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CYCLOTOMIC INVARIANTS FOR PRIMES 
BETWEEN 125000 AND 150000 

R. ERNVALL AND T. METSANKYLA 

ABSTRACT. Computations by Iwasawa and Sims, by Johnson, and by Wagstaff 
have determined certain important cyclotomic invariants for all primes up to 
125000. We extended their results to 150000, basing our work on a recently 
computed list of irregular primes and using a new method. 

1. INTRODUCTION 

Since 1978, when Wagstaff [10] published the results of his extensive com- 
putations, one knows the values of certain important cyclotomic invariants, 
notably the Iwasawa invariants A and vp, for all primes p < 125000. The 
first, and hardest, step in these computations is the determination of irregular 
primes. Recently Tanner and Wagstaff [9], returning to this theme, extended 
the list of irregular primes to 150000 and obtained partial results about the 
cyclotomic invariants. 

The present note is a report on our computations completing the determi- 
nation of these invariants up to p < 150000. Since at the primes of this size 
the earlier methods of computation no longer are efficient, it was necessary 
to develop new techniques. A description of our method, based on a suitable 
combination of congruences for Bernoulli numbers, is included. 

2. THE RESULTS 

Let p be an odd prime. For n > 0, let K, denote the cyclotomic field of 

pn+l th roots of 1, and let hn and An be the class number and p-class group, 
respectively, of Kn. As usual, write 

h =h+h- An =An E A-, 

where h+ and A+ are the class number and p-class group, respectively, of the 
field Kn n R. 

It is well known that the triviality of An, for all n > 0, is equivalent to the 
triviality of A.. If these groups are nontrivial, p is called irregular. This is the 
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case if and only if p divides B2B4 ..* Bp_3, where Bt are Bernoulli numbers 
(in the even suffix notation). 

If p divides Bt with t e {2, 4, p- 3}, then (p, t) is called an irregular 
pair. We let rp denote the number of such pairs, the index of irregularity of p . 

Expressed in a brief form, the results of our computations read as follows: 
for every p between 125000 and 150000, 

(1) An /P ) (nO1,., 

(2) ordp (ho7) = ordp (B2B4 ... Bp3) 

where ordp(a) stands for the exponent of p in the canonical decomposition 
of a. 

Actually, we know that A+ is trivial for these p, so that (1) and (2) remain 
true if An and ho are replaced by An and ho0 respectively. The triviality of 
A+ was proved by Tanner and Wagstaff [9] in conjunction with the verification 
of Fermat's Last Theorem for prime exponents p < 150000; see, e.g., Corollary 
8.19 in Washington's book [1 1]. 

The formulas (1) and (2), together with the result A+ = 1, had been verified 
by Wagstaff [10] for p < 125000, and earlier by Johnson [2], [3], [4] in shorter 
ranges. Computations for verifying (1) were initiated by Iwasawa and Sims [ 1]. 

By Iwasawa's general result, 

ordp (hn) = ;pn + vp, ordp(h7) =-n + vp 

for all n large enough, say n > np, where A), A, vp, vp are integers (A1, 

Ap- nonnegative) independent of n. Notice that the ,u-invariant vanishes by 
the theorem of Ferrero and Washington. Given that the groups A+ are trivial, 
(1) is equivalent to 

)L, =),=vp=vp =vp = rp, minimal np = 0 

(for this and the following facts, we refer to [1 1], especially ? 10.3). 
We may decompose ,p- = A(2) + i(4) + ... + A(p-3), where each i(t) is the 

A-invariant associated with the p-adic L-function Lp(s, cta), co being the 
Teichmiiller character mod p. Since i(t) is positive if and only if (p, t) is 
an irregular pair, the equation Ap = rp is equivalent to 

i(t) - 1 for each irregular pair (p, t) 

To establish the results (1) and (2), it is enough to verify-and this is what 
we did-that none of the following three congruences hold for any irregular pair 
(p, t): 

(i) Bt Bt+_B+,I (modp 
2 

t t+P - 1 

t-1 2 
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(iii) B - 0 (mod P2 

Here, BI (wt 1) = (1 /p) Zp akt 1 (a)a is the first generalized Bernoulli number 

attached to cot l, in fact, B(wOt l) = -Lp(O, ct). We point out that (ii) can 

be converted into a simple congruence mod p2 between Bt and Bt+p1; see 
Propositions 6 and 2 in ?4. 

More precisely, the failures of (i) and (ii), for all t such that the pair (p, t) 
is irregular, imply that Ap- = rp and vp = rp, respectively [11, p. 201], and 
the failure of (iii) then yields the equation (2). Observe that the congruences in 
(i)-(iii) hold modulo p. 

By Washington's heuristic arguments [6, p. 20] one expects that (1) and (2) 
remain true for all primes up to a very high limit. They should not be generally 
true, however. 

3. THE COMPUTATIONS 

If p is not too big, one can disprove (i)-(iii) by a fairly straightforward 
method involving basically the calculation of Bt and Bt+p1 mod P2 . In fact, 
such a method was employed by Johnson and Wagstaff for p < 125000. There 
is also another method presented in [1]; it is more sophisticated but still relies 
quite heavily on computations mod P2. 

For p close to 150000 we have to find a method which keeps computations 
mod p2 to a minimum. We point out that in order that c2 fit in a computer 
word, c should be below 2 6, which for c around p12 leads to the bound 

p< 1.3l105. 
Write p = 2m + 1 . For an integer a prime to p, let qa denote the Fermat 

quotient of a, i.e., 

a1 P1 
q _ ap l (mod p), 0 < qa < p. 

Putting 
m m 

Sl at- q ' s2 =,atqa 
2 

a=1 a=1 

m 

S3 Eat-l S = at-i S5= a a 
a=1 O<a<p/3 p/3<a<p/2 

we formulate the following criteria, where (p, t) is assumed to be an irregular 
pair. The proofs will be presented in ?4. 

Criterion 1. If SI $ 0 (mod p), then (i) does not hold. If S1 -0 O (mod p), then 
either 2t _ 1 (mod p) or (i) holds. 

Criterion 2. If S2 $ 0 (mod p), then (i) does not hold. If S2 0 (mod p), then 
either 2t- l - 1 (mod p) or (i) holds. 
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Criterion 3. If 2' # 1 (mod p), then (ii) is equivalent to 

S3 =_ (1 - t)ps, (mod p 2 

and (iii) is equivalent to 
S3-0 (modp2). 

Criterion 4. If 2t-1 # 1 and 3t # 1 (mod p), then (ii) is equivalent to 

2 
-2 

3t- 
2. 3S4- - (1-PS5 = 2 _ 

(1-t)pS2 (modp) 

If 3t X 1 (mod p), then (iii) is equivalent to 

3S4 - (1 -t)pS50 (mod p2). 

Criteria 1 and 2 always suffice to decide about the validity of (i), because 

the congruences 2t _ 1 and 2t-l _ 1 (modp) never hold simultaneously. 

Similarly, Criteria 3 and 4 are sufficient for (ii) and (iii) except when 2t _ 3t _ 1 
(mod p) . For the case of the last instance one can derive analogous criteria that 
work under the assumption bt # 1 (mod p) for some other b prime to p (see 

?4). 
There are 1079 irregular pairs with 125000 < p < 150000. It turned out that 

all these pairs satisfy 2t- 
I 

1 and 3t # 1 (mod p), so that one can disprove 
(i)-(iii) merely by using Criteria 2 and 4. The incongruence 2t X 1 (mod p) 
holds everywhere except at the pair (130811, 52324). Thus, excluding this 
single pair, Criteria 1 and 3 apply to check the results. 

In reality, we started with Criterion 1 without knowing of the above excep- 

tion, and then went on with 2, 4, and 3 in this order. 
We now describe the calculation of the sums S, ... , S5. 
To obtain S1 and S2 (mod p, as they are needed), one has to find qa 

which actually involves a computation mod p2 . We calculated the values of 

qa (1 < a < m) in cycles, passing from qa to q2a or, if 2a > m, to qp_2a. 
These are related to qa by a simple congruence mod p. Hence, only the first 

2 
qa in each cycle actually requires computation mod p . In many cases (e.g., 
if 2 is a primitive root mod p or if m is a prime) there is but one cycle, 
and in our range, less than every hundreth irregular prime had more than 10 

cycles. A similar method was employed by Johnson [2, pp. 391, 396] in another 
connection. 

Rather than to qa only, we in fact applied this cycle method to the entire 
terms of S1 and S2. The same cycles were then used in the calculation of the 
remaining sums. When calculating S3 and S4 this way, one has to perform 

some computation mod p2 inside the cycles, too, but the method still appears to 
be quite efficient. The computation of S5 did not provide any serious problem, 
because this sum was needed mod p only. 
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The first program run by us computed, except for S1, two additional sums 
mod p, namely S3 and 

m 

S6= a qa 
a=1 

This was a check both for the correctness of our summing method and for 
the irregularity of the given pairs (p, t). Indeed, for an irregular pair, the 
latter sums vanish mod p (see Proposition 3 below). There were also some 
further checks to assure that the Fermat quotients were correctly calculated. 
The running time for a single irregular pair was generally 12 to 15 sec. 

The programs computing S3 and S4 mod p2 took somewhat more time to 
execute: one irregular pair was settled in 25 to 45 sec. One simple check was 
provided by the congruences S3E- S4-= 0 (mod p) . 

All programs were written in the language C and run on a VAX 6340 com- 
puter. After learning that the use of inline optimization (in the C-compiler 
version 3.0) may produce erroneous code, we ran all the programs once more 
without this option. 

4. PROOF OF THE CRITERIA 

The four criteria of the previous section will be proved by transforming the 
Bernoulli number congruences (i)-(iii) into congruences between the sums in- 
volved. The procedure is based on the following two congruences. 

Proposition 1. Let t be a positive even integer prime to p and incongruent to 0 
and 2 (mod p - 1). Then 

B p-i t-1 t 1 P- 
- 2) (a) , a l Ea va 2 p Z a2va (mod p), 

i a=1 a=1 

where Va is the p-adic integer defined by c(a) = a + VaP; furthermore, 

() (t Bt~ p-i bai t 1 
- 

p-i 2Fba 122 (b) (b - 1) t'- (ba) [-pj - 2 p E(ba)t2 [-pJ] (mod p2), 

where b is any rational integer with 2 < b < p - 1 and [x] denotes the largest 
integer < x. 
Proof. The latter congruence, a sharpening of the Voronoi congruence, is due 
to Johnson [5, p. 261]; for a different proof see [8, p. 1 17]. 

The former congruence can be verified by an argument similar to one in [5, 
p. 253]: substitute co(a) = a + vaP in the equation -I co(a)t = 0, expand 
the tth power, and reduce mod p3, noting that ELYI at = pB (mod p3). This 
last congruence is proved, e.g., in [5, p. 261]. 0 

From now on we assume that 

t E {2, 4, ... , p - 3}. 

Thus, in particular, p > 3. 
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Proposition 2. Excluding the case t = 2, we have 

B+1 B, 1 p-i 
ttP~ ~~ - a 

Bt_ a 
qa (modP p 

t+p- 1 t 2pa~ (op) 

Proof. This follows from Proposition l(a). Observe that aP1 1 pqa 

(mod p2), va _ aqa (mod p). O 
The next result is an easy consequence of known results. Here we prefer to 

deduce it from Proposition 1 (a), since the same idea also applies to Proposition 
4 below. 

Proposition 3. The pair (p, t) is irregular if and only if S3 S6 0 O (mod p). 
Proof. If t = 2, both statements are false. Assume that t $ 2. By Proposition 
1(a), (p, t) is irregular if and only if Ep atq (mod p) . Using the 
congruences 

qp_a qa + a 
qp-2a=q2a+(2a), q2aq2+qa (modp) 

and noting that E' , at _ 0 (mod p), we reformulate the last sum in two ways: 
p-l m m 

Z atq = 2 E atq + E at- 
I 

(mod p), 
a=1 a=1 a=1 

p-i m m 

E atq 2t+1 E atq + 2t-1 at-l (mod p). 
a=1 a=1 a=1 

This gives us the claim. 0 

As mentioned in ?3, we used this proposition to check that the pairs (p, t) 
in the table by Tanner and Wagstaff are irregular. 

Proposition 4. If (p, t) is an irregular pair, then 
p-l 

(a) (1 - 2t) at qa -2tS, (mod p), 
a=1 

p-l 

(b) (1 - 2t 1) atq - 2tS2 (mod p). 
a=1 

Proof. Reformulate the sum Epa I atq- by the same principles as before. In 
view of S3 _ S6 0 and Em , at 2 O (mod p) it follows that 

Eatqa22S2+2S, (mod p), 
a=l 

p-1 

Eatqa2 S2+ 2 S, (mod p). 
a=1 

This pair of congruences yields the asserted congruences. 0 
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By combining Propositions 2 and 4 we obtain the following formulas for 

Bt+p- l Bt 

provided (p, t) is an irregular pair: 

1 t-itl t-i (1 -2t)A= 2 Sp, (1-2t 1)-A=-2 S2 (modp). 
p p 

This proves Criteria 1 and 2. 

Remark. The former of these congruences also follows from a result of E. 
Lehmer [7, p. 355]. She traces the congruence back to Mirimanoff. 

Proposition 5. Excluding the case t = 2, we have 

(a) (2t - 1)tt - -2t-lS3 (modp2), t 

(b) (3 
B - 1) tt = -2*3 tS4+ 2 t-2(l _ t)pS2 (mod p2). t 

Proof. We look at Proposition 1 (b) with b = 2 and 3, respectively. For b = 2 
note that EJ:L - at2 at-2 0 (mod p) and so, in particular, 

p-1 m 

a=Lt-1 (p-a) -S3 (mod p ) 
a=m+l a=1 

For b = 3 somewhat more lengthy calculations yield 

P-4 t-I[3a] _ E t- al(t 1) at-2 (md 2) 

a= 1 p O<a<p/3 p/3<a<p/2 

[- t23a] 2 Z - 
Ea t-2 [3a] -2 E a (mod p). 

a= 1 pl3<a<pl2 

Substitute the right-hand sides in the congruence of Proposition 1(b) and sim- 
plify. o 

Proposition 5 provides us the latter parts of Criteria 3 and 4. 

Proposition 6. Excluding the case t = 2, we have 

B t- p-i 
B, (t-w) Bt _2 a qaq (mod p2). 

a=1 

Proof. We may write 
t-1 

B1(ot )=-Lp(a+Vap) a. 
a=1 
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Since ' Ep_I at _ Bt (mod p2), this implies 

B t(l) )Bt+(t-l)Ea lva+(t- 1)(t-2) p t-22 2 
a=1 a=1 

Multiply the congruence in Proposition l(a) by t - 1 and add to this congru- 
ence. 0 

Proposition 7. Let (p, t) be an irregular pair. Then 

2 -_ 1_ B (Cot-_ 1 ) 3 + (1 - t)pS2 (mod p2 

and, provided that 2t 1 X 1 (mod p), 

2. 3 (2Bo(t-' - 3S4 + (1 - OPS5 

2\t-2 3t -1 
2. 

- Y2) -2t3 

1 (- t)pS2 (modP ) 

Proof. These two results are verified by multiplying the congruence of Proposi- 
tion 6 by 2t - 1 or 3t - 1, respectively, and then using Propositions 5(a) and 
4(a), or 5(b) and 4(b), respectively. o 

This completes the proof of Criteria 3 and 4. 
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