
REVIEWS AND DESCRIPTIONS OF TABLES AND BOOKS 879

the consistency of the model. It also has to be remarked that no exact result
is known about the distribution of the global maximum of a Gaussian random
function. This means that, unless the number of function evaluations is fixed
in advance, the question of how to evaluate the error of an approximation to
the global optimum cannot be answered satisfactorily.

An outline of the book is as follows. Chapter 1 contains a discussion of
the main advantages of the Bayesian approach. Chapter 2 presents a general
definition of Bayesian methods of global optimization. Chapter 3 contains an
axiomatic justification of the Bayesian approach. In Chapter 4 the Gaussian
class of prior random functions is derived from the conditions of homogeneity,
independence of partial differences, and continuity of sample functions. Chap-
ter 5 provides the expressions for the one-step approximation of the dynamic
programming equations. This chapter also discusses the replacement of the Kol-
mogorov consistency conditions by the weaker condition of the risk function
continuity. Chapter 6 discusses methods to reduce the dimensionality of global
optimization problems. In Chapter 7 the Bayesian approach is applied to find
local optima of objective functions with noise. In Chapter 8 a number of real-
life applications is described. Chapter 9 provides a description of the portable
FORTRAN package which is contained in the book.

Although the Bayesian approach to global optimization, in my opinion, did
not yet yield efficient algorithms which are fully theoretically justified, this new
book shows that the approach is very appealing, and that the approximations
work well. Also, the book contains all the relevant theorems, proofs, and com-
puter programs. Hence, although the book is not very clearly written, and con-
tains very many typos (7 in the preface), it can serve well for investigators who
want to pursue the approach. In addition, the programs of the methods, which
are based on approximations, can be used by practitioners to solve real-life
problems.

C. G. E. BOENDER
Econometric Institute
Erasmus University Rotterdam
3000 DR Rotterdam, The Netherlands

1. H. J. Kushner, A versatile stochastic model of a function of unknown and time varying form,
J. Math. Anal. Appl. 5 (1962), 150-167.

27[33-04, 65D201.-UNITED LABORATORIES, INC., Mathematical Function
Library for Microsoft-FORTRAN, Wiley, New York, 1989, xvii + 341 pp.,
25 2 cm., loose leaflets in 3-hole-punched binder, including three 51" dis- 2 ~~~~~~~~~~~~~~~~~~~~~4
kettes. Price $295.00.

In 1964 the National Bureau of Standards (now the National Institute of
Standards and Technology) issued a massive handbook of formulas, graphs and
numerical tables of the elementary mathematical functions and the so-called

880 REVIEWS AND DESCRIPTIONS OF TABLES AND BOOKS

higher transcendental functions or special functions of mathematical physics [6].
This N.B.S. Handbook immediately filled, and continues to fill, a tremendous
need in scientific work; according to the Science Citation Index (published by
'the Institute for Scientific Information, Inc., Philadelphia, PA), the current rate
at which it is cited in the mathematical and scientific literature is of the order
of 1,300 entries per year.

The need for the numerical tables of the elementary functions in the N.B.S.
Handbook has now largely disappeared: library routines for generating exponen-
tials, logarithms, and trigonometric and hyperbolic functions are available in all
major scientific software libraries as well as being required by the FORTRAN
Standard [1]. Also, these routines are incorporated in hand-held calculators
designed for scientific calculations. The loose-leaf manual and accompanying
diskettes under review, which we shall refer to as the "UL Library", may be
regarded as an attempt to replace the numerical tables of the higher transcen-
dental functions supplied in the N.B.S. Handbook by a comprehensive software
package. The functions treated include Bessel and related functions, hypergeo-
metric and confluent hypergeometric functions, elliptic functions and integrals,
exponential integral and related functions, error function and related functions,
Gamma and incomplete Gamma functions, orthogonal polynomials, probability
functions and random number generators. This list is not quite isomorphic with
the list of functions tabulated in the N.B.S. Handbook; among the omissions are
parabolic cylinder functions, Mathieu functions, spheroidal wave functions and
the Riemann Zeta function. The UL Library is designed to be used on Personal
Computers of IBM type and equipped with a Microsoft FORTRAN 77 Com-
piler. For efficiency, a numeric co-processor is recommended.1 The operating
precision is IEEE double precision (53 bits in the floating-point mantissa), but
the accuracy of the computed function values is generally less, sometimes well
below single precision.

The project is an extremely ambitious enterprise, especially as it appears that
all of the programs for the library routines have been constructed ab initio. For
such a project to be completed successfully its authors need to have a thorough
knowledge of, and experience in, several areas of classical and numerical analy-
sis, including analytic properties of the higher transcendental functions, asymp-
totic analysis, approximation theory, and error and stability analyses. How well
have the present authors (who are nameless) succeeded?

A comprehensive answer to the question just posed would necessitate a tre-
mendous amount of numerical testing. We concentrated our testing on just
a few functions with which we have had previous software experience, namely
Airy, Bessel, hypergeometric, confluent hypergeometric and Legendre functions.
Usually the UL Library performed in accordance with the specifications for each
routine. However, we studied the documentations in detail, looking for major

1The library diskettes provide FORTRAN programs, which could be compiled and used on a
Personal Computer without a co-processor, as well as coprocessor assembly code for each subroutine.
For the purposes of this review, attention is restricted to the co-processor assembly code.

REVIEWS AND DESCRIPTIONS OF TABLES AND BOOKS 881

ways in which the algorithms used might go astray. Unfortunately, we were
successful.

The first, and very serious, type of failure arise when the UL Library delivers
completely wrong answers without any error message. This occurs with the
routine BESJR in ?8.8, which is designed to generate the Bess,'. function J, (x)
for real values of the argument x and order v . For example, with x = 9xr
and v = 2! , 42 , 6 , 82 , 12 0, BESJR yields the following values of J,,(x)
to ten decimal places:

-0.00670 05817, 0.03764 71379, -0.05418 00781,
0.31114 25305, -0.06567 89923.

These should be compared with the correct values2

0.01592 10880, -0.05237 32560, 0.10316 94874,

-0.14727 18330, 0.14363 19977.

Not only are the numerical values totally incorrect, all the signs are wrong, too.
Similar gross errors occur for v = 22 (2)50 , for example. On the other hand,
BESJR generates correct values (within the prescribed error tolerance) for the
intermediate values v = 121(2)20!, and also for iv = I and 1I(2)49k, x 2 2 ~~ ~~~2 2 2
again being 97r. The reason for the errors appears to be that J. C. Miller's
backward recurrence algorithm has been used, with the trial values normalized
on the value of a single Bessel function, in fact J112(97r) . Since J112(97r) is zero,
this procedure is bound to lead to meaningless answers. Yet this cannot be the
entire explanation, otherwise all values in the range v = 211 (1)50! would be
incorrect and not merely alternate ones. Thus the documentation must be in
error, too. And there may be further inaccuracies here. For example, according
to the documentation the value for v = 21 is computed from the power series
expansion of Jv (x): either the Miller algorithm was used instead, or, perhaps
less likely, the power series was summed incorrectly.

Similar errors occur for numerous other values of v, both integer and non-
integer, that we tested. For example, with x = 8.6537279129... (the third
positive zero of Jo(x)), BESJR generates accurate values for zJ = 0, 1, 2, 3
and 7(1)50, but grossly inaccurate values for v = 4, 5, 6. Furthermore, erro-
neous values of Jv (x) are generated when the value of x is merely moderately
close to one of the critical values, the magnitudes of the errors being inversely
proportional to the distances of x from the critical value.

A companion routine to BESJR is BESYR (?8.10), which is designed to gen-
erate the Bessel function Yv (x) for real values of x and vJ. Since one of
the algorithms used in BESYR draws upon values of Jv (x), we expected-and
found-some difficulties. For example, BESYR computed Y,,(97) with wrong
signs and incorrect numerical values for zJ = -50 (2)-22 and -10(2)-2 ,

2Obtained by use of D. E. Amos' package [2]. See also comments made below on validation.

882 REVIEWS AND DESCRIPTIONS OF TABLES AND BOOKS

while the results were correct at intermediate values of v . (This similarity of be-
havior with BESJR reflects the identity Yv,(x) = (-_)nJ v(x) when v = n 1

2'
n being an integer.)

A second type of failure is the generation of results which, while not com-
pletely inaccurate, contain errors greatly in excess of the accuracy claimed in the
documentation. One example is provided by the routine BESYR mentioned in
the preceding paragraph. The documentation claims at least 12-digit accuracy
when the order v is an integer. In itself this claim is careless because it takes
no account of the inevitable loss of relative precision in the neighborhoods of
zeros. But the situation is actually much worse. With v = 119 and 120, for
example, we found that in the range x = 848(0.1)852 the accuracy often fell to
8 or 9 digits, even well away from the zeros of Y 19(x) and Y120(x). Another
example is provided by the routines AIRYA and AIRYAD (??8.1 and 8.3) for
the Airy function Ai(x) and its first derivative. In both routines at least 13-digit
accuracy is claimed when -10 < x < 100. But we found many values of x
in the (zero-free) range 5.2 to 5.8 for which they yielded only 8 or 9 correct
digits.

The third type of failure arises when the UL Library generates an inac-
curate value, but the user is warned by an error message such as "unable to
compute the ... function with acceptable accuracy" or "numeric overflow in
the ... function". However, if these failures occur too frequently, then there will
be huge gaps in the effective ranges claimed for the variables. Such is the case
with the routines CHGFU (?9.2) for generating the confluent hypergeometric
function U(a, b, x), and HPRGMT (?20.1) for generating the hypergeometric
function F(a, b; c; x).

CHGFU employs two algorithms. The first is evaluation of the asymptotic
expansion of U(a, b, x) for large x, which is quite sound. The second is based
on a formula that expresses U(a, b, x) as a difference of two M-type confluent
hypergeometric functions, which is unsound because of the potential for massive
numerical cancellation. In consequence, although the documentation claims
that the effective ranges of the variables are given by

-50<a<50, -50<b<50, -100<x<100,

with the exclusion of integer values of b and nonpositive integer values of a,
extensive regions are inadmissible. These include, for example,

a = 0.5, b = 0.5, 7.4 < x < 19.9; a = 2.7, b = 5.4, 10.1 < x < 437.4;
|a=20, b=2.5, 0.34<x<20,000.

For HPRGMT the documentation states that a and b can have any real
values between -101O and 1010, c can have any real value between -1020
and 1020 (other than a negative integer) and x can have any real value between
-101O and 1. But, again, these claims are misleading. For example, when x is

REVIEWS AND DESCRIPTIONS OF TABLES AND BOOKS 883

in the interval [0, 1) HPRGMT sums the hypergeometric series

b0 a(a + l) (a + n - I)b(b + 1) ..(b + n - 1) xn

F(a, b; c; x) = 1:c(c +1) ...(c +n -l) nV'

Since the radius of convergence is 1 the algorithm must fail for values of x
sufficiently close to 1. Sample intervals of failure were found to be:

a=b= 100, c= 1, 0.95<x< 1;
a=b= 10000, c= 1, 0.0013<x< 1;

a=b= 108, c= 1, 10O 1<x< 1.

Even when failure does not occur, execution can be extremely slow. Thus for
a = b = c = 1 and x = 0.99999, 20 minutes elapsed on an IBM PS2 computer
before the answer was produced.

The weaknesses in the algorithms used for J,,(x), Y,,(x) and U(a, b, x)
were avoidable, if only because robust software for generating these functions
is already available; see, for example, [3], [8]. We also observe that instead of
normalizing the trial values of J,,(x) obtained in the Miller algorithm via a
single value of J, (x), the identity

(2

o

)
v

E 2k)v+2k(k) IJ 0,-,-2...
k=O

[6, equation (9.1.87)], could have been used instead. This is the appropriate
generalization of the identity

1 = Jo(x) + 2J2(x) + 2J4(x) +

that the authors use in a routine BESJ (?8.7) for generating functions of integer
order. Again, a stable way of generating U(a, b, x) is backward integration
of the confluent hypergeometric equation, with initial values derived from the
asymptotic expansions of U(a, b, x) and 0 U(a, b, x)/Ox for large x.

In addition to occasional poor choices of algorithm, we noticed instances of
poor choices of the actual functions being generated. Thus, functions that ex-
hibit exponential growth or decay when the argument x is large would have
been better replaced by their logarithms. This would greatly increase the thresh-
old at which overflow or underflow occurs. Such functions include the Gamma
function, JF(x), the exponential integral, Ei(x), the complementary error func-
tion, erfcx, the Airy functions, Ai(x) and Bi(x), the incomplete Gamma
function r(a, x), the modified Bessel functions I,,(x) and K,,(x), and the
confluent hypergeometric function M(a, b, x). In the case of F(x), a sepa-
rate routine is given for ln IJ(x) in ? 13.3 but since this is constructed simply by
taking logarithms of the values obtained by the library routine for JT(x) there
is no increase in the overflow threshold. It is the logarithm that should have
been generated first!

884 REVIEWS AND DESCRIPTIONS OF TABLES AND BOOKS

Troublesome singularities can sometimes be avoided by introduction
of appropriate factors. Thus each of the functions M(a, c, x) and
F(a, b; c; x) has poles at c = 0, -1, -2, ,but both M(a, c, x)/r(c) and
F(a, b; c; x)/r(c) are entire functions of c; this was pointed out many years
ago in [7]. On the other hand, there is a nonsensical statement in ?9.2 that
U(a, b, x) is not well defined when a and b are negative integers and Ibl >
jai. In fact, as noted in [7, p. 258], U(a, b, x) is entire in a and b. It is the
poor algorithm used to compute U(a, b, x) that may fail when a or b is an
integer or close to an integer.

We could continue in this vein and we could also provide a substantial list
of typographical errors in the manual and operational defects in the software.3
Instead, let us turn now to the topic of validation. Several articles have been
written on the difficulty of checking software for the generation of mathematical
functions; see, for example, [3]. How were the UL Library routines validated by
the authors? The only clue supplied in the manual appears to be the statement
on p. 36 that the least accurate results in the output of an algorithm always occur
at the interface with another algorithm. Presumably this means that there has
been substantial cross-checking at these interfaces. This is indeed a powerful
type of check, but one that does not guard against all types of algorithmic and
programming errors, as we have already observed with the routines BESJR and
BESYR.

In fairness to the authors there are two subsections (??6.2, 6.3) in which
they encourage users to check output by using identities satisfied by the higher
transcendental functions. For example, the error and Bessel functions are both
special cases of confluent hypergeometric functions. However, these kinds of
identities are rather specialized, and there is always the danger that they may
have already been used in constructing the library routine. For example, there
are identities that relate the Airy functions Ai(x), Bi(x) and their derivatives
to Bessel functions and modified Bessel functions of orders ?1/3, ?2/3. But
if these identities are used as cross-checks, then the inaccuracies we noted above
for the routine, AIRYA and AIRYAD may not show up because the same kind
of inaccuracy is present in a (parent) routine BESKR (?8.14) for the modified
Bessel function K, (x) . In contrast, a powerful form of cross-check that is not
mentioned in the manual, but which is widely applicable, is to employ identities
of Wronskian or Casoratian type, for example,

Ai(x)Bi'(x) - Ai'(x)Bi(x) = 1/7r,

J?+ 1 (x) Yv(x) - Jv(x)Yv+?(x) = 2/(7rx).

3For example, there is a statement on p. 24 that the computer will halt when a library routine
is called and a co-processor is not present. We found that is not always true; furthermore, instead
of identifying the absence of a co-processor as the problem, the error messages misleadingly report
errors in the library routine.

REVIEWS AND DESCRIPIONS OF TABLES AND BOOKS 885

These were the checks that we used ourselves to detect errors in the UL Library
routines as well as to ascertain whether or not the UL Library output is correct
in cases of discrepancy with output from other libraries.

Let us summarize our findings. The UL Library provides PC users with a
new set of routines for generating an extensive collection of higher transcenden-
tal functions, indeed most of the functions tabulated in the N.B.S. Handbook.
The library is relatively easy to install and its price is reasonable. It will pro-
vide a useful tool for mathematical physicists and other scientists, especially
those engaged in calculations of exploratory type. However, in our compara-
tively small sample we encountered failures of various kinds, including some
extremely serious ones. Because of this, we conclude that the authors may have
lacked some experience and expertise, or perhaps just the necessary time, for
the mammoth task of constructing a robust library of the kind intended. In
consequence, users will need to exercise great care with any output from the li-
brary, applying independent checks wherever possible. Furthermore, users must
also be prepared for disappointments: the viable ranges of a routine may turn
out to be a good deal less than is claimed in the documentation, especially in
the case of functions that have not been treated by earlier software workers.

For heavy systematic computations many users will find the more robust
IMSL and NAG libraries [4], (5] to be preferable. The variety of functions
covered in these libraries is not as large, but the viable ranges of the variables
are considerably more extensive and the precision is often higher. Moreover,
both IMSL and NAG provide many desirable features, such as linear algebra
packages, in addition to routines for generating higher transcendental functions.

In preparing this review I am heavily indebted to Dr. Daniel Lozier of the
National Institute of Standards and Technology who helped devise and carry
out the numerical testing, and also to Sang Chin, a student at Duke University,
who assisted.

F.W.J.O.

1. American National Standard Programming Language FORTRAN, ANSI X3., 9-1978,
American National Standards Institute, 1430 Broadway, New York, NY 10018.

2. D. E. Amos, S. L. Daniel, and M. K. Weston, CDC 6600 subroutines IBESS and JBESS
for Bessel Functions I,,(x) and J,, (x), x > 0, I > 0, ACM Trans. Math. Software 3
(1977), 76-92.

3. W. J. Cody, Softwarefor specialfunctions, Rend. Sem. Mat. Univ. Politec. Torino, Special
issue: Specialfunctions: theory and computation (1985), 91-116.

4. IMSL Library Reference Manual, IMSL, 7500 Bellaire Boulevard, Houston, TX 77036-
5085, Edition 9, June 1982.

5. NAG Fortran Mini Manual-Mark 12, Numerical Algorithms Group, Inc., 1101 31st St.,
Suite 100, Downers Grove, IL 60515-1263. First edition, March 1987.

6. National Bureau of Standards, Handbook of mathematical functions (M. Abramowitz and
I. A. Stegun, eds.), Applied Mathematics Series No. 55, U.S. Government Printing Office,
Washington, D.C., 1964.

7. F. W. J. Olver, Asymptotics and specialfunctions, Academic Press, New York, 1974.
8. N. M. Temme, The numerical computation of the confluent hypergeometric function

U(a, b, z), Numer. Math. 41 (1983), 63-82.

