 2 16 

*24 168 3 3 16 *48 336 3 3 16 
84 48 7' 2 16 168 96 7 2 16 

33/2 462 2 4 22 33 924 2 4 22 
69/2 483/2 4 4 23 69 483 4 4 23 

12 756 1 3 24 24 1512 1 3 24 
84 108 7 3 24 168 216 7 3 24 

609/2 87/2 14 2 29 609 87 14 2 29 
12 1344 1 4 32 *24 2688 1 4 32 

*24 672 3 6 32 *48 1344 3 6 32 
*48 336 5 5 32 *96 672 5 5 32 
84 192 7 4 32 168 384 7 4 32 

*24 2688 3 12 64 
*48 1344 5 10 64 
84 768 7 8 64 

*672 96 21 3 64 



792 RICHARD BLECKSMITH, JOHN BRILLHART, AND IRVING GERST 

TABLE 5. Backward 

K1 = 672 K2 = 96 K1 = 96 K2 =672 

k1 k2 a b m kI k2 a b m 
-484 12 1 1 8 84 12 7 1 8 
-12 84 1 7 8 84 3 14 1 16 

84 3 2 1 16 21/2 3/2 21 3 64 
12 21 2 7 16 
42 6 3 3 16 

3/2 21/2 3 21 64 
21 3 5 5 32 
42 3/2 6 3 32 

An examination of the k-pairs that are common to Tables 4A and 4B (indicated 
by an asterisk) shows that the smallest such pair is (24, 168) (or possibly (168, 
24)), which occurs with [3,3,16] in Table 4A and with both [1,1,8] and [7,1,8] 
in Table 4B. Thus, there are two possible expansions to examine. To establish 
either of the resulting equations by means of expansions of zero, we must use 
Backward to find all the k-pair "ancestors" of K1 = 24, K2 = 168 (or K1 = 
168, K2 = 24) to use in this expansion. For (24,168), there are the three 
ancestors: 

k1=21, k2=3with[1, 1,8], k1=3, k2=21 with[1,7,8], 

and k 21 5 k =3with[3,3 16]. 12 2 2 [331] 
For (168,24) there is only k1 = 21, k2 = 3 with [7,1,8]. After examining all 
the possible expansions of zero, we find that none of them gives a proof of (23). 

Thus, we must try another, larger K-pair from Tables 4A and 4B. This time 
we chose K1 = 96, K2 = 672 because Backwards gives a large collection of 
ancestors from which we can try to construct a proof. Although m has the 
large value 64 for this K-pair in Table 4A, there is a second way to expand 
the first two terms, viz. by the composition of two expansions: the first from 
(221, 3 ) to (12, 84) and the second from (12, 84) to (672, 96). (These entries 
are indicated by arrows in Tables 4A and 5.) Even though it would seem that 64 
terms would also be produced by this composition, it happens that some terms 
cancel after the first expansion, so there are actually only 96 terms that must be 
dealt with. We expand the third term in (23) to (96, 672) using the parameters 
[5,5,32] in Table 4B. When all the terms are combined, the 96 remaining terms 
must then be examined to see if they can be grouped into expansions of zero. 

It is sometimes the case in this examination that a certain subsum of terms 
stands out as a candidate for such a set, as in the present case where the doubled 
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(D) terms form a noticeable set. From Table 3 the sum of the D terms is 

D (2, 32, 0) + (14, 40, 168) + (30, 88, 168) 

(25) + (42, 16, 336) + (58, 80, 336) + (94, 8, 504) 

+ (102, 56, 504) + (178, 64, 672) 
and the sum in Table 2 is 

D (2, 4, 84) + (30, 52, 252) + (70, 44, 420) 
(26) + (150, 92, 588) + (38, 76, 252) + (66, 20, 420) 

+ (14, 68, 84) + (130, 28, 588). 
(Here the triple (a, L1, L2) is an abbreviated notation for the term 
xaT(96, L1)T(672, L2).) Since the D terms are negative in Table 2, the 
question is whether D+ - D is an expansion of zero, say based on T1 (T3 is 
the other possibility). If so, we might have 

(27) D+ -D = ?X 2T(kl, 11)T (k2 k2) = 0 

with the sign to be determined later. If this were the case, it would then follow 
that D+ + D = x2TO(k1, 11j)T0(k2, k2), i.e., the sum with the same terms, but 
now with all plus signs. Adding these equations gives 

x-2D + 
=To(k1, 11)To(k2, k2) = To(k1, l1)To(4k2, 2k2), 

using (4), i.e., the assumption that D+ - D- vanishes because it is an expansion 
of zero of this kind implies that the power series for x D+ must factor into a 
To 0 To product. The factorization of this power series up to degree 1000 by the 

greedy algorithm (cf. [2, p. 311]) indicates that x 2D+ is undoubtedly equal 
to (0, ?48, ?96, ?144, 168)336(0)1684?12, 5?28, ?36, ?56, ?60]168' which 
is (0)84[?28]84(0)484?12]48 = To(42, 6)1To(24, 12). Thus, we conclude that 
k1 = 42, 11 = 14, and k2 = 6. Expanding the T, T, product with [3, 3, 16] 
(these parameters being computed from (11) and (12)) determines that the sign 
in (27) is negative: D+ - D = -x2 T1(42, 14) 1T(6, 6). 

Of course, if the form for the expansion of zero we tried in (27) were not 
correct, this would become apparent when D+ was factored; for not only would 
the expected form on the right not occur, but rather, the factorization would 
undoubtedly be the product of binomials in which the sequence of exponents 
increased, apparently without bound. 

In the general case, where no particular subsum is a candidate for an expan- 
sion of zero, we can first find all the ancestors of (K1, K2) and then examine 

2 all the possible expansions of zero to see if the full T1 set can be written as a 
combination of some of them. This is how the last two expansions of zero in 
the proof were found-the first being the sum of the doubles. 

The irregularities in the proof, such as using two different but related expan- 
sions in the second expansion of the composition, and using T3 in an expansion 
of zero, were found to be necessary to match the signs of the terms so a proof 
could be made by this method. 
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