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the consistency of the model. It also has to be remarked that no exact result 
is known about the distribution of the global maximum of a Gaussian random 
function. This means that, unless the number of function evaluations is fixed 
in advance, the question of how to evaluate the error of an approximation to 
the global optimum cannot be answered satisfactorily. 

An outline of the book is as follows. Chapter 1 contains a discussion of 
the main advantages of the Bayesian approach. Chapter 2 presents a general 
definition of Bayesian methods of global optimization. Chapter 3 contains an 
axiomatic justification of the Bayesian approach. In Chapter 4 the Gaussian 
class of prior random functions is derived from the conditions of homogeneity, 
independence of partial differences, and continuity of sample functions. Chap- 
ter 5 provides the expressions for the one-step approximation of the dynamic 
programming equations. This chapter also discusses the replacement of the Kol- 
mogorov consistency conditions by the weaker condition of the risk function 
continuity. Chapter 6 discusses methods to reduce the dimensionality of global 
optimization problems. In Chapter 7 the Bayesian approach is applied to find 
local optima of objective functions with noise. In Chapter 8 a number of real- 
life applications is described. Chapter 9 provides a description of the portable 
FORTRAN package which is contained in the book. 

Although the Bayesian approach to global optimization, in my opinion, did 
not yet yield efficient algorithms which are fully theoretically justified, this new 
book shows that the approach is very appealing, and that the approximations 
work well. Also, the book contains all the relevant theorems, proofs, and com- 
puter programs. Hence, although the book is not very clearly written, and con- 
tains very many typos (7 in the preface), it can serve well for investigators who 
want to pursue the approach. In addition, the programs of the methods, which 
are based on approximations, can be used by practitioners to solve real-life 
problems. 
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In 1964 the National Bureau of Standards (now the National Institute of 
Standards and Technology) issued a massive handbook of formulas, graphs and 
numerical tables of the elementary mathematical functions and the so-called 
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higher transcendental functions or special functions of mathematical physics [6]. 
This N.B.S. Handbook immediately filled, and continues to fill, a tremendous 
need in scientific work; according to the Science Citation Index (published by 
'the Institute for Scientific Information, Inc., Philadelphia, PA), the current rate 
at which it is cited in the mathematical and scientific literature is of the order 
of 1,300 entries per year. 

The need for the numerical tables of the elementary functions in the N.B.S. 
Handbook has now largely disappeared: library routines for generating exponen- 
tials, logarithms, and trigonometric and hyperbolic functions are available in all 
major scientific software libraries as well as being required by the FORTRAN 
Standard [1]. Also, these routines are incorporated in hand-held calculators 
designed for scientific calculations. The loose-leaf manual and accompanying 
diskettes under review, which we shall refer to as the "UL Library", may be 
regarded as an attempt to replace the numerical tables of the higher transcen- 
dental functions supplied in the N.B.S. Handbook by a comprehensive software 
package. The functions treated include Bessel and related functions, hypergeo- 
metric and confluent hypergeometric functions, elliptic functions and integrals, 
exponential integral and related functions, error function and related functions, 
Gamma and incomplete Gamma functions, orthogonal polynomials, probability 
functions and random number generators. This list is not quite isomorphic with 
the list of functions tabulated in the N.B.S. Handbook; among the omissions are 
parabolic cylinder functions, Mathieu functions, spheroidal wave functions and 
the Riemann Zeta function. The UL Library is designed to be used on Personal 
Computers of IBM type and equipped with a Microsoft FORTRAN 77 Com- 
piler. For efficiency, a numeric co-processor is recommended.1 The operating 
precision is IEEE double precision (53 bits in the floating-point mantissa), but 
the accuracy of the computed function values is generally less, sometimes well 
below single precision. 

The project is an extremely ambitious enterprise, especially as it appears that 
all of the programs for the library routines have been constructed ab initio. For 
such a project to be completed successfully its authors need to have a thorough 
knowledge of, and experience in, several areas of classical and numerical analy- 
sis, including analytic properties of the higher transcendental functions, asymp- 
totic analysis, approximation theory, and error and stability analyses. How well 
have the present authors (who are nameless) succeeded? 

A comprehensive answer to the question just posed would necessitate a tre- 
mendous amount of numerical testing. We concentrated our testing on just 
a few functions with which we have had previous software experience, namely 
Airy, Bessel, hypergeometric, confluent hypergeometric and Legendre functions. 
Usually the UL Library performed in accordance with the specifications for each 
routine. However, we studied the documentations in detail, looking for major 

1The library diskettes provide FORTRAN programs, which could be compiled and used on a 
Personal Computer without a co-processor, as well as coprocessor assembly code for each subroutine. 
For the purposes of this review, attention is restricted to the co-processor assembly code. 
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ways in which the algorithms used might go astray. Unfortunately, we were 
successful. 

The first, and very serious, type of failure arise when the UL Library delivers 
completely wrong answers without any error message. This occurs with the 
routine BESJR in ?8.8, which is designed to generate the Bess,'. function J, (x) 
for real values of the argument x and order v . For example, with x = 9xr 
and v = 2! , 42 , 6 , 82 , 12 0, BESJR yields the following values of J,,(x) 
to ten decimal places: 

-0.00670 05817, 0.03764 71379, -0.05418 00781, 
0.31114 25305, -0.06567 89923. 

These should be compared with the correct values2 

0.01592 10880, -0.05237 32560, 0.10316 94874, 

-0.14727 18330, 0.14363 19977. 

Not only are the numerical values totally incorrect, all the signs are wrong, too. 
Similar gross errors occur for v = 22 (2)50 , for example. On the other hand, 
BESJR generates correct values (within the prescribed error tolerance) for the 
intermediate values v = 121(2)20!, and also for iv = I and 1I(2)49k, x 2 2 ~~ ~~~2 2 2 
again being 97r. The reason for the errors appears to be that J. C. Miller's 
backward recurrence algorithm has been used, with the trial values normalized 
on the value of a single Bessel function, in fact J112(97r) . Since J112(97r) is zero, 
this procedure is bound to lead to meaningless answers. Yet this cannot be the 
entire explanation, otherwise all values in the range v = 211 (1)50! would be 
incorrect and not merely alternate ones. Thus the documentation must be in 
error, too. And there may be further inaccuracies here. For example, according 
to the documentation the value for v = 21 is computed from the power series 
expansion of Jv (x): either the Miller algorithm was used instead, or, perhaps 
less likely, the power series was summed incorrectly. 

Similar errors occur for numerous other values of v, both integer and non- 
integer, that we tested. For example, with x = 8.6537279129... (the third 
positive zero of Jo(x) ), BESJR generates accurate values for zJ = 0, 1, 2, 3 
and 7(1)50, but grossly inaccurate values for v = 4, 5, 6. Furthermore, erro- 
neous values of Jv (x) are generated when the value of x is merely moderately 
close to one of the critical values, the magnitudes of the errors being inversely 
proportional to the distances of x from the critical value. 

A companion routine to BESJR is BESYR (?8.10), which is designed to gen- 
erate the Bessel function Yv (x) for real values of x and vJ. Since one of 
the algorithms used in BESYR draws upon values of Jv (x), we expected-and 
found-some difficulties. For example, BESYR computed Y,,(97) with wrong 
signs and incorrect numerical values for zJ = -50 (2)-22 and -10(2)-2 , 

2Obtained by use of D. E. Amos' package [2]. See also comments made below on validation. 
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while the results were correct at intermediate values of v . (This similarity of be- 
havior with BESJR reflects the identity Yv,(x) = (-_)nJ v(x) when v = n 1 

2' 
n being an integer.) 

A second type of failure is the generation of results which, while not com- 
pletely inaccurate, contain errors greatly in excess of the accuracy claimed in the 
documentation. One example is provided by the routine BESYR mentioned in 
the preceding paragraph. The documentation claims at least 12-digit accuracy 
when the order v is an integer. In itself this claim is careless because it takes 
no account of the inevitable loss of relative precision in the neighborhoods of 
zeros. But the situation is actually much worse. With v = 119 and 120, for 
example, we found that in the range x = 848(0.1)852 the accuracy often fell to 
8 or 9 digits, even well away from the zeros of Y 19(x) and Y120(x). Another 
example is provided by the routines AIRYA and AIRYAD (??8.1 and 8.3) for 
the Airy function Ai(x) and its first derivative. In both routines at least 13-digit 
accuracy is claimed when -10 < x < 100. But we found many values of x 
in the (zero-free) range 5.2 to 5.8 for which they yielded only 8 or 9 correct 
digits. 

The third type of failure arises when the UL Library generates an inac- 
curate value, but the user is warned by an error message such as "unable to 
compute the ... function with acceptable accuracy" or "numeric overflow in 
the ... function". However, if these failures occur too frequently, then there will 
be huge gaps in the effective ranges claimed for the variables. Such is the case 
with the routines CHGFU (?9.2) for generating the confluent hypergeometric 
function U(a, b, x), and HPRGMT (?20.1) for generating the hypergeometric 
function F(a, b; c; x). 

CHGFU employs two algorithms. The first is evaluation of the asymptotic 
expansion of U(a, b, x) for large x, which is quite sound. The second is based 
on a formula that expresses U(a, b, x) as a difference of two M-type confluent 
hypergeometric functions, which is unsound because of the potential for massive 
numerical cancellation. In consequence, although the documentation claims 
that the effective ranges of the variables are given by 

-50<a<50, -50<b<50, -100<x<100, 

with the exclusion of integer values of b and nonpositive integer values of a, 
extensive regions are inadmissible. These include, for example, 

a = 0.5, b = 0.5, 7.4 < x < 19.9; a = 2.7, b = 5.4, 10.1 < x < 437.4; 
|a=20, b=2.5, 0.34<x<20,000. 

For HPRGMT the documentation states that a and b can have any real 
values between -101O and 1010, c can have any real value between -1020 
and 1020 (other than a negative integer) and x can have any real value between 
-101O and 1. But, again, these claims are misleading. For example, when x is 
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in the interval [0, 1) HPRGMT sums the hypergeometric series 

b0 a(a + l) (a + n - I)b(b + 1) ..(b + n - 1) xn 

F(a, b; c; x) = 1:c(c +1) ...(c +n -l) nV' 

Since the radius of convergence is 1 the algorithm must fail for values of x 
sufficiently close to 1. Sample intervals of failure were found to be: 

a=b= 100, c= 1, 0.95<x< 1; 
a=b= 10000, c= 1, 0.0013<x< 1; 

a=b= 108, c= 1, 10O 1<x< 1. 

Even when failure does not occur, execution can be extremely slow. Thus for 
a = b = c = 1 and x = 0.99999, 20 minutes elapsed on an IBM PS2 computer 
before the answer was produced. 

The weaknesses in the algorithms used for J,,(x), Y,,(x) and U(a, b, x) 
were avoidable, if only because robust software for generating these functions 
is already available; see, for example, [3], [8]. We also observe that instead of 
normalizing the trial values of J,,(x) obtained in the Miller algorithm via a 
single value of J, (x), the identity 

(2 

o 

) 
v 

E 2k)v+2k( k) IJ 0,-,-2... 
k=O 

[6, equation (9.1.87)], could have been used instead. This is the appropriate 
generalization of the identity 

1 = Jo(x) + 2J2(x) + 2J4(x) + 

that the authors use in a routine BESJ (?8.7) for generating functions of integer 
order. Again, a stable way of generating U(a, b, x) is backward integration 
of the confluent hypergeometric equation, with initial values derived from the 
asymptotic expansions of U(a, b, x) and 0 U(a, b, x)/Ox for large x. 

In addition to occasional poor choices of algorithm, we noticed instances of 
poor choices of the actual functions being generated. Thus, functions that ex- 
hibit exponential growth or decay when the argument x is large would have 
been better replaced by their logarithms. This would greatly increase the thresh- 
old at which overflow or underflow occurs. Such functions include the Gamma 
function, JF(x), the exponential integral, Ei(x), the complementary error func- 
tion, erfcx, the Airy functions, Ai(x) and Bi(x), the incomplete Gamma 
function r(a, x), the modified Bessel functions I,,(x) and K,,(x), and the 
confluent hypergeometric function M(a, b, x). In the case of F(x), a sepa- 
rate routine is given for ln IJ(x) in ? 13.3 but since this is constructed simply by 
taking logarithms of the values obtained by the library routine for JT(x) there 
is no increase in the overflow threshold. It is the logarithm that should have 
been generated first! 
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Troublesome singularities can sometimes be avoided by introduction 
of appropriate factors. Thus each of the functions M(a, c, x) and 
F(a, b; c; x) has poles at c = 0, -1, -2, ,but both M(a, c, x)/r(c) and 
F(a, b; c; x)/r(c) are entire functions of c; this was pointed out many years 
ago in [7]. On the other hand, there is a nonsensical statement in ?9.2 that 
U(a, b, x) is not well defined when a and b are negative integers and Ibl > 
jai. In fact, as noted in [7, p. 258], U(a, b, x) is entire in a and b. It is the 
poor algorithm used to compute U(a, b, x) that may fail when a or b is an 
integer or close to an integer. 

We could continue in this vein and we could also provide a substantial list 
of typographical errors in the manual and operational defects in the software.3 
Instead, let us turn now to the topic of validation. Several articles have been 
written on the difficulty of checking software for the generation of mathematical 
functions; see, for example, [3]. How were the UL Library routines validated by 
the authors? The only clue supplied in the manual appears to be the statement 
on p. 36 that the least accurate results in the output of an algorithm always occur 
at the interface with another algorithm. Presumably this means that there has 
been substantial cross-checking at these interfaces. This is indeed a powerful 
type of check, but one that does not guard against all types of algorithmic and 
programming errors, as we have already observed with the routines BESJR and 
BESYR. 

In fairness to the authors there are two subsections (??6.2, 6.3) in which 
they encourage users to check output by using identities satisfied by the higher 
transcendental functions. For example, the error and Bessel functions are both 
special cases of confluent hypergeometric functions. However, these kinds of 
identities are rather specialized, and there is always the danger that they may 
have already been used in constructing the library routine. For example, there 
are identities that relate the Airy functions Ai(x), Bi(x) and their derivatives 
to Bessel functions and modified Bessel functions of orders ?1/3, ?2/3. But 
if these identities are used as cross-checks, then the inaccuracies we noted above 
for the routine, AIRYA and AIRYAD may not show up because the same kind 
of inaccuracy is present in a (parent) routine BESKR (?8.14) for the modified 
Bessel function K, (x) . In contrast, a powerful form of cross-check that is not 
mentioned in the manual, but which is widely applicable, is to employ identities 
of Wronskian or Casoratian type, for example, 

Ai(x)Bi'(x) - Ai'(x)Bi(x) = 1/7r, 

J?+ 1 (x) Yv(x) - Jv(x)Yv+?(x) = 2/(7rx). 

3For example, there is a statement on p. 24 that the computer will halt when a library routine 
is called and a co-processor is not present. We found that is not always true; furthermore, instead 
of identifying the absence of a co-processor as the problem, the error messages misleadingly report 
errors in the library routine. 
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These were the checks that we used ourselves to detect errors in the UL Library 
routines as well as to ascertain whether or not the UL Library output is correct 
in cases of discrepancy with output from other libraries. 

Let us summarize our findings. The UL Library provides PC users with a 
new set of routines for generating an extensive collection of higher transcenden- 
tal functions, indeed most of the functions tabulated in the N.B.S. Handbook. 
The library is relatively easy to install and its price is reasonable. It will pro- 
vide a useful tool for mathematical physicists and other scientists, especially 
those engaged in calculations of exploratory type. However, in our compara- 
tively small sample we encountered failures of various kinds, including some 
extremely serious ones. Because of this, we conclude that the authors may have 
lacked some experience and expertise, or perhaps just the necessary time, for 
the mammoth task of constructing a robust library of the kind intended. In 
consequence, users will need to exercise great care with any output from the li- 
brary, applying independent checks wherever possible. Furthermore, users must 
also be prepared for disappointments: the viable ranges of a routine may turn 
out to be a good deal less than is claimed in the documentation, especially in 
the case of functions that have not been treated by earlier software workers. 

For heavy systematic computations many users will find the more robust 
IMSL and NAG libraries [4], (5] to be preferable. The variety of functions 
covered in these libraries is not as large, but the viable ranges of the variables 
are considerably more extensive and the precision is often higher. Moreover, 
both IMSL and NAG provide many desirable features, such as linear algebra 
packages, in addition to routines for generating higher transcendental functions. 

In preparing this review I am heavily indebted to Dr. Daniel Lozier of the 
National Institute of Standards and Technology who helped devise and carry 
out the numerical testing, and also to Sang Chin, a student at Duke University, 
who assisted. 
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